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ABSTRACT
In empirical game-theoretic analysis (EGTA), game models are ex-
tended iteratively through a process of generating new strategies
based on experience with prior strