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ABSTRACT
We study how wealth inequality influences behavioral dynamics in
groups of independent reinforcement learners facing a threshold
public goods dilemma with uncertain returns. The game allows
individuals to contribute or not to a common pool to reduce their
chances of future losses. The non-linearity introduced by the thresh-
old, the stochasticity introduced by the risk and the wealth hetero-
geneity of players result in a game setting with multiple equilibria.
We find that the learners’ dynamics in this case play a major role
in determining the attained equilibrium point. Our results suggest
that, under individual-based learning, wealth inequality can have
sizable effects on the emerging collective behaviors, decreasing
the overall chances of group success. Moreover, we compute the
class-based Nash equilibria (i.e., where same wealth-class agents are
assumed to play the same strategy) for this game and compare the
performance of groups composed of independent learning agents
with the performance obtained under the payoff maximizing class-
based Nash equilibrium. We find that the learned strategies never
really match optimal performance for all tested values of risk.
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1 INTRODUCTION
Social Dilemmas are situations where a conflict between personal
and collective interests can lead rational individuals to adopt strate-
gies that result in a sub-optimal solution for everyone involved [20].
Understanding the necessary conditions for cooperation to evolve
in such contexts has prompt academic interest [2]. The problem
becomes more compelling in dilemmas with multiple equilibria. In
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that context, not all Nash Equilibrium points can be equally coop-
erative or beneficial and, as a result, learning dynamics can lead to
so-called coordination failures. The most commonly studied game
of this type is the infinitely iterated prisoners’ dilemma (IPD) with
infinitely many Nash equilibria [39]. In the IPD, for example, both
Always Defect and Tit-For-Tat [1] are strategies constituting a Nash
Equilibrium when adopted by both players – with the former lead-
ing to substantially lower returns than the latter. The equilibrium
reached in these games depends on the starting point of agents and
their learning dynamics that define the evolution from there to the
attained equilibrium. It is therefore relevant to, not only study the
static properties and equilibrium points of such games, but also the
process that learning agents use to reach different equilibria [14].

While the IPD is heavily studied in literature, games that are
better representative of the real world often involve more than two
players, have non-linear payoffs and may be asymmetric [9, 30, 41].
One interesting example is the general 𝑛-player threshold Public
Goods Game (PGG) where possibly heterogeneous players need
to merge their individual efforts to avoid a common risk. PGGs
with collective risk are also known in the literature as Collective
Risk Dilemma (CRD). In relation with the ongoing Covid-19 crisis,
the game portrays the mass cooperation needed in following the
prescribed, yet costly, safety measures (e.g. wearing a mask, using
a tracing app, staying at home etc.) to avoid a disastrous spread
of the disease. In this case, heterogeneity can come from people
belonging to different risk classes according to their age or health
conditions. Dilemmas involving risk and non-linear returns also
exist in collective insurance arrangements, where heterogeneity
can result from different levels of risk-exposure to natural hazards
[44]. Another real life illustration of CRDs are the international
negotiations to avoid the disastrous outcomes of climate change
[30, 41, 60]. Here, heterogeneity appears as wealth inequality where
different countries may have different contribution capacities. In
our work we focus primarily on wealth inequalities between agents.
We find this game interesting for our study both for its symbolic
depiction of many real world problems and its attractive compu-
tational properties. The introduction of the threshold results in a
non-linear payoff function while the risk factor adds stochasticity
and uncertainty to the game. Initial inequality between players
can highly alter the evolution of the game and we encourage its
incorporation in games where a common good or disaster is shared.
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The aforementioned characteristics will establish a dilemma with
multiple equilibrium points. The prevailing equilibrium will depend
on the agents’ learning dynamics, which is often modeled through
multi-agent individual (reinforcement) [3, 34, 48, 51, 55, 56] or so-
cial (imitation) learning algorithms [41, 49]. Further details about
the game are given in Section 3.

As mentioned earlier, in multi-equilibria games, learning dy-
namics can impact the equilibrium point that agents converge to.
A rational agent would study such a game statically and decide
from there on an optimal strategy to implement. Humans, on the
other hand, are rationally bounded and often select their strate-
gies dynamically, after a learning process. This has been confirmed
again and again when humans in real life or experiments adopt
far from optimal or rational strategies [12, 14, 26, 50]. Reinforce-
ment Learning (RL) has been applied successfully to model human
learning dynamics in a social dilemma [40]. The success of this
simple algorithm in predicting human behaviors can be attributed
to its characteristics that capture some of human learning traits.
In particular, the model implements the Law of Effect [54] that
reinforces the usage of previously successful actions and the Power
Law of Practice [32] that generates a learning curve that is steep at
the beginning and flattens with time.

Several variations of RL algorithms exist for the multi-agent
scenario with some specifically designed to better perform in so-
cial dilemmas [13, 18]. However, these algorithms either require
additional sharing of information between agents or hard-code the
learning of an already known and desired strategy. We note that
the goal of our paper is not to adapt RL algorithms to avoid social
dilemmas or to choose the best performing one but rather to un-
derstand and describe what prevents or incites cooperation among
adaptive learning agents. Since information sharing or the final de-
sired policy may not always be at hand in real life, and especially in
large populations, we focus on fully individual-based independent
RL, an algorithm that relaxes this constraint and requires agents to
only be aware of their own strategies and returns.

Additionally, RL allows for an easy implementation of stochastic
policies that are desirable in our game. When involved in a thresh-
old game, every contribution over the threshold is an unnecessary
cost on society. A contribution of a fraction of the society can thus
be more beneficial than a contribution of the whole society and
hence more cooperation is not always advantageous. Implement-
ing stochastic policies allows players to take turns in cooperating
and defecting, creating fairer contribution arrangements (possibly
leading to egalitarian average contributions over time). Suppose
for example a threshold game where at every step of the game, 50%
of the players need to contribute to achieve the target. Allowing
the agents to follow stochastic strategies will distribute the respon-
sibility of achieving the target on different players at every round.
Instead, having agents converge to deterministic policies will estab-
lish players that either always cooperate or always defect and hence
the same players will always incur the cooperation costs while the
others will always get to free-ride. RL allows agents to learn such
stochastic policies with no need to pre-engineer or pre-define a set
of discretized possible stochastic strategies to select from.

