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ABSTRACT
In strategic candidacy games, both voters and candidates have pref-

erences over the set of possible election outcomes, and candidates

may strategically withdraw from the election in order to manipu-

late the result in their favor. In this work, we extend the candidacy

game model to the setting of multiwinner elections, where the goal

is to select a fixed-size subset of candidates (a committee), rather

than a single winner. We examine the existence and properties of

Nash equilibria in the resulting class of games, under various voting

rules and voter preference structures.
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1 INTRODUCTION
The problem of selecting a subset of alternatives based on the pref-

erences of a number of agents (voters) is ubiquitous: democratic

societies choose representatives to govern on their behalf, compa-

nies select products and services to promote to their customers [23,

24, 32], local governments decide which potential projects should

get funded [3, 4], and working groups shortlist tasks to perform or

applicants to join their team.

In many of these scenarios, candidates are free to join or leave

the election, and may themselves have preferences over its possible

outcomes. They may therefore make strategic decisions concerning

their participation. The resulting interaction can then be viewed as

a non-cooperative game among the candidates: the players decide

whether to run in the election or abstain, and the outcome is de-

cided by voting. The voters are typically assumed to report their

preferences sincerely (see, however, the work of [8], where both can-

didates and voters may be strategic). In the context of single-winner

elections, such games are known as strategic candidacy games; they
were introduced by Dutta et al. [11, 12], and have subsequently

been studied by a number of authors [13, 17, 21, 22, 28, 30, 31].

However, to the best of our knowledge, strategic candidacy games

have not been investigated in the context of multiwinner elections.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Against this background, in this paper we initiate the study of

multiwinner candidacy games (MCGs), and study the properties of

their equilibria under a number of common multiwinner rules.

Contributions We study two types of elections, with different for-

mats of voter ballots: approval-based elections and ordinal elections.

In both cases, we assume that all candidates prefer to be selected.

Under approval preferences a voter’s approval of a candidate is

independent of the set of candidates participating in the election.

One may then expect that in approval-based elections no candidate

has an incentive to withdraw. We show that this is indeed the

case for a large class of rules known as Thiele rules [32, 35], as

well as for their sequential variants: the action profile where every

candidate participates in the election is an equilibrium. In fact,

sequential Thiele rules are truthful in an even stronger sense: not

only is full participation an equilibrium, but in every equilibrium

the winning committee is the same as under full participation; we

say that candidacy games with this property are genuine. However,
games that are based on simultaneous versions of Thiele rules may

fail to be genuine. Moreover, there exist approval-based rules for

which full participation may fail to be an equilibrium: e.g., this is

the case under the Minimax Approval voting rule [7].

In ordinal elections, pure strategy Nash equilibria may fail to

exist even for simple single-winner voting rules [22]. Interestingly,

while one expects non-existence results to extend easily from k = 1

to k ≥ 2 (where k is the target committee size), this is not always

the case: for the family of k-CC voting rules [10] we obtain an

existence result that holds for k ≥ 2, but not for k = 1. However,

while this positive result is encouraging, it only applies to a limited

class of rules. To obtain positive results for other rules, we follow

the approach of [22, 27] for the single-winner setting, and focus on

restricted preference domains. For profiles that admit k sequential

Condorcet winners (wherek is the target committee size), we extend

the result of Lang et al. [22] for single-winner Condorcet-consistent

rules to a multiwinner version of Maximin. However, the analogous

result for Plurality [27] does not extend to the multiwinner setting:

we provide a counterexample for the Bloc rule. We then consider

elections with single-peaked voter preferences. We establish several

structural results on the collective ranking of candidates induced

by a single-peaked profile, and then use them to prove the existence

of equilibria for the family of top-k-counting rules [18]. However,
we show that the respective games are not genuine.

2 MODEL
An election is given by a setC = {c1, c2, . . . , cm } of potential candi-
dates and a setV = {v1,v2, . . . ,vn } of voters; we assumeC ∩V = ∅.
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Let L(C) be the set of all linear orders over C , and let P(C) be the
power set of C . We consider two types of elections: in ordinal elec-
tions, the preference of voterv ∈ V is a ranking Pv ∈ L(C), ordering
the candidates from most to least preferred, and in approval-based
elections each voter v ∈ V indicates a subset Pv ∈ P(C) of can-
didates that she approves. In the latter case, abusing notation, we

write aPvb whenever a ∈ Pv and b < Pv . The list P
V = (Pv )v ∈V

is called the voter preference profile.
We consider voting procedures that operate as follows. There

is a desired committee size k ≤ m, and an order ▷ ∈ L(C). First, a
subset of candidates A ⊆ C announce that they will participate in

the election; we refer to the candidates inA as the actual candidates,
and denote their number bymA = |A|. We focus on the case where

mA ≥ k .1 Each voter v ∈ V reports her preferences over the

candidates in A; these preferences are obtained by restricting Pv
to A. We assume that all voters are sincere. A multiwinner voting
rule takes the set A and the list of voter preferences over A as input,

and outputs a size-k committeeW ⊆ A that is declared to be the

election winner.

2.1 Multiwinner Voting Rules
We will now define several procedures that, given an election with

a setV of n voters, a setA ofmA actual candidates, and a target com-

mittee size k ≤ mA, output a non-empty collection of k-element

subsets of A (committees) that are tied for winning. Any such pro-

cedure R can be turned into a multiwinner voting rule by means

of a tie-breaking scheme, ▷R , which is a partial order on size-k
subsets of A. The only assumption we make with regard to ▷R is

that for any two committees that differ from each other by exactly

one element, the selection is made according to a predetermined

order ▷ over the candidate set: for S ⊆ A with |S | = k − 1, and

a,b ∈ A, we have S ∪ {a} ▷R S ∪ {b} iff a ▷ b.
Many such rules assign each committee S a score sc

R (S), and
select those with the highest (or the lowest) score to be tied for

winning. Below we list several rules in this category.

