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1 INTRODUCTION
Plan recognition is the task of inferring the actual plan an observed

agent is performing to achieve a goal, given domain theory and

a partial, possibly noisy, sequence of observations [3, 14, 22]. Ap-

plications include natural language processing [6], elder-care [5],

multi-agent systems [4, 19], collaborative problem-solving[10, 11],

epistemic problems [17] and more [7, 18]. Real-world plan recog-

nition problems impose limitations on the quality and quantity

of the observations, which may be missing or faulty from silent

errors in the sensors [22]. While recent approaches to goal and plan

recognition have substantially improved performance under partial

observability and noisy conditions [12, 13, 20, 21, 23], dealing with

these problems remains a challenge.

Recent work on goal and plan recognition use machine learn-

ing to assist planning-based approaches [23] in modeling domains.

Such techniques [9, 16] yield robust models capable of accurate

predictions with missing or noisy data. Thus inspired, we develop

a novel approach to solve both goal and plan recognition tasks

simultaneously by combining planning and machine learning tech-

niques to mitigate problems of low and faulty observability. On the

machine learning side, we use a set of plans to train a predictive

statistical model of the most likely next states given a set of state

observations. We combine such predictive models with landmark

heuristics from state-of-the-art goal recognition techniques [13] to

predict the states relevant towards a goal hypothesis, given a set

of observations. We use such predictive models to address the two

most common problems in observations in goal and plan recogni-

tion: missing and faulty (noisy) observations. First, the predictive

model allows us to fill in missing observations and rebuild the

complete sequence of states from a plan. Second, while completing

missing observations, we can detect faulty (noisy) observations and

build state sequences that do not necessarily comply with all the

observations, if some are not consistent with the planning model.

We evaluate our approach in standard, handcrafted, classical

planning domains, as well as in automatically generated domains in
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latent space [1], showing its effectiveness at recognizing both plans

and goals. We compare our approach to classical plan recognition

approaches [14, 15] in the literature, measuring the optimality of

the computed plans and the accuracy of the predicted goals in

scenarios with missing and faulty observations. Standard plan (goal)

recognition approaches struggle to achieve high precision in latent

space domains, as their spread (i.e., returned goals) in such domains

is very high. Our approach achieves high precision in most domains,

excelling in latent space with a precision increase of up to 60%,

including in problems with noisy observations. Finally, we show

that our approach can compute complete optimal plans is most

problems, resulting in a reliable way to perform plan recognition.

2 PREDICTIVE PLAN RECOGNITION (PPR)
We improve plan recognition performance in low and noisy observ-

ability problems by combining both machine learning techniques

and domain theory techniques into an approach called Predictive

Plan Recognition (PPR). PPR infers plans even with very low observ-

ability and noisy observations using machine learning and classical

planning techniques combined, achieving robust plan recognition.

Our approach computes a sequence of intermediary states achieved

by a plan 𝜋 given a plan recognition problem Π
Ω

𝜋 = ⟨Ξ,I,G,Ω⟩,
where Ξ = ⟨F ,A⟩ is planning domain model (F is a set of fluents

and A is a set of actions), I represents the initial state, G is the set

of possible goals (including a correct goal 𝐺∗ ∈ G, unknown to the

observer), and a sequence of observations Ω.

To compute such sequence of states for each possible goal, our

approach rebuilds the sequence of states induced by a plan by it-

erating through the sequence of observations Ω and filling in any

gaps due to partial observability. Using a domain model Ξ, we

check if a sequence of state observations in the observations Ω𝑠

is valid by evaluating whether a transition between each pair of

consecutive state observations is valid, starting from the initial

state I and the first observation. If the sequence of states is im-

possible, we conclude that an observation is missing at the point

of the invalid transition of the observation trace, thus, we must

predict the next state that should have been observed at this point.

Figure 1 provides an overview of our architecture to solve goal

and plan recognition problems using PPR. The approach PPR re-

turns not only the agent’s intended goal, but also a sequence of

states (i.e., plan) that possibly achieves the goal. The green box

labelled ComputeSeqence(I,A,Ω,𝐺, 𝜆) represents the process
of computing a plan for a given goal.

To compute the sequence of states (plan) of an agent by filling

the missing observations, we must devise a way to predict the most
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likely next state. Hence, filling in the missing observations consists

of a two step process that outputs a state 𝑠 ′ as the next most likely

state. First, we use a trained machine learning modelM to compute

the probability of each known stat being the most likely next state

𝑠 ′ given a sequence of states S𝜋 . This model computes a probability

distribution of each state being the next state. Then, we select the

𝑘 most likely next states from the probability distribution given by

the machine learning model that are achievable after the current

sequence of states S𝜋 towards a goal 𝐺 . From the 𝑘 most likely

states, we select the state with the highest landmark achievability

as the next state 𝑠 ′, which steers our sequence of states S𝜋 closer

to the goal condition 𝐺 . We use 𝑘 to weight the trade off between

the probability distribution of the model M and the closeness to

the goal 𝐺 towards which we are recognizing the plan.