Under this setting, we investigate how wealth inequality impacts
cooperation and hence overall group achievements of a population
involved in a threshold public good game with a collective risk.

The final cooperation levels reached will depend on our chosen
learning algorithm. We question whether independent individual-
based learning agents can reach rational outcomes by comparing
the performance of learned strategies to a statically extracted best
(payoff maximizing) class-based Nash Equilibrium.

The paper is structured as follows: we begin in Section 2 by
introducing related work from the literature. Following that, in
Section 3, we give a formal definition of the threshold PGG game. In
Section 4we expose the difficulties of finding Nash-Equilibria points
for the game described and define class-based Nash equilibrium
points. We continue in Section 5 by describing the agents’ learning
dynamics. In Section 6we present our results.We present the overall
achievement of agents trained with RL and compare our results
to the ones obtained with the payoff maximizing class-based Nash
equilibrium. Finally we conclude in Section 7 with a recapitulation
of our findings and a discussion on future works.

2 RELATEDWORK
We present a descriptive study on heterogeneous agents that dy-
namically learn with reinforcement learning a solution for a multi-
equilibria social dilemma. We investigate the impact of inequality
on the performance of the agents’ learned solutions. In a contin-
uous PGG and under Evolutionary Game Theory (EGT) dynam-
ics, strong inequality in wealth, productivity and benefits can in-
hibit cooperation [16]. In a threshold PGG and under EGT again,
wealth inequality was found to help in achieving cooperation if
rich/poor individuals can imitate each other regardless their wealth
category [60]. Otherwise, wealth inequality can be strongly detri-
mental. An experimental study showed that wealth inequalities
in a threshold PGG made cooperation, and hence collective suc-
cess, harder to accomplish [53]. In collective risk game studies and
under evolutionary dynamics, it was found that rich individuals
contribute more than poor ones who only chose to cooperate if
all rich players cooperated [5, 61]. However, experimental data did
not always confirm these predictions and rich individuals were
found to under-contribute while poor individuals over-contributed
[5]. Thus, current results suggest that under different learning dy-
namics (real humans and EGT), inequality has sometimes disparate
consequences. Reinforcement learning, where agents adapt their
choices based on their past experiences, is yet another learning
paradigm and the consequences of inequality under RL-dynamics
may reveal distinctive peculiarities.

The majority of descriptive papers on social dilemmas are sim-
ulated with EGT dynamics. But RL and EGT follow two different
learning paradigms. While in the former learning is social-based,
in the latter it is individual-based. In fact, in EGT, strategies are
learned through imitation of others based on relative performance,
a process aptly referred to as social learning. In this context, if
individuals face a cooperative dilemma, defectors are always better
off than cooperators, and, as a result, will be imitated by others and
their choice will spread throughout the population [33, 55]. On the
other hand, in a Multi-Agent Reinforcement Learning (MARL) set-
ting with independent learners [3, 4, 6, 8, 10, 11, 27, 28, 34, 40, 57, 58],
agents learn individualistically, i.e. they aim at maximizing their
return based on their own experience and disregard the returns of
other players. Therefore what prevents cooperation in one setting
might not necessarily translate to the other. Nonetheless, several
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relevant equivalences can be shown [3, 4, 57, 58] among these two
learning paradigms.

These potential contrasting particularities can echo on the final
learned policies. In two distinct studies [47] and [46] for example,
agents play the same game but follow respectively evolutionary (so-
cial) and reinforcement learning (individualistic) dynamics. While
the effect of key parameters and voting rules remains similar, agents
can converge to dissimilar strategies depending on the learning
paradigm. Individual and social learning can also alter the role of
complex networks in coordination dilemmas [58].

Although the process of imitation learning that hinders coopera-
tion under EGT is not present in RL, major challenges still inhibit the
emergence of cooperation. In a study on sequential social dilemmas
with deep RL [22], the authors identify coordination sub-problems.
Coordination problems that prevent proper cooperation are quite
common in MARL and are not only restricted to social dilemmas.
Also, as in evolutionary games, RL agents are equally prone to de-
velop complex cyclic dynamics and behavioral ecologies, depending
on the complexity of the problem [35].

A survey on coordination problems inMARL [29] discusses some
of its major challenges including the Pareto-selection problem, the
non-stationarity problem, the shadowed equilibrium problem, the
stochasticity problem etc. A lot of research has been dedicated to
overcome these obstacles and aid agents in finding cooperative
strategies. P. Kollock [20] classifies cooperation solutions into three
categories: motivational, strategic and structural. Motivational solu-
tions modify the objective or reward function of agents to promote
cooperative behaviors. Notably, in RL, intrinsic rewards can be
engineered and added to environmental rewards to help agents
solve a sub-problem of the game and facilitate the emergence of
coordination [24]. Strategic solutions start with a known and de-
sired equilibrium and construct algorithms that converge to these
specific points. Examples include an algorithm designed to always
asymptotically behave as a Tit-for-Tat strategy by learning simul-
taneously a cooperative and a selfish Q-function and alternating
between them to avoid exploitability [18]. The last and more gen-
eral type of solutions are the structural ones. Structural solutions
include centralized learning for example that can facilitate coordi-
nation and cooperation between agents. This type of framework
provides agents with additional information during their training
phase compared to information available at execution time. For
instance, during training, allowing agents to observe additionally
the states and actions of their opponents, allows them to better
seize the dynamics of the game and hence perform better at execu-
tion time when this additional data is missing [25]. Other solutions
consider opponent modeling [13, 17] where agents not only model
the dynamics of the world but also the dynamics of agents in it.

In this paper, we examine the interactions between heteroge-
neous RL agents in a collective risk dilemma and observe how these
can influence overall cooperation levels. Our goal is a descriptive
one, that is, to understand emerging dynamics in a multi-agent
learning setting and the particular impacts of inequality and risk;
nonetheless, knowledge about emerging dynamics from this com-
plex system may be useful to direct future works in developing new
algorithms, along the solution classification detailed above [20],
that guarantee cooperation in social dilemmas.