Approval-Based Rules We first consider approval-based elec-

tions. In what follows, we write Iq = 1 if condition q is true and

Iq = 0 otherwise.

Proportional Approval Voting (PAV). Voter v’s satisfac-
tion increases with the number of her approved candidates

included in the committee, with the marginal value for each

additional member decreasing harmonically:

sc
PAV(S) =

∑
v ∈V

|S∩Pv |∑
j=1

1

j
.

Chamberlin–Courant (CC). Voter v is satisfied with a

committee as long as it contains at least one of her approved

candidates:

sc
CC(S) =

∑
v ∈V
I |S∩Pv |,∅ .

Both PAV and CC fall into the general class of Thiele rules [35].

These rules can be defined in terms of ordered weighted averag-
ing (OWA) operators [32], and hence are also referred to as OWA

1
We assume that ifmA < k , the output consists of A together with top mA − k
candidates in C \ A with respect to ▷.

rules. An OWA operator is defined by a (length-k) sequence of real
numbers w = (w1, . . . ,wk ), termed the weight sequence.

Thiele rules (T). The score that voter v assigns to a com-

mittee S under the Thiele rule with weight sequence w is

given by the sum of the first |S ∩ Pv | weights in w:

sc
w(S) =

∑
v ∈V

|S∩Pv |∑
j=1

w j .

Thus, CC is the Thiele rule defined by the weight sequence

wCC = (1, 0, 0, . . . , 0), and PAV is the Thiele rule with the

weight sequence wPAV = (1, 1
2
, 1
3
, . . . , 1k ).

Sequential Thiele rules (seq-T).We also consider the se-

quential variants of Thiele rules, which output all committees

that can be obtained by starting with the empty committee

(S = ∅), and then, in k consecutive steps, adding to S a can-

didate c so as to maximize the value sc
w(S ∪ {c}) − sc

w(S).
Minimax Approval Voting (MAV). Finally, we provide an
example of an approval-based rule that is not a (sequential)

Thiele rule. The Minimax Approval Voting (MAV) rule is

based on egalitarian principles. It defines the score of a com-

mittee S as sc
MAV(S) = maxv ∈V (|Pv \ S | + |S \ Pv |), and

outputs all committees with the minimum score.

Ordinal Rules We now consider the case where voters’ prefer-

ences are ordinal. In particular, we redefine PAV and CC for this

case, and consider a few variants of the latter.

Let posv (c) denote the position of candidate c in the preference

list Pv ∈ L(C) of voter v , restricted to the set of actual candidates

A ⊆ C , and let topk (v) = {c ∈ A | posv (c) ≤ k}.

k-Maximin (k-MM). To compute the Maximin score of can-

didate c , for every other candidate a we compute the number

of voters that rank c over a; the score of c is then the smallest

among these values. We extend this rule to the multiwinner

setting by considering pairwise contests between members

of a given committee S and candidates outside of S :

sc
k-MM (S) = min

c ∈S
min

a<S
|{v ∈ V | cPva}|.

Bloc. Under this rule, each voter gives one point to each

candidate in the top k positions of her preference list, where

k is the target committee size:

sc
Bloc(S) =

∑
v ∈V

∑
c ∈S
I
posv (c)≤k .

Ordinal PAV (O-PAV). As above, voter v would like the

committee to include as many of her top k candidates as

possible; however, her marginal value for each additional

member decreases:

sc
O-PAV(S) =

∑
v ∈V

|S∩topk (v) |∑
j=1

1

j
.

Ordinal CC (O-CC). Under the O-CC rule, the score that a

committee S receives from a voter v depends on her most

preferred member of S , called her representative.
There are several variants of this rule, which can be defined

by a positional scoring function, fpos : {1, . . . ,mA} → R,
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where fpos is non-increasing and fpos(1) > fpos(mA):

sc
O-CC(S) =

∑
v ∈V

max

c ∈S
fpos

(
posv (c)

)
.

In particular, the most common are the following two rules:

Borda-CC. The contribution of voter v to the score of S
is the Borda score of her representative in S :

sc
Borda-CC(S) =

∑
v ∈V

max

c ∈S

(
mA − posv (c)

)
.

k-CC. Voter v contributes one point to the score of S if

her representative is ranked in top k positions of Pv :

sc
k -CC(S) =

∑
v ∈V

max

c ∈S
I
posv (c)≤k =

∑
v ∈V
IS∩topk (v),∅ .

ϵ-Bloc-CC. Finally, we define a hybrid of the k-CC and Bloc

rules, by letting voter v contribute one point to the score of

S if her representative is ranked in top k positions, but also

add another ϵ > 0 points for every additional member of S
with this property (we assume ϵ < 1

kn ):

sc
ϵ -Bloc-CC(S) =

∑
v ∈V

(IS∩topk (v),∅

+ϵ ·max{|S ∩ topk (v)| − 1, 0}).

For some of the voting rules listed above, namely for Bloc, O-PAV,

k-CC and ϵ-Bloc-CC, the contribution of a voter v to the score of a

committee S only depends on the size of the set topk (v) ∩ S . Such
rules form the following class.

Top-k-Counting rules (k-TC). These voting rules are de-

fined by a non-decreasing top-k-counting scoring function,
ftop : {1, . . . ,mA} → R, as follows:

sc
k -TC(S) =

∑
v ∈V

ftop
(
|topk (v) ∩ S |

)
.

We now turn to complete the formal definition of our model for

candidacy games in multiwinner elections.

2.2 Multiwinner Candidacy Games
In a candidacy game, candidates themselves also have preferences

over the setC , and each candidate can choose whether to run in the

election. Formally, each candidate c ∈ C has two available actions:

1 (run) and 0 (abstain), and is endowed with either an ordinal or

an approval-based preference Pc over C . We adopt the assumption

of self-supporting preferences, which is common in the candidacy

games literature: in ordinal elections, where Pc ∈ L(C), each candi-
date c strictly prefers herself over the others, and in approval-based

elections where Pc ∈ P(C), each candidate c approves herself. The
list PC = (Pc )c ∈C is the candidate preference profile.