Once we are capable of predicting the most likely single missing

state in a sequence of observations, we can use this prediction to

fill in any number of missing observations. Thus, our approach

fills in all missing observations for a sequence of observations,

computing the sequence of states induced by the plan towards

a single goal in the function ComputeSeqence(I,A,Ω,𝐺, 𝜆) of
Figure 1. We develop an approach to compute a plan for a possible

goal 𝐺 using a machine learning predictive model and a set of

landmarks. To generate a sequence of states S that a plan 𝜋 achieves

for the goal condition𝐺 , we use the initial state I as the starting

point. Then, we extract landmarks for the goal condition 𝐺 . To

extract the landmarks we use the algorithm proposed by Hoffmann

et al.. We concatenate the list of state observations Ω with the

possible goal𝐺 creating a new list Ω̂. We iterate through this list of

observations Ω̂, checking if 𝑜 (an observation from Ω̂) is the result

of a valid transition from the last known valid state of S (denoted

as S |S |). If exists a valid transition between these two states, we

add the observation to the sequence of states and move to the next

observation of Ω̂. Otherwise, we use the method described before to

compute the most likely next state, combining the machine learning

model and the computed landmarks to generate the next state 𝑠 ′.
We keep predicting states and adding them to the sequence of states

S, until the predicted state 𝑠 ′ can achieve the next observation in Ω̂.

We repeat this process for every observation, including the desired

goal𝐺 , until we compute a valid sequence of states in the model that

can achieve 𝐺 . The algorithm stops when it achieves the desired

goal𝐺 during the prediction phase, returning the current sequence

of states S . If a particular goal hypothesis is very unlikely, trying

to fill in missing observations from the last known valid transition

necessarily induces a substantially suboptimal plan. In practice,

incorrect goal hypotheses will induce plans much longer than the

one for the correct hypothesis in domains where the state space is

connected, or infinite plans that never reach it. Thus, to prevent the

algorithm from generating such plans, we stop trying to complete

the plan for a goal hypothesis 𝐺 if during the prediction process

we predict 𝜆 (a threshold) states consecutively that are unable to

achieve the current observation 𝑜 , returning the current sequence

of states. This threshold can be any heuristic value, estimating the

maximum length of a plan. Here, we use the length of the longest

plan in the training dataset as 𝜆.

We solve the problem of plan recognition by applying this pro-

cess of generating a sequence of states to all goals𝐺 ∈ G. In Figure

Plan recognition
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Figure 1: PPR Overview.

1, we can see in the white box that we have computed a sequence

of states S𝐺 for each goal hypothesis𝐺 . To decide which goal is the

correct one, we compare the predicted sequence of states S𝐺 for

each goal. First, we discard any goal𝐺 that is not in the last state in

the predicted sequence S𝐺 . Then, we rank the remaining S𝐺 based

on their compliance with the set of observations Ω, selecting the

sequence of states S𝐺 that complies with most of the observations

Ω. If there is a tie, we select the sequence of states S𝐺 that has the

best cumulative score during the predictions, normalized by the

number of predictions, as the most probable sequence of states S𝐺 ,

and its goal 𝐺 as the most likely goal. Thus, we predict a single

sequence of states (from which we can derive a plan), for a single

goal as the most likely goal and plan the agent is pursuing, solving

the problem of both goal and plan recognition.

To deal explicitly with noisy observations, we develop a variation

of the function ComputeSeqence(I,A,Ω,𝐺, 𝜆). To do so, we

detect when an observation constitutes noise, and ignore it in the

predicted plan. We assume an observation 𝑜𝑖 to be noisy if we

can predict a state induced by subsequent observations (i.e. 𝑜 𝑗 , s.t.

𝑗 > 𝑖) that can be reached by valid transitions between the last

valid inferred state before 𝑜𝑖 and 𝑜 𝑗 . Thus, we can build a valid plan

skipping the observation 𝑜𝑖 , now assumed to be noisy, by adding

such state 𝑜 𝑗 to the current sequence of states S and continue

iterating from observation 𝑜 𝑗+1.

3 DISCUSSION AND FUTUREWORK
We developed an approach for goal and plan recognition that com-

bines machine learning statistical prediction with domain knowl-

edge within classical planning techniques. Our resulting approach

achieves very high precision both in handcrafted and automatically

generated plan recognition domains. We empirically show that our

approach is capable of computing plans with very low observability

(up to 90% missing observations) and noisy observations (up to 20%

noise). While our approach does rely on data for its machine learn-

ing component, experiments show the amount of data to be much

smaller than that needed to generate the learned domains [1, 2],

which already necessitates data. Our machine learning model is

simple enough that the same network architecture works for all

domains, and thus, tuning the machine learning model is not really

required for our approach to work. Indeed, we could use an entirely

symbolic substitute for the neural network and predict the next

states looking ahead one step in a heuristic search algorithm.
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