3 GAME DEFINITION AND NOTATIONS
A Public Good is a common resource shared between individuals
regardless their contribution to generate it [20]. The challenges
associated with managing these goods are captured in the so-called
Public Goods Games (PGG). In PGGs, those who do not contribute
are always better off than those who do, which creates an incentive
for people to free-ride i.e. to profit from the common good that
others contributed to create. On the other hand if all people decide
to free-ride, no common good can exist which leads to a sub-optimal
solution. In a PGG with a collective risk, the public good is modeled
as the avoidance of a common disaster which benefits everyone
even those who did not help in avoiding it. It is also referred to as
a Collective Risk Dilemma (CRD) [9, 30, 41, 43, 59, 60].

Formally, in a CRD of 𝑁 players, every player 𝑖 is granted an
initial endowment 𝑏𝑖 . He can then choose to either invest nothing
or a fraction 𝑐 of it to a common pool. The benefits gained by in-
vesting in a common pool are modeled by the increased chances
of avoidance of an otherwise common risk of probability 𝑟 . Should
the players manage to collect jointly a sum greater than a target
threshold t, then the disaster is avoided with certainty. Otherwise,
with the disaster probability 𝑟 , all players lose a fraction 𝑝 of what-
ever they have left of their initial endowments. At the end of the
game, the expected endowment of player 𝑖 who started with 𝑏𝑖,𝑡0 is

𝑏𝑖,𝑡∞ =(1 − 𝑐𝑖 )𝑏𝑖,𝑡0 − 𝑟𝑝 (1 − 𝑐𝑖 )𝑏𝑖,𝑡0Θ
©«t −

𝑁∑
𝑗=1

𝑐 𝑗𝑏 𝑗,𝑡0
ª®¬ (1)

where Θ is the Heaviside step function and 𝑐𝑖 , 𝑐 𝑗 represent the
binary choices of the different players of either contributing 0 or
a fraction 𝑐 to the pool. The total good, defined as the sum of all
players’ endowments, becomes

𝐵𝑡∞ =

𝑁∑
𝑗=1
(1 − 𝑐 𝑗 )𝑏 𝑗,𝑡0 − 𝑟𝑝

𝑁∑
𝑗=1
(1 − 𝑐 𝑗 )𝑏 𝑗,𝑡0Θ

(
t −

𝑁∑
𝑖=1

𝑐𝑖𝑏𝑖,𝑡0

)
(2)

For the game to be a social dilemma, total cooperation needs to
result in higher payoffs than total defection. Looking at equation
2, this means that the threshold t first needs to be lower bounded
by zero, otherwise total defection would also avoid the disaster
and cooperation would be unnecessarily expensive. Second the
threshold needs to be achievable with less than a total cooperation
(t < 𝑐𝐵𝑡0 ), otherwise the incentive to free-ride is eliminated and the
dilemma is broken. As a result, we have 𝐵𝐶𝑡∞ = (1 − 𝑐)𝐵𝑡0 for total
cooperation and 𝐵𝐷𝑡∞ = (1 − 𝑟𝑝)𝐵𝑡0 for a total defection. To have a
dilemma, 𝐵𝐶𝑡∞ must be larger than 𝐵𝐷𝑡∞ which translates to 𝑐 < 𝑟𝑝 .

The threshold t, the contribution fraction 𝑐 , the risk value 𝑟 , the
damage 𝑝 and the initial endowments 𝑏𝑖 are objective variables that
will influence the chosen strategies by the agents (i.e., contribution
𝑐𝑖 ). But another more subjective variable, the payoff, will also play a
crucial role in the agents’ learning. In game theory, a game is usually
defined by its payoff matrix that represents the benefits of a joint
action for a given player. We note that in real life, this (perceived)
benefit, often called utility, is largely subjective and depends on how
humans perceive or value a given return. Since the game presents
multiplicative dynamics i.e. costs of cooperation and failure are
relative to initial endowments, we define our payoffs as the log
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difference in endowments between two time-steps. This utility
function captures what is described in economy as a diminishing
marginal utility. In our case, this means that a loss of 70% of one’s
possessions, for example, is equally painful for any individual even
if with different initial endowments, in absolute value, the losses
are not equal. A large literature exists about utility functions and
their representative meanings. It would be interesting to compare
results obtained for a same game under different utility functions
or even introduce heterogeneity between agents’ perceived utility.
For the moment however, this remains out of the scope of our paper
and we consider a homogeneous log utility for all players.

We confirm that our chosen payoff function satisfies the second
condition for a social dilemma. In any given round of a dilemma, a
defector should be better off than a cooperator. For any two players
𝑖 and 𝑗 involved in the same game, if 𝑖 cooperated and 𝑗 did not,
then 𝑗 should receive a higher payoff than 𝑖 . The log difference in
endowments ensures that log 𝑏𝑖,𝑡∞

𝑏𝑖,𝑡0
< log 𝑏 𝑗,𝑡∞

𝑏 𝑗,𝑡0
is satisfied for 𝑐𝑖 = 𝑐

and 𝑐 𝑗 = 0 for all values of 𝑏𝑖,𝑡0 , 𝑏 𝑗,𝑡0 (see equation 1). Hence, with
our chosen utility function and a proper selection of 𝑐 , 𝑟 , 𝑝 and t, we
can explore learning dynamics in the context of a social dilemma.