The tuple ⟨C,V , PV , PC ,k,R,▷⟩ defines a strategic game, ΓR ,
termed the multiwinner candidacy game (MCG). In this game, the

set of players is C and each player’s set of actions is {0, 1}. We

denote the action (or, strategy) of a player c ∈ C by sc and call the

vector s = (sc )c ∈C the strategy profile. A strategy profile s defines
the set of actual candidates A(s) = {c ∈ C | sc = 1} and hence an

outcomeW (s) ⊆ C; we will sometimes identify a strategy profile

s with the set A(s). For |A(s)| ≥ k , the outcome is the winning

committee under rule R, with ties broken according to ▷ as defined
in Section 2.1, computed based on the votes of voters in V over

candidates in A(s); we denote the score obtained by a committee

S ⊆ A(s) in this election by sc
R (S, s). If |A(s)| < k , the outcome

W (s) is the set A(s) ∪ X where X consists of the top k − |A(s)|
candidates in the restriction of ▷ ∈ L(C) to C \A(s).

The players’ preferences over the states of the game are de-

termined by their most preferred candidates in respective elected

committees. For every committee S ⊆ C and player c ∈ C , let
topc (S) denote the highest ranked member of S , according to the

full preference Pc of c over the setC of potential candidates. Then, in

game ΓR , player c prefers state s to state t (denoted by s >c t) if and
only if topc (W (s)) Pc topc (W (t)). Otherwise, player c is indifferent
between s and t.2

We will be interested in Nash equilibria of MCGs, i.e., the states

of the game that no player can profitably deviate from. Formally,

given a game ΓR , we say that a strategy profile s is a pure strategy
Nash equilibrium (PSNE) of ΓR if for every candidate c ∈ C it is

not the case that t >c s, where t is the strategy profile given by

tc = 1 − sc and ta = sa for all a ∈ C \ {c}.

3 APPROVAL-BASED ELECTIONS
To start, we consider the arguably simpler setting of MCGs where

voters have approval-based preferences; the candidates’ preferences

may be either ordinal or also approval-based.

An important difference between approval-based and ordinal

elections is that in the former a voter’s approval of a candidate is

independent of the set of actual candidates running in the election,

so whenever a candidate is present in the ballot, it will be approved

by the same group of supporters, whereas under ordinal preferences

the candidates’ positions in restricted rankings depend on the set

of candidates running in the election.

Intuitively, this suggests that for the setting of approval ballots

in games with self-supporting preferences the truthful strategy
profile, where all candidates are present, should be an equilibrium.

We will now see that this intuition is indeed correct for (sequential)

Thiele rules, but not for MAV. In fact, we will show that sequential

Thiele rules have an even stronger truthfulness property: in every

equilibrium the outcome is the same as under full participation. We

first need to formalize this idea.

Definition 3.1. We say that a given MCG ΓR is genuine if:
(1) its set of PSNE contains the truthful profile s∗ = C , and
(2) every equilibrium state s of ΓR produces the same outcome

as the truthful state:W (s) =W (s∗).

Our first result is that multiwinner candidacy games under se-

quential Thiele rules are genuine.

Theorem 3.2. Γseq-T is genuine.

Proof. First, we observe that the truthful profile s∗ = C is an

equilibrium. Indeed, since candidates have self-supporting prefer-

ences, no member of the truthful winning committeeW ∗ =W (s∗)
wants to leave the election, and the withdrawal of any candidate

in C \W ∗
has no effect on how other candidates are evaluated

2
We choose this Chamberlin–Courant-like definition of player utilities for its simplicity

and consistency with the self-supporting candidate preference assumption. In fact, all

our results hold for any utility definition under which for all S ⊆ C with |S | = k − 1,

and all a, b ∈ C , if player c prefers committee S ∪ {a } to committee S ∪ {b } then it

must be that aPcb .
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throughout the selection process, and hence does not affect the

outcome.

We will now argue that any other equilibrium state, if it exists,

produces the same outcome,W ∗
, as the truthful state. It suffices to

show that any such state contains the setW ∗
.

Recall that under sequential Thiele rules, the committee is formed

in k consecutive steps, where a candidate with the largest mar-

ginal contribution is added to the committee at each step. Let

c1, c2, . . . , ck be the order in which the members ofW ∗
join the

committee.

Assume to the contrary that s is an equilibrium profile not con-

tainingW ∗
, and let ci be the first candidate in the above sequence

that is not present in s. That is, candidates c1, c2, . . . , ci−1 are run-
ning in the election, and are included in the winning committee

W (s) in the first i − 1 steps of its formation. Then, if candidate ci
were to join the election, it would be added to the winning com-

mittee at the following step i , which is beneficial for ci due to

self-supporting preferences; a contradiction. □

In contrast, ΓPAV and ΓCC may fail to be genuine: even though

in any such game full participation is an equilibrium, there exist

equilibria that result in different outcomes.

Theorem 3.3. ΓCC and ΓPAV admit the truthful equilibrium, but
may also have PSNE with different outcomes.

Proof. Our first claim is proved similarly to the first claim of

Theorem 3.2: in both games ΓCC and ΓPAV, the truthful profile s∗ = C
is a PSNE, as the elected candidates would stay due to their self-

supporting preferences, and the non-elected candidates have no

incentive to leave, as this would not change the outcome.

To prove the second claim, we construct an MCG with n = 26

voters,m = 10 candidates, and committee size k = 5. The candidate

set isC = {c1, c2, . . . , c10}, and the tie-breaking order onC is given

by ▷ = c1c2c3c4c10c9c8c7c6c5 (this will only be relevant for the PAV
rule as there are no ties under CC in this election).

Table 1 summarizes the voters’ preferences by listing, for each

candidate ci , i = 1, . . . , 10, its supporters—the voters who approve

this candidate. The candidates’ preferences are irrelevant.

Candidates Approving voters

c1 v1 v2 v3 v4 v5
c2 v6 v7 v8 v9 v10
c3 v11 v12 v13 v14 v15
c4 v16 v17 v18 v19 v20
c5 v21 v22 v23 v24 v25 v26
c6 v1 v6 v11 v16 v21
c7 v7 v12 v17 v22
c8 v3 v8 v13 v18
c9 v9 v14 v19 v24
c10 v4 v5 v10 v15 v20 v25 v26

Table 1: Proof of Theorem 3.3—voters’ approval preferences

Recall that under the CC voting rule, a voter is satisfied with a

committeeW (and contributes one point to its score) as long asW
contains at least one of her approved candidates (otherwise, she

gives the committee zero points).

Under the truthful PSNE profile s∗ = C , the winning committee is

W ∗ = {c1, c2, c3, c4, c5} with the score of 26; indeed, this committee

satisfies all voters. However, there are other equilibria in this game,

which, as we will now show, produce outcomes different fromW ∗
.

Consider state s with A(s) = {c6, c7, c8, c9, c10} ⊉W ∗
where the

winning committeeW (s) consists of all actual candidates and gains
the score of 24 (as voters v2 and v23 do not approve of any of its

members). We claim that s is a PSNE.
Indeed, none of the actual candidates wish to leave the election

as they are all included in the winning committee. Now, none of the

candidates c2, c3, c4 can change the outcome by joining the election,

as all their supporters already have some approved candidate in

W (s). Finally, if c1 or c5 decided to join, then any committee where

any of them would replace one of the current winning committee

members, would gain one additional point from either v2 or v23,
but lose at least three points from the supporters of the excluded

member who will now be left unsatisfied. Hence,W (s) remains the

winning committee, thus implying the stability of s.
Under PAV, we have the same truthful outcome and the same non-

truthful equilibrium, albeit the analysis is somewhat more tedious

due to tie-breaking.We omit the details due to space constraints. □

In contrast, under MAV the truthful profile may fail to be an

equilibrium. In fact, this is the case even for k = 1, i.e., for the case

where MAV is used to select a single winner.

Example 3.4. Let C = {a,b, c}, V = {v1,v2,v3}, and suppose

that voters have the following preferences: Pv1
= {c}, Pv2

= {b},
Pv3
= {a, c}. Let k = 1. Suppose also that candidate b prefers c to a,

and ties are broken lexicographically.

If all candidates are present, we have sc
MAV({a}) = sc

MAV({c}) =
2, sc

MAV({b}) = 3, so a wins due to lexicographic tie-breaking.

However, if b withdraws from the election, we have sc
MAV({a}) = 2,

sc
MAV({c}) = 1, so c becomes the winner; as b prefers c to a, this

means that the truthful profile is not an equilibrium.

We note that this candidacy game does not have an equilibrium

where only a single candidate participates in the election: if a runs

alone, then c wants to join, if b runs alone, then a wants to join,

and if c runs alone, then b wants to join. However, it does have an

equilibrium with two actual candidates, namely, {a, c}.

It remains an open question whether ΓMAV
always has a PSNE;

in fact, this problem appears to be challenging even for k = 1, i.e.,

for the single-winner scenario.

4 ORDINAL ELECTIONS
We now move to the setting where both voters and candidates have

ordinal preferences.

In this case, the very existence of pure strategy Nash equilibria is

a challenging question. For single-winner elections it is known that,

in general, under most voting rules candidacy games may fail to

have PSNE [22]; however, the presence of a Condorcet winner guar-

antees the existence of PSNE for Condorcet-consistent rules [22]

and for Plurality [27]. Here we explore whether similar results can

be obtained for multiwinner elections.

While one would expect non-existence results of Lang et al. [22]

to extend easily to the multiwinner setting, we show that this is

not necessarily the case: while for k = 1 the k-CC rule is simply
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the Plurality rule and hence the associated MCG may fail to have

a PSNE, it turns out that PSNE always exist in MCGs under k-CC
rules with k ≥ 2. In fact, this result extends to all O-CC rules with

k ≥ 2 and fpos(1) = fpos(2) (Theorem 4.1); our proof is constructive.

While we conjecture that this result no longer holds if fpos(1) ,
fpos(2), we have not been able to prove this.

Next, we extend the definition of a Condorcet winner to a se-

quence of k Condorcet winners (where k is the target committee

size), and examine k-Maximin and Bloc—multiwinner generaliza-

tions of a well-known Condorcet-consistent rule and Plurality, re-

spectively. For the former, we prove that the set consisting of k
sequential Condorcet winners forms a PSNE (Theorem 4.5); how-

ever, for the latter we construct a game with no PSNE (Theorem 4.6).

Based on this negative result, we place further structural con-

straints on voters’ preferences, and prove that for single-peaked

preferences the existence of a PSNE is guaranteed not just for Bloc,

but for most k-TC rules (Theorem 4.13). Our proof is constructive

and builds on a sequence of structural results on the order of candi-

dates that is induced by a single-peaked profile (Lemmas 4.8–4.12).

These auxiliary results do not depend on the choice of the voting

rule and are interesting for their own merit.

Finally, for all of the caseswith PSNE, we show that the respective

games are not genuine (Examples 4.3 and 4.15), even though k-
Maximin does allow for the truthful equilibrium (Theorem 4.7).

4.1 Chamberlin–Courant Rules
In this section, we prove that multiwinner candidacy games based

on O-CC rules with fpos(1) = fpos(2) always have a PSNE for k ≥ 2.

Let k-TOP denote the set of top k candidates in the tie-breaking

order ▷.

Theorem 4.1. In ΓO-CC defined by a scoring function fpos with
fpos(1) = fpos(2) and k ≥ 2, the set k-TOP is a PSNE.