3.1 Introduction of wealth inequalities
We consider a population of finite size 𝑍 of which a fraction 𝑧𝑅
is rich and holds a fraction 𝑤𝑅 of the total riches 𝑊 [60]. The
remaining fraction 𝑧𝑃 = 1 − 𝑧𝑅 of the population is poor and
holds 𝑤𝑃 = 1 − 𝑤𝑅 of the riches. The total wealth held by the
rich/poor is equally distributed within the same wealth class. All
poor players start with an equal initial endowment 𝑏𝑃 =

𝑊 ×𝑤𝑃

𝑍×𝑧𝑃 and
correspondingly all rich players start with the same endowment
𝑏𝑅 =

𝑊 ×𝑤𝑅

𝑍×𝑧𝑅 where𝑤𝑅 and 𝑧𝑅 are set such that𝑏𝑅 > 𝑏𝑃 . Individuals
are sampled from the population and organized into groups of
size 𝑁 . Such groups can contain 0, 1, ..., 𝑁 rich individuals and
respectively 𝑁, 𝑁 − 1, ..., 0 poor individuals. The individuals of
the group now engage in a Collective Risk Dilemma. Participants
can choose (with a certain probability) to contribute a constant
fraction 𝑐 of their endowment to the collective pool to help achieve
a target threshold t. We set t to be proportional to the contribution
fraction 𝑐 and to the average wealth in the population 𝑏 = 𝑊

𝑍
with

a factor of proportionality 𝑀 such that t = 𝑀𝑐𝑏. The larger the
value of 𝑀 , the harder it is to reach the threshold. If the overall
amount of contributions in the group is above that threshold, the
target will be met and the disaster avoided. Otherwise and with
probability 𝑟 — the risk of occurrence of the collective disaster —
individuals in the group will lose a fraction 𝑝 of whatever they
have. We assume that the players have a log utility function [37]
and receive as rewards the difference in the log of their wealth
before and after a game was played. Hence, a successful game
will cost 𝑥𝐶 = log

(
𝑏𝑖−𝑐𝑏𝑖
𝑏𝑖

)
= log(1 − 𝑐) for a cooperator and

nothing for a defector since 𝑥𝐷 = log
(
𝑏𝑖
𝑏𝑖

)
= 0. Similarly, we can

derive that a failure of avoiding the disaster will cost cooperators
𝑥𝐶 = log(1 − 𝑐 − 𝑝 (1 − 𝑐)) and defectors 𝑥𝐷 = log(1 − 𝑝). The goal
of each player is to find a probabilistic strategy 𝜋∗

𝑖
, representing

the probability of player 𝑖 choosing to cooperate, that maximizes
his payoff. Table 1 summarizes the payoff matrix of the game.

Table 1: Payoff matrix of the game based on player’s action
and the outcome of the game.

Strategy Successful game Failed game
C 𝑥𝐶 = log(1 − 𝑐) 𝑥𝐶 = log(1 − 𝑐 − 𝑝 − 𝑝𝑐))
D 𝑥𝐷 = 0 𝑥𝐷 = log(1 − 𝑝)

3.2 Numerical Values
We study the above game with a population of 𝑍 = 200 individuals.
The rich represent 𝑧𝑅 = 20% of the population and hold𝑤𝑅 = 50%
of the total riches. The average wealth in the population is set to
𝑏 = 1 yielding𝑊 = 𝑍 . The agents are involved in a game of 𝑁 = 6
players with a threshold set to𝑀𝑐𝑏 where𝑀 = 𝑁

2 and 𝑐 = 0.1. The
collective risk occurs with probability 𝑟 = 0.3 if the threshold target
is not achieved and the penalty paid in that case is 𝑝 = 0.7 or 70% of
the remaining wealth. The above used values satisfy the conditions
necessary for a social dilemma (see Section 3)

4 CLASS-BASED NASH EQUILIBRIUM
Asmentioned in Section 1, wewish to determinewhether individual-
based learning will lead agents to converge towards a rational equi-
librium. To answer this question, we first study our game from a
static perspective to try and extract its equilibrium points.

In general, computing Nash equilibria in large, general-sum
games poses computational challenges [7]. To our best knowledge,
most available algorithms such as [31, 38] obtain solution points
for games where the payoff of a player is equal to the sum of the
payoffs of his interactions with each player in the game. This is not
the case in our threshold game where the joint payoff is not a linear
combination of 2-player interactions. In the following, making use
of the fact that the game is symmetric for players from the same
wealth class, we define a class-based Nash equilibrium to transform
our game into a 2-person matrix game.

Since we do not examine inequality emerging from co-existence
or within a class, but rather between classes, we define as class-
based Nash equilibrium, the Nash equilibrium point of the game if
all players of the same wealth class are forced to follow the same
strategy i.e. all rich players cooperate equally with a probability 𝜋𝑅
an all poor players cooperate equally with a probability 𝜋𝑃 . In other
words, we impose and pre-condition our equilibrium on absolute
equality and fairness within a given wealth class.

Consider a group of 𝑁 − 1 individuals and denote by 𝑛𝑅 and 𝑛𝑃
respectively, the number of rich and poor individuals within this
group where 𝑛𝑅 ∈ {0, 1, ..., 𝑁 −1} and 𝑛𝑃 = 𝑁 −1−𝑛𝑅 . Let 𝑛𝑐𝑅 be the
number of rich players that actually contribute to the pool i.e. 𝑛𝑐

𝑅
∈

{0, 1, ..., 𝑛𝑅} and𝑛𝑐𝑃 be the number of poor contributors in the group
i.e. 𝑛𝑐

𝑃
∈ {0, 1, ..., 𝑛𝑃 }. Hence, a total number of (𝑛𝑅 + 1) × (𝑛𝑃 + 1)

different pool contributions are possible.
The probability 𝑃𝑛𝑅 (𝑛𝑐

𝑅
, 𝑛𝑐

𝑃
) with which each of these possible

configurations occur in a group of 𝑛𝑅 rich individuals follows a
binomial law and depends on 𝜋𝑅 and 𝜋𝑃 .

𝑃𝑛𝑅 (𝑛𝑐𝑅, 𝑛
𝑐
𝑃 ) =

(
𝑛𝑅

𝑛𝑐
𝑅

)
𝜋
𝑛𝑐
𝑅

𝑅
(1 − 𝜋𝑅)𝑛𝑅−𝑛

𝑐
𝑅

(
𝑛𝑃

𝑛𝑐
𝑃

)
𝜋
𝑛𝑐
𝑃

𝑃
(1 − 𝜋𝑃 )𝑛𝑃−𝑛𝑐𝑃

(3)
Let 𝑖 be the𝑁 𝑡ℎ player to join the group. Player 𝑖 will now choose

to contribute with probability 𝜋𝑅 if he’s rich or with probability

Main Track AAMAS 2021, May 3-7, 2021, Online

901



𝜋𝑃 if he’s poor. Denote by 𝐴𝐷 the action of defecting and not
contributing, by𝐴𝐶

𝑅
the contribution action of a rich individual and

by 𝐴𝐶
𝑃
the contribution action of a poor one. Denote by S𝐷 the set

of configurations that achieve the threshold without the need of 𝑖’s
contribution. Mathematically, S𝐷 = {∀ (𝑛𝑐

𝑅
, 𝑛𝑐

𝑃
) ∈ {0, 1, ..., 𝑛𝑅} ×

{0, 1, ..., 𝑛𝑃 }|𝑛𝑐𝑅𝑏𝑅𝑐 +𝑛
𝑐
𝑃
𝑏𝑃𝑐 ≥ 𝑀𝑏𝑐}. Identically, denote by S𝐴𝐶

𝑃
the

set of configurations that can achieve the threshold if 𝑖 contributes
and is poor and byS𝐴𝐶

𝑅
the set of configurations that can achieve the

threshold if 𝑖 contributes and is rich. The probability of the group
achieving the threshold given that 𝑖 chose action 𝑎 ∈ {𝐴𝐷 , 𝐴𝐶

𝑅
, 𝐴𝐶

𝑃
}

is given by the sum of the probabilities of the events in S𝐷 , S𝐴𝐶
𝑃

and S𝐴𝐶
𝑅
respectively.

𝑃𝑛𝑅 (t|𝑎) =
∑

(𝑛𝑐
𝑅
,𝑛𝑐

𝑃
) ∈S𝑎

𝑃𝑛𝑅 (𝑛𝑐𝑅, 𝑛
𝑐
𝑃 ) (4)

Since the game is probabilistic, the probability of a player avoid-
ing or not a disaster given that he chose action 𝑎 are given by

𝑃𝑛𝑅 (success|𝑎) = 𝑃𝑛𝑅 (t|𝑎) + (1 − 𝑟 )𝑃𝑛𝑅 (¬t|𝑎)
𝑃𝑛𝑅 (failure|𝑎) = 1 − 𝑃𝑛𝑅 (success|𝑎)

(5)

We can now write the expected payoff functions of player 𝑖 de-
pending on whether he’s rich or poor. Let H𝑛𝑅

𝑅
and H𝑛𝑅

𝑃
be the

respective expected payoff functions of a rich and poor individual
involved in a game with 𝑛𝑅 rich players and where all rich follow
strategy 𝜋𝑅 and all poor follow strategy 𝜋𝑃 . The expected payoff of
an agent depends on whether the game was successful or not and
whether he contributed or not to the common pool. We have

H𝑛𝑅
𝑅
(𝜋𝑅, 𝜋𝑃 ) =𝜋𝑅 [𝑃𝑛𝑅 (success|𝐴𝐶𝑅 )𝑥𝐶 + 𝑃

𝑛𝑅 (failure|𝐴𝐶𝑅 )𝑥𝐶 ]+

(1 − 𝜋𝑅) [𝑃𝑛𝑅 (success|𝐴𝐷 )𝑥𝐷 + 𝑃𝑛𝑅 (failure|𝐴𝐷 )𝑥𝐷 ]
(6)

H𝑛𝑅
𝑃
(𝜋𝑅, 𝜋𝑃 ) =𝜋𝑃 [𝑃𝑛𝑅 (success|𝐴𝐶𝑃 )𝑥𝐶 + 𝑃

𝑛𝑅 (failure|𝐴𝐶𝑃 )𝑥𝐶 ]+

(1 − 𝜋𝑃 ) [𝑃𝑛𝑅 (success|𝐴𝐷 )𝑥𝐷 + 𝑃𝑛𝑅 (failure|𝐴𝐷 )𝑥𝐷 ]
(7)

where 𝑥𝐶 , 𝑥𝐶 , 𝑥𝐷 and 𝑥𝐷 are the payoffs described in Table 1.
Finally, since groups are sampled randomly, the expected payoff

needs to account for the probability of an agent to find himself in a
group with 𝑛𝑅 rich individuals i.e.

H𝑅 (𝜋𝑅, 𝜋𝑃 ) =
∑
𝑛𝑅

(𝑍𝑅−1
𝑛𝑅

) ( 𝑍−𝑍𝑅

𝑁−𝑛𝑅−1
)(𝑍−1

𝑁−1
) H𝑛𝑅

𝑅
(𝜋𝑅, 𝜋𝑃 )

H𝑃 (𝜋𝑅, 𝜋𝑃 ) =
∑
𝑛𝑅

(𝑍𝑅

𝑛𝑅

) (𝑍−𝑍𝑅−1
𝑁−𝑛𝑅−1

)(𝑍−1
𝑁−1

) H𝑛𝑅
𝑃
(𝜋𝑅, 𝜋𝑃 )

(8)

Both rich and poor players aim at maximizing their respective
payoff functionsH𝑅 andH𝑃 . A Nash equilibrium (𝜋∗

𝑅
, 𝜋∗

𝑃
) satisfies

H𝑅 (𝜋∗𝑅, 𝜋
∗
𝑃 ) ≥ H𝑅 (𝜋𝑅, 𝜋∗𝑃 ) ∀ 𝜋𝑅 ∈ [0, 1]

H𝑃 (𝜋∗𝑅, 𝜋
∗
𝑃 ) ≥ H𝑃 (𝜋∗𝑅, 𝜋𝑃 ) ∀ 𝜋𝑃 ∈ [0, 1]

(9)

We have thus transformed the general N-player game into a
two-person matrix game (rich and poor) in a larger action space.
The joint poor player’s pure action set is A𝑃 = {0𝐶, 1𝐶, . . . , 𝑛𝑃𝐶}
i.e. 0 to 𝑛𝑃 poor players may cooperate and similarly, the joint rich
player’s is A𝑅 = {0𝐶, 1𝐶, . . . , 𝑛𝑅𝐶}. We look for algorithms that
search for equilibrium points in 2-playermatrix games but find them

inapplicable to our game. In fact, the algorithms [23] search for any
optimal probability distribution over the action space in the simplex.
Since joint actions in our game emerge from a combination of
individual actions following 𝜋𝑅 and 𝜋𝑃 , the probability distribution
over the joint action space needs to follow a binomial distribution.