Proof. Clearly, none of the members of k-TOP has an incentive

to withdraw from the election, so assume to the contrary that a

candidate c ∈ C \ k-TOP wants to join.

Let S , k-TOP be the winning committee in the game with

A = k-TOP ∪ {c}. Such a committee must include the candidate

c and exclude some candidate c ′ ∈ k-TOP so that |k-TOP ∩ S | =
k − 1. We claim that sc

O-CC(k-TOP) = sc
O-CC(S). Indeed, since

there are exactly k + 1 actual candidates, for each voter v ∈ V , her

representative in any size-k committee is either in the first or in

the second position of her (restricted) preference list, and we have

fpos(1) = fpos(2). As c
′ ▷ c , the tie-breaking rule favors k-TOP over

S , so k-TOP is the winning committee. Hence, c has no incentive to

join, a contradiction. □

Corollary 4.2. k-TOP is a PSNE in Γk -CC with k ≥ 2.

These results are in contrast with the negative result for Plural-

ity [22], which can be seen as a special case of k-CC for k = 1.

We can show, however, that Γk -CC is not genuine.

Example 4.3. We construct a game withm = 4 candidates C =
{a,b, c,d}, tie-breaking rule a ▷b ▷ c ▷d , and committee size k = 2.

We have a single voterv who ranks the candidates as d ≻ c ≻ b ≻ a.

Observe that in Γk -CC, in the truthful profile s∗ = C all commit-

tees except {a,b} are tied for winning, so we haveW (s∗) = {a, c}

by the tie-breaking rule. However, by Theorem 4.1, there is a PSNE

state s = k-TOP, whose outcomeW (s) = {a,b} ,W (s∗) is untruth-
ful, and so Γk -CC is not genuine.

4.2 Sequential Condorcet Winners
In this section, our goal is to understandwhether the positive results

for single-winner elections with a Condorcet winner extend to the

multiwinner setting.

Given a preference profile PV over a candidate setC , we say that
a candidate a beats another candidate b in a pairwise election if a

strict majority of voters prefer a to b; if exactly half of the voters

prefer a to b, then a and b are tied. A candidate is a (weak) Condorcet
winner if it does not lose in any of its pairwise elections; it is a strong
Condorcet winner if it beats all other candidates. Each election has

at most one Condorcet winner, but many have none.

Several approaches to generalize the concept of a Condorcet

winner to multiwinner elections have been proposed [16, 19, 20, 29];

we refer the reader to [2] for a detailed analysis of their merits

and applications. In this work, we take a sequential approach, as

captured by the following definition.

Definition 4.4. Given a voter preference profile PV over a can-

didate set C , we say that candidates c1, c2, . . . , cℓ , where ℓ ≤ m,

form a sequence of Condorcet winners of length ℓ if candidate c1 is a
Condorcet winner in PV , and for every i = 1, 2, . . . , ℓ − 1 it holds

that candidate ci+1 is a Condorcet winner in the restriction of PV

to C \ {c1, . . . , ci }.

Let ΓR be a multiwinner candidacy game defined by a tuple

⟨C,V , PV , PC ,k,R,▷⟩, where k is the target committee size, and

assume that PV induces a sequence of (at least)k Condorcet winners
c1, . . . , ck as above. Let k-SCW = {c1, . . . , ck } denote the set of

these candidates.

The following theorem suggests that Definition 4.4 is useful for

extending the positive result for single-winner Condorcet-consistent

rules [22] to the multiwinner setting.

Theorem 4.5. In Γk-MM with k sequential Condorcet winners, the
set k-SCW is a PSNE.

Proof. Observe that the outcome of s = k-SCW is k-SCW it-

self. As candidates have self-supporting preferences, none of the

candidates in k-SCW wants to withdraw from the election. On the

other hand, no candidate in C \ k-SCW would join the election, as

this will not change the outcome. Indeed, note that by definition,

each member c of k-SCW beats every candidate a in C \ k-SCW
in a pairwise election; that is, there are more than

n
2
voters who

prefer c to a. This implies sc
k-MM (k-SCW) > n

2
. On the other hand,

consider the committee S = k-SCW \ {c} ∪ {a} obtained by replac-

ing c with a candidate a ∈ C \ k-SCW. Since c beats a, we have

sc
k-MM (S) < n

2
< sc

k-MM (k-SCW). □

However, a related result for Plurality [27] does not seem to

extend easily to multiwinner elections under Definition 4.4. Recall

that under Plurality voting, each voter indicates her most preferred

candidate and contributes one point to her score; the Bloc rule

can thus be interpreted as a generalization of Plurality where a

voter indicates her ideal committee of k candidates. As we show in

Theorem 4.6 below, the presence of k sequential Condorcet winners
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appears insufficient to guarantee equilibrium existence in MCGs

under this rule.

Theorem 4.6. ΓBloc with k sequential Condorcet winners may
have no PSNE.

Proof. We construct an example of an MCG with n = 13 voters,

m = 5 candidates, and committee size k = 2.
3
The set of candidates

isC = {a,b, c,d, e}, and the voters’ preferences are given in Table 2

below. There are four voter blocks containing 4, 3, 4 and 2 voters,

respectively; for each block, the most preferred candidate is listed

at the top, and the least preferred one at the bottom.

4 voters 3 voters 4 voters 2 voters

a a b e
d e c b
b c d a
c b e d
e d a c

Table 2: Proof of Theorem 4.6—voters’ preferences

For the candidates, we only need to specify some of their pref-

erences, which can then be arbitrarily completed to full rankings.

These are given in Table 3. For readability, we use ≻ to indicate the

preference relation of each candidate.

Candidates Preferences

b c ≻ d
c d ≻ b, d ≻ e ≻ a
d c ≻ b, a ≻ e
e b ≻ c, b ≻ d

Table 3: Proof of Theorem 4.6—candidates’ preferences

The tie-breaking rule is irrelevant as there is a unique winning

committee in each state.

In this game, candidate a is a Condorcet winner, candidate b
wins in pairwise elections against c,d and e , candidate c beats d
and e , and d beats e . That is, a,b, c,d, e is a sequence of Condorcet
winners. However, there is no PSNE under Bloc. To see this, note

first that if the number of participating candidates is 0 or 1, then

any non-participating candidate would like to join the election,

as she will be included in the winning committee. In Table 4 we

list the larger states of the game, as given by their sets of actual

candidates A, the respective outcomesW , and a candidate who has

an incentive to deviate (denoted by →) by either joining (+) or

leaving (−) the election at a given state. For the sake of readability,

we write sets as strings, i.e., we write xyz for {x ,y, z}. This table
shows that no state is a PSNE.

□

Note that the game ΓBloc is therefore not genuine, by definition.

For Γk-MM
, we prove the following result.

Theorem 4.7. Γk-MM with k sequential Condorcet winners admits
the truthful equilibrium, but may also have PSNE with non-truthful
outcomes.
3
We thank the anonymous IJCAI-2019 reviewer who has simplified our original

example.

A =W → A W → A W →

ab e+ abc ab d+ abcd ac e+
ac b+ abd ab c+ abce ab c−
ad b+ abe be d+ abde ad e−
ae b+ acd ad b+ acde ad e+
bc a+ ace ae b+ bcde bc a+
bd a+ ade ae c+ abcde ab c−
be c+ bcd bc a+
cd b+ bce bc a+
ce b+ bde bd a+
de b+ cde cd a+

Table 4: Proof of Theorem 4.6—no PSNE
Proof. We start by showing that for every set A that contains

k-SCW the committee k-SCW wins. Let A ⊇ k-SCW, and let S ⊆ A
be a committee that contains candidate c ∈ S such that c < k-SCW.

Note that for every candidate c ′ ∈ k-SCW, the number of voters that

rank c ′ over c is greater than n
2
(and vice versa, the number of voters

that rank c over c ′ is smaller than
n
2
), and so sc

k-MM (k-SCW) >
n
2
> sc

k-MM (S). It then follows that the truthful state s∗ = C is a

PSNE of Γk-MM
, and the truthful outcome is k-SCW.

However, as we show below, there may also be equilibrium states

with untruthful outcomes in this game. To this end, we construct an

example withm = 6 candidates C = {a,b, c,d, e, f }, tie-breaking
rule a ▷b ▷ c ▷d ▷ e ▷ f , and committee size k = 3. There are n = 3

voters V = {v1,v2,v3} whose preferences are given in Table 5

where, for each voter, the most preferred candidate is listed at the

top, and the least preferred one at the bottom.

voter v1 voter v2 voter v3
a f f
b e e
c d d
d b c
f c a
e a b

Table 5: Proof of Theorem 4.7—voters’ preferences

We claim that there is an equilibrium state s = {a,b, c} whose
outcome is different from the truthful outcome k-SCW = {d, e, f }.
Indeed, none of the candidates in s has an incentive to withdraw.

Now, if any of the candidates d , e or f would join the election, we

get a set A with 4 actual candidates. As any size-3 committee under

A has a score of exactly 1, the winning committee is {a,b, c} by the

tie-breaking rule, so the state s is stable. □

4.3 Single-peaked Preferences
Based on the negative result of Theorem 4.6, in this section we

further restrict the voters’ preferences and focus on single-peaked

profiles. The concept of single-peaked preferences, which was first

proposed by Black [6] and Arrow [1], captures settings where vot-

ers’ preferences are essentially single-dimensional, and found many

applications in (computational) social choice [15]. It turns out to be

relevant for our analysis as well.

Given a preference profile PV over C , let topv denote the most

preferred candidate of voter v . Given a linear order ▷SP of C , we
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say that Pv is single-peaked with respect to ▷SP if for all a,b ∈ C
such that topv ▷

SP a ▷SP b or b ▷SP a ▷SP topv we have that aPvb.
In other words, the order Pv is decreasing as we move in either

direction from topv ; we refer to ▷
SP

as an axis for C . We say that a

profile PV is single-peaked if there exists an axis ▷SP such that for

each v ∈ V the vote Pv is single-peaked with respect to ▷SP.
Importantly, the (weak) majority relation is transitive for single-

peaked profiles, and hence all the candidates form a sequence of

Condorcet winners. Specifically, the Median Voter Theorem [25, 26]

suggests that a single-peaked profile induces an order on the candi-

date set, which is strict for an odd number of voters (so all sequential

Condorcet winners are strong) and weak for an even number of

voters (so there may be weak Condorcet winners). However, it

does not specify the structure of this order. To this end, in Lem-

mas 4.8–4.12 we prove a few structural results in this context (see

the work of Smeulders [34], which contains some results in the

same spirit), which enable us to prove equilibrium existence for

k-TC in Theorem 4.13.

In the remainder of this section, we use the following notation.

Let PV be a single-peaked profile with axis ▷SP over C and let

C0 ⊋ C1 ⊋ C2 . . . ⊋ Cℓ be a concentric sequence of candidate sets,

where C0 = C and each Ci , i = 0, 1, . . . , ℓ, corresponds to a unique

set of Condorcet winners, SCWi , in the restriction PVi of PV to Ci
(similarly, we denote the restriction of ▷SP to Ci by ▷

SP
i ). That is,

for every a ∈ SCWi−1 and b ∈ SCWi , i = 1, . . . , ℓ it holds that a
beats b in their pairwise election, and for each i = 0, 1, . . . , ℓ all

candidates a,b ∈ SCWi are tied. The sets SCWi form a partition

of C where singletons contain strong Condorcet winners and non-

singletons are composed of weak Condorcet winners in respective

restrictions; the overall sequence of Condorcet winners is given by

(π (SCWi ))
ℓ
i=0 where π (SCWi ) denotes a permutation over SCWi .