We therefore rely on a graphical method and discretize the do-
main of 𝜋𝑅 and 𝜋𝑃 into intervals of length 𝜖 = 0.001. We calculate
the corresponding payoff H𝑅 and H𝑃 over the space of possible
(𝜋𝑅, 𝜋𝑃 ). Referring to equations 6 and 7, we plot for every 𝜋𝑃 , 𝑅’s
best response 𝜋𝐵𝑅

𝑅
i.e. 𝜋𝐵𝑅

𝑅
𝑠 .𝑡 .H𝑅 (𝜋𝐵𝑅𝑅 , 𝜋𝑃 ) is maximized and sim-

ilarly for every 𝜋𝑅 , 𝑃 ’s optimal response 𝜋𝐵𝑅
𝑃

. The intersections
of the hence formed lines represent class-based Nash equilibrium
points i.e. strategies from which no player can deviate alone while
increasing his payoff and assuming that within the same wealth
class all players use the same strategy. We extract these points
for different game configurations i.e. different risk values 𝑟 . When
several such points exist, we opt for the most performing one that
we define as the one maximising the total expected payoffs of all
players. We label this point the best class-based Nash Equilibrium.
We use the performance obtained under the best class-based Nash
equilibrium as the baseline to evaluate how rational the learned
strategies with our algorithm are.

5 LEARNING ALGORITHM
The objective of our work is descriptive and we aim to under-
stand the evolution of cooperation under reinforcement learning
dynamics. To achieve this goal we train a population of indepen-
dent RL learners with the Roth-Erev Algorithm [40]. We mean by
independent that the learners do not model the presence of other
players and perceive the emerging dynamics as part of their en-
vironment’s dynamics. At update-step 𝑘 = 0, before any learning
is done, every player has an initial propensity to cooperate 𝐶 or
defect 𝐷 . The propensity vector of player 𝑖 holding the propen-
sity values of these actions at a given update-step 𝑘 is denoted
q𝑖 (𝑘) =

[
𝑞𝑖𝐶 (𝑘), 𝑞𝑖𝐷 (𝑘)

]𝑇 . When player 𝑖 engages in a game by se-
lecting action 𝐴, he receives a payoff 𝑥 from the game environment
and updates his propensity vector according the the equations

𝑞𝑖𝐴 (𝑘 + 1) = (1 − 𝜙)𝑞𝑖𝐴 (𝑘) + 𝑥
𝑞𝑖¬𝐴 (𝑘 + 1) = (1 − 𝜙)𝑞𝑖¬𝐴 (𝑘)

(10)

where 𝜙 is interpreted as a forgetting parameter needed to inhibit
the propensities from growing to infinity. We leave out two other
proposed extensions of the model, which are the extinction in finite
time and the local experimentation. The extinction in finite time
causes the propensities of some actions to go to 0 in finite time
whereas we wish to maintain stochastic policies and the local ex-
perimentation parameter assumes that actions are ordered in a way
such that close actions have close or similar payoffs, a characteristic
that does not apply to our set of actions.

Because the game is a single state environment, this algorithm
resembles the Q-learning algorithm [6] with the difference that at
every update-step 𝑘 , because of 𝜙 , the values of the propensities
for all actions and not only the selected one, are updated.

We train asynchronously agents of a population learning with
the update rule of equation 10. We choose asynchronous learning
because we perceive it as more intuitive and natural. A comparison
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between synchronous and asynchronous learning in [45] showed
no significant differences in results for players learning to play the
Ultimatum Game. The procedure is summarized in Algorithm 1. At
every update-step 𝑘 , a group of 𝑁 agents is selected randomly from
the population of 𝑍 agents. The agents in this group engage in the
game described in Section 3. Every player 𝑗 in the group chooses
randomly one of his available actions following probabilities p𝑗 (𝑘)
that are derived by normalizing his propensity vector q𝑗 (𝑘). The
selected actions and the game risk factor 𝑟 determine whether or
not the game is successful (i.e. if agents avoided the disaster). The
payoffs for each agent are calculated according to Table 1 after
which all agents in the group update their propensity vectors. This
is repeated for a total of 𝐾 update-steps. While training, we keep
track of the number of times every agent in the population has
been selected in a vector u. Since the algorithm does not guarantee
that all agents are chosen equally as many times, we define 𝐾 ′,
the minimum number of update-steps every agent needs to have
performed before training is done. If after 𝐾 total update-steps,
some agent still hasn’t performed at least 𝐾 ′ updates, then training
continues until this condition is satisfied.

Algorithm 1: Roth-Erev RL algorithm in an adaptive pop-
ulation with asynchronous updates of propensities.

Init: 𝐾 total number of update-steps, 𝐾 ′ minimum number of
updates per agent

for 𝑖 ← 1 to Z, population size do
q𝑖 (0) ←random initialization;
𝑢𝑖 ← 0 /* tracks number of updates */

for 𝑘 ← 1 to K do
1. sample random group G of size N ;
2. sample actions 𝐴 𝑗 ∼ p𝑗 (𝑘) for 𝑗 ∈ 𝐺 (Eq. 11);
3. evaluate game success;
4. calculate payoff of 𝑗 ∈ 𝐺 (Tab. 1);
5. update q𝑗 (Eq. 10);
6. 𝑢 𝑗 ← 𝑢 𝑗 + 1 for 𝑗 ∈ 𝐺 ;
7. 𝑢𝑚𝑖𝑛 ← min(u)

while 𝑢𝑚𝑖𝑛 < 𝐾 ′ do
repeat steps 1. to 7.