Finally, let ≻ indicate the preference relation of an arbitrary voter.

Lemma 4.8. The set SCWi forms a contiguous segment of ▷SPi .

Proof. If the number of voters n is odd, SCWi is a singleton, and

our claim is trivially true, so assume that n is even. If the statement

of the lemma is not true, there exist two candidates a,b ∈ SCWi
and a candidate d < SCWi such that a▷

SP
i · · ·▷SPi d▷SPi b. Since a and

b are Condorcet winners in Ci , there is a set of votes V1, |V1 | =
n
2
,

such that a ≻ b in each vote in V1 and a set of votes V2, |V2 | =
n
2
,

such that b ≻ a in each vote in V2. In every vote in V1 candidate d
is ranked above b and all candidates to the right of b with respect

to ▷SPi ; similarly, in every vote in V2 candidate d is ranked above

a and all candidates to the left of a with respect to ▷SPi . It remains

to consider candidates that appear between a and d on ▷SPi . Let c
be some such candidate. Since b ∈ SCWi , at least half of the voters

prefer b to c , and all such voters prefer d to c . Thus, d is preferred

to every other candidate in Ci by at least half of the voters. □

Lemma 4.9. For every j = 0, 1, . . . , ℓ, the elements of ∪j
i=0SCWi

form a contiguous segment of ▷SP.

Proof. Assume for brevity that n is odd. Suppose for the sake

of contradiction that there are a,b ∈ ∪
j
i=0SCWi and d < ∪

j
i=0SCWi

such that a ▷SP . . . ▷SP d ▷SP . . . ▷SP b. We can assume without loss

of generality that a ≻ b in more than n/2 votes; but then also d ≻ b
in more than n/2 votes; a contradiction. □

Lemmas 4.8 and 4.9 imply that the sets SCWi form concentric

intervals around SCW0 on the original axis ▷
SP
, where the elements

within each SCWi can be freely permuted.

Lemma 4.10. Let a ∈ SCWi for some i = 0, 1, . . . , ℓ, and let candi-
date b ∈ Ci tie in a pairwise election with a. Then, either b ∈ SCWi
or there exists another c ∈ SCWi such that c lies between a and b on
▷SPi ; moreover, a is tied with any candidate on the interval between a
and b on ▷SPi .

Proof. Let b < SCWi be the closest on the axis candidate to a
in a tie with it. W.l.o.g., let a be to the left from b. In the case where

there are no other candidates between them, since b ≻ a in half of

the votes then for any d on the left from a we have b ≻ d in at least

half of the votes. Let e be an arbitrary candidate to the right from b.
Then, in all the votes where a ≻ e we also have b ≻ e , and there are
at least

n
2
of those. It thus follows that b ∈ SCWi ; a contradiction.

Consider now the case where there are candidates between a
and b. By construction, they all belong to SCWi . Similarly to the

previous case, for any candidate d to the right from b or to the left

from a we have b ≻ d in at least
n
2
votes. Thus, the only candidates

that are preferred to b in more than half of the votes are those

members of SCWi that lie between a and b, as required. □

Lemma 4.11. Let SCWi = {c1, c2, . . . , c |SCWi |}, i = 0, . . . , ℓ, such
that c1 ▷SP c2 ▷SP . . . ▷SP c |SCWi | . Then, in half of the votes in PVi
we have c1 ≻ c2 ≻ . . . ≻ c |SCWi | , and in the other half we have
c |SCWi | ≻ c |SCWi |−1 ≻ . . . ≻ c1.

Proof. By Lemma 4.10, the candidates c1, c2, . . . , c |SCWi | are

tied with each other. Note that a candidate which is listed in the

bottom of a vote in a single-peaked profile, can be either the first or

the last one on the axis ▷SP: i.e., only c1 or c |SCWi | can be listed in

the bottom of any vote. Now, there can be at most
n
2
votes, where

c1 (resp., c |SCWi |) loses to the other candidates c2, . . . , c |SCWi |−1,

and so there are exactly
n
2
such votes where c1 (resp., c |SCWi |) is

listed last. Hence, in the other half of the votes c1 (resp., c |SCWi |)

must appear in the top. The proof is complete by induction. □

Lemma 4.12. If |SCWi | ≥ 3 then i = 0.

Proof. Assume to the contrary that for some i ≥ 1 there exist

three candidates c1, c2, c3 such that c1 ▷
SP c2 ▷

SP c3 and SCWi ⊇

{c1, c2, c3}. Consider a candidate b ∈ SCWi−1 such that b ≻ c1 in
more than

n
2
votes (such a candidate exists by Lemma 4.10). Note

thatb must lie between c1 and c2 on the axis, as otherwise we would
have c1 ≻ b in at least

n
2
votes.

Now consider the
n
2
votes where c3 ≻ c2. In all these votes we

have c3 ≻ b and c2 ≻ b. Hence, b is tied with c2 and c3 in PVi−1, and
so there is a candidate a ∈ SCWi−1 that lies between b and c2, c3
on the axis, and a ≻ c2, a ≻ c3 in more than

n
2
votes. However, in

all the votes where a ≻ c3 we also have c2 ≻ c3, and we can only

have at most
n
2
such votes; a contradiction. □

We are now ready to state the main result of this section.
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Theorem 4.13. Let Γk -TC be defined by a scoring function ftop
with ftop(k) , ftop(k − 1), and let PV be single-peaked. Then, Γk -TC

always has a PSNE if n is odd, and whenever ▷SP = ▷ if n is even.

Proof. By Lemmas 4.8–4.12, there are three possible cases:

(1) |SCW0 | ≥ k ;
(2) |SCW0 | < k and ∃j ≥ 1 such that |SCWi | ≤ 2 for all i =

1, . . . , j and | ∪
j
i=0 SCWi | = k ;

(3) |SCW0 | < k and ∃j ≥ 1 such that |SCWi | ≤ 2 for all i =

1, . . . , j, | ∪
j−1
i=0 SCWi | = k − 1, and | ∪

j
i=0 SCWi | = k + 1.