5.1 Parameters of the model
Following the description of the Roth-Erev algorithm, if all players
start with the same initial propensities, the learning model depends
on the strength of these propensities 𝑄0 =

∑
𝐴 𝑞𝑖𝐴 (0) which will

determine the rate of learning and on the ratio 𝑞𝑖𝐶 (0)
𝑞𝑖𝐷 (0) . A higher𝑄0

will diminish the effect of the payoffs allowing for slower learning
andmore experimentation. The original authors suggest to initialize
𝑄0 to be in the order of the average payoff [40]. We choose to begin
with a𝑄0 that is 20 times the order of the average payoff to increase
initial experimentation and decrease the chance of having players
stuck in local minima caused by the high stochasticity of the game.

Since payoffs are negative or zero, we use the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 to nor-
malize the propensity vector. At any step 𝑘 of the learning process,

player 𝑖 will select action 𝐴 with probability

𝑝𝑖𝐴 (𝑘) =
exp(𝑞𝑖𝐴 (𝑘))∑

𝐴∈{𝐶,𝐷 } exp(𝑞𝑖𝐴 (𝑘))
(11)

with 𝑞𝑖𝐴 (0) sampled from a normal distributionN(𝜇 = −10, 𝜎 = 1).
This will generate players with a random initial slight preference to
defect or cooperate such that log𝑒

(
𝑞𝑖𝐶 (0)
𝑞𝑖𝐷 (0)

)
∼ N(𝜇 ′ = 0, 𝜎 ′ = 2𝜎

𝜇 )
(derived by following the log domain transformation of Katz [19]).
We train the population for a total number of update-steps 𝐾 =

2, 500, 000 and impose a minimum number of updates 𝐾 ′ = 30, 000
for every agent. The forgetting parameter is set to 𝜙 = 0.001. All
simulations are repeated for 5 runs.

6 RESULTS
In the following we display the results obtained for populations of
agents learning to play the game introduced in Section 3 with the RL
algorithm of Section 5. Unless otherwise indicated, the numerical
values given in Section 3.2 and Section 5.1 are used.

The effectiveness of the learned strategies is evaluated based on a
population’s capability of achieving the required target threshold t
when its agents are implementing given strategies. We refer to this
capability as the performance or the overall population achievement
𝜂 [9, 10, 59, 60]. We estimate 𝜂 using a Monte Carlo method. Given
a game and a strategy for each player of a population, we split
our population into groups of 𝑁 players. Within each group, the
players choose to cooperate or not following the given strategies.
The percentage of successful groups that actually reach the target
threshold defines the performance of the population. This value
being a random variable, we repeat and average the results over
106 simulations.

6.1 Effect of introducing wealth inequalities
For our first experiment, two types of populations are trained under
varying risk value factors 𝑟 . The first population 𝑃1 is made of
heterogeneous agents presenting initial wealth inequalities (see
Section 3.1). The second population only counts homogeneous
agents with an initial wealth equal to the average wealth of 𝑃1. The
results are plotted in Figure 1a.

As expected, and similar to results found under EGT [41], the
performance of a populationwith andwithout inequalities increases
with the risk factor 𝑟 . Agents are more willing to cooperate and
achieve the target if the consequences of failure are larger.

However, while under evolutionary dynamics diversity in a so-
ciety has proven to increase cooperation rates [42] and wealth
inequalities specifically were proven to encourage cooperation in
some configurations [60], we find that wealth inequality decreases
the overall achievement of a population. This is in conformity with
some experimental results such as in [53], where wealth inequali-
ties were found to inhibit group achievement. Looking closer to see
what hindered cooperation and hence performance, we find two
main responsible factors: the low initial endowment 𝑏𝑃 that poor
players receive and the group size 𝑁 .

In fact, for the chosen group size 𝑁 = 6, a contribution by a poor
agent represents around 20% of the needed threshold t for success.
This low impact of the cooperative action in reaching the threshold,
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(a) (b) (c)

Figure 1: (a) Overall group achievement with and without wealth inequalities w.r.t. the risk factor 𝑟 . (b) Learned strategies of
rich and poor players with respect to the game’s risk 𝑟 . (c) Overall group achievement for a populationwithwealth inequalities
with respect to the group size 𝑁 . In all panels, shaded areas represent the standard deviation over 5 runs.

makes it harder for poor players to capture the purpose of coop-
erating. This is also visible when looking at how players modified
their policies with respect to the varying risk (see Figure 1b). While
the red curve of the rich remains steep, i.e. they are reactive and
understand that they need to cooperate more when the risk of a
disaster is larger, the blue curve seems more stagnant. The group
size here plays another important role. For 𝑁 = 6, the probability
of sampling a purely poor group is around 25%. Learning in such
groups requires coordination (5 out of 6 poor players need to co-
operate to reach the threshold). This can further impede effective
learning of cooperation. Again, when evaluating the performance
of the population, 25% of the groups will be purely poor. With
an average cooperation of 41% for 𝑟 = 0.3 for example, only 4.5%
of these groups will reach the threshold. This alone drops overall
population performance by 24%.

We repeated the simulations with a linear-utility function to con-
firm that the properties found extend beyond log-utility functions.
The log-utility slightly increases cooperation (which is expected be-
cause players are more risk-averse), yet, overall, the relative impact
of wealth inequality remains the same.

6.2 Effect of the group size
Group size seems to have a considerable effect on overall achieve-
ment under evolutionary dynamics [15, 21, 36, 52]. For this reason
and because of the previously found results in Section 6.1, we choose
to evaluate the impact of the group size on a population’s perfor-
mance. Again we train our heterogeneous population 𝑃1 to play the
game of Section 3 with varying group sizes 𝑁 . We find that under
RL dynamics and with wealth inequalities, the overall achievement
of the population does not vary strongly for groups of 2, 4, 6, 8 and
10 players. The results are plotted in Figure 1c.

We investigate how the combination of wealth inequalities and
RL can diminish the effect of the group size. We notice that opposite
and canceling dynamics seem to emerge from group size variation
with some increasing and others decreasing overall achievement.
First, as group size increases, for rich players, the impact of a con-
tribution decreases from 250% of the target threshold when 𝑁 = 2

to 50% of the threshold in groups with 𝑁 = 10. More coordina-
tion is needed and learning and achieving the threshold becomes
more difficult even for rich players. Purely poor groups also have
smaller chances of reaching the threshold when 𝑁 increases. While
2 poor agents need to cooperate to reach the threshold for 𝑁 = 2,
a coordination of 8 cooperators is necessary for 𝑁 = 10. This phe-
nomena decreases overall achievement. However, for larger group
sizes, purely poor groups that are the least performing groups and
usually cause a large drop in the population’s performance, become
much less common to sample and this, on the other hand, increases
overall achievement. With the two forces pushing in opposite direc-
tions, performance seems to be little affected by group size under
wealth inequality. Future experiments will be key to understand
the relative weight of these competing group size effects.

6.3 Effectiveness of RL in achieving best
class-based Nash performance

Finally, we investigate the effectiveness or optimality of the learned
strategies. We plot in Figure 2 the overall performance of our popu-
lation 𝑃1 found in Section 6.1 and that of a population following the
payoff maximizing class-based Nash strategy found in Section 4.

We can see that learned strategies achieve lower performance
rates than the class-based Nash ones for 𝑟 ≥ 0.3 but that for 𝑟 = 0.1,
learned policies seem to over-perform. It is worth mentioning that
for 𝑟 = 0.1 and with the chosen values of 𝑐 = 0.1 and 𝑝 = 0.7, the
dilemma is broken because of the relative high cost of cooperation
compared to the cost of failure (mathematically, the condition 𝑐 <
𝑟𝑝 from Section 3 is not satisfied). Cooperation can become more
costly than failure. Indeed, when we compared the expected payoffs
of the two populations, the under-performing class-based Nash one
incurred smaller costs than the more performing 𝑃1. It is unwise
for a population to cooperate under these conditions.

We specify that this strong drop in optimal Nash performance is
not observed for populations without wealth inequalities. There,
cooperation costs can be better distributed over the population and
performance rates more easily increased. As a numerical example, if
all agents cooperate with a probability of 62%, a population without
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Figure 2: Performance (i.e., fraction of groups achieving the
threshold) of populations with wealth inequalities follow-
ing learned vs. best or payoff maximizing class-based Nash
strategies. Besides maximizing performance as shown in
this plot, we confirm that, the best class-based Nash also
maximizes social welfare.

inequalities achieves the target 85% of the time compared to 63%
of the time for a population like 𝑃1. The combination of smaller
cooperation costs and higher achieved performance when in a
population without inequalities makes cooperating more desirable.

6.4 Intra and Inter-class fairness with RL
When computing the best (payoff maximizing) class-based Nash
strategies, we assumed total fairness within the class of rich/poor
players in the sense that cooperation costs were equally distributed
and all followed the same policy. However, the learned strategies
with RL present variations within each wealth class and not all
players of the same wealth class follow the same policy. To increase
intra-class fairness, we re-ran our study with synchronous training
to see if a less randomized way of learning can decrease variations
within a class. However, in all our experiments, we find similar
results for the average and standard deviations of the learned strate-
gies under both synchronous and asynchronous training.

Regarding inter-class fairness, we compare the average coopera-
tion of rich vs. poor players. In our class-based Nash points, rich
players cooperated with probability 𝜋𝑅 = 1 whenever there was
a dilemma (𝑟 ≥ 0.3) while the poor never cooperated more than
40%. The responsibility of target achievement was heavily focused
on a small class of rich players. Contrarily, under reinforcement
learning, while the rich still cooperate more than the poor, the
gap between the two classes is smaller. In all experiments posing a
social dilemma, the average cooperation rate of rich players varied
between 60 and 80% and that of the poor between 40 and 50%.

7 CONCLUSION AND DISCUSSION
We have studied how in a RL setting, wealth inequalities affect the
overall achievement of a threshold target and how under these in-
equalities, parameters like risk and group size impact performance.
We found that wealth inequalities lower overall achievement rates
of a population. As for the group size, the results differed from

what was obtained under EGT, and group size barely affected per-
formance. We confirmed that RL agents have trouble converging
to the payoff maximizing class-based Nash Equilibrium points and
always incur unnecessary costs either by over-performing in low
risk games or under-performing for higher risk values.

In our work, we introduced heterogeneity as an initial wealth
inequality between agents. Yet heterogeneity can take several other
forms. The risk factor 𝑟 can vary between players. For example, the
risk that a virus presents on people varies with their age, health etc.
Similarly, the impact 𝑝 of a disaster can vary. The consequences
of ocean level rising are different in different geographical areas.
Heterogeneity can also be introduced in the cost of cooperation 𝑐 ,
or even emerge from uncertainty [9] or interaction structure [42].
Heterogeneous values of 𝑝 and 𝑐 will generate heterogeneous payoff
matrices. But not only 𝑝 and 𝑐 can influence the payoff matrix. The
utility function shortly mentioned in Section 3 can be different for
different agents. Finally, the learning algorithm or other learning
parameters (e.g. the learning rate or players’ initial preferences for
available actions) may differ in a population. Such heterogeneities
are omnipresent in the real world and it would be interesting to in-
corporate them in future studies since many complex dynamics can
emerge that we might be overlooking when assuming symmetry.
Furthermore, future works shall study different levels of hetero-
geneity, for example, by testing different combinations of rich/poor
distributions and inequality (i.e., different 𝑧𝑅/𝑧𝑃 and𝑤𝑅/𝑤𝑃 ).

Moreover, we point to the fact that RL, although technically
allowing for the emergence of intra-class fairness, shows relatively
high variance in the learned strategies within a wealth class. We
have tested synchronous learning but, in that setting, we found no
improvements in intra-class fairness. We encourage research for
finding means of increasing fairness within classes, in populations
adapting with RL. On the other hand, RL can increase inter-class
fairness compared to the recommended class-based Nash strategies.
This increase in fairness may result in a non optimal distribution
of cooperation between rich and poor, lowering performance and
incurring additional costs on the population. This should be kept
in mind in future works where solutions with a trade-off between
cost optimization and fairness might be desirable.

Lastly, we advocate studying the dynamics of the transition
points where a regular game changes to a dilemma. Optimal perfor-
mance with wealth inequality dropped severely when the dilemma
was broken. The transition phase (here 0.1 < 𝑟 < 0.3) is interesting
to investigate.
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