For every X ⊆ C let let k-TOP(X ) denote the set of top k candidates

in the restriction of the tie-breaking order ▷ to X . We will now

construct the set k-SCW of k sequential Condorcet winners for

each of the above cases in the following way:

(1) k-SCW = k-TOP (SCW0);

(2) k-SCW = ∪
j
i=0SCWi ;

(3) k-SCW = k-TOP
(
∪
j
i=0SCWi

)
.

We show that k-SCW is a PSNE of Γk -TC. Clearly, no member of

k-SCW wants to withdraw, so it remains to show that none of the

candidates in C \ k-SCW wants to join the election.

First, consider the cases (1) and (2). Let k-SCW = {c1, c2, . . . , ck }
and b ∈ C \ k-SCW. We will now argue that if the set of actual

candidates is A = k-SCW ∪ {b} then the winning committee is

k-SCW, so b has no incentive to join.

Indeed, if in case (1) we have |SCW0 | > k and b ∈ SCW0, then

since for any c ∈ k-SCW, c ▷ b, and ▷ = ▷SP, then by Lemmas 4.8–

4.12 the members of A are ordered on the axis ▷SP as follows:

c1, . . . , ck ,b. That is, b is in the bottom position in
n
2
votes over A.

This implies that for any committee S = (k-SCW \ {c})∪ {b} where

c ∈ k-SCW, its score is exactly sc
k -TC(S) = n

2
ftop(k)+

n
2
ftop(k−1) =

sc
k-TC(k-SCW), but k-SCW wins by the tie-breaking. Otherwise, if

b is not in a tie with any of c1, . . . , ck , then sc
k -TC(S) ≤ n

2
ftop(k) +

n
2
ftop(k − 1) = sc

k -TC(k-SCW), so k-SCW remains the winner.

We now consider case (3). In this case, |SCWj | = 2, so let

∪
j−1
i=0SCWi = {c1, c2, . . . , ck−1}, SCWj = {a,b}. By Lemmas 4.8–

4.12, the possible orders of candidates on the axis▷SP are as follows:

(a) c1, . . . , ck−1,a,b; (b) a, c1, . . . , ck−1,b; and (c) a,b, c1, . . . , ck−1.
Since ▷ = ▷SP, for (a) and (b) we have k-SCW = {a, c1, . . . , ck−1},
and the proof follows the same lines as for cases (1) and (2) above.

For (c), k-SCW = {a,b, c1, . . . , ck−2}. Now, for any candidate c ∈

C \ {a,b, c1, . . . , ck−2, ck−1}, there is no incentive to participate, for
the same reasons as above. It remains to show that ck−1 does not
want to join the the election either. To this end, we observe that

for any committee S = (k-SCW \ {c}) ∪ {ck−1} where c ∈ k-SCW,

its score is sc
k -TC(S) ≤ n

2
ftop(k) +

n
2
ftop(k − 1) = sc

k -TC(k-SCW),

with the equality for c ∈ {a,b}. To complete the proof, we observe

that a,b ▷ ck−1. □

Corollary 4.14. Theorem 4.13 implies equilibrium existence for
ΓBloc, ΓO-PAV, and Γϵ -Bloc-CC with single-peaked preferences.

However, we show that Γk -TC is not necessarily genuine, even

if voters have single-peaked preferences: for ΓBloc, ΓO-PAV, and

Γϵ -Bloc-CC the truthful state may be unstable.

Example 4.15. We construct an example with n = 5 voters,m = 5

candidates, and a committee size k = 2. The candidate set is C =
{a,b, c,d, e}, with tie-breaking order a▷b▷c▷d▷e▷ f . The single-
peaked voter preference profile over axis a▷SP b ▷SP c ▷SP d ▷SP e
is specified in Table 5. There are three voter blocks containing 2, 2,

1 voters, respectively; for each block, the most preferred candidate

is listed at the top, and the least preferred one at the bottom.

2 voters 2 voters 1 voter

a a e
c d b
d b d
b c a
e e c

Table 6: Example 4.15—voters’ preferences

Under the truthful profile s∗ = C , the winning committee is

W (s∗) = {a, c}. However, if candidate d withdraws from the elec-

tion, the winner changes to {a,b}, which is a beneficial move for d
is she prefers b over c . Hence, s∗ = C is unstable.

5 CONCLUSIONS
We have initiated the study of strategic candidacy games in multi-

winner elections, both for the approval-based setting and for the

setting with ranked ballots.

For approval-based elections, we developed a good understand-

ing of equilibria of games that correspond to Thiele rules as well as

their sequential variants, and showed that for both classes of games

full participation is an equilibrium strategy profile. However, we

have shown that this is not necessarily the case for other approval-

based voting rules, such as MAV. In fact, a natural open problem

suggested by our work is whether strategic candidacy games un-

der the MAV rule always possess an equilibrium. It would also be

interesting to investigate more sophisticated voting rules for this

setting, such as the Phragmén rule and its sequential variants [9].

For the ordinal setting, we inherit equilibrium non-existence

results from the single-winner case. However, in contrast with the

single-winner case, we obtain positive results for CC rules. More-

over, for a number of voting rules, we identify structural properties

of voters’ preferences that guarantee the existence of an equilib-

rium. On the negative side, for all rules we consider there is an

equilibrium where the winning committee is different from the one

chosen under full participation.

An obvious open direction is to investigate the complexity of

finding equilibria in multiwinner candidacy games. Of course, we

expect this problem to be hard when even computing a winning

committee with respect to the underlying voting rule is computa-

tionally demanding, and this is the case for many voting rules that

we consider. However, we can study the parameterized complexity

of this problem or focus on restricted preference domains, where

the respective rules are known to be tractable [5, 14, 33].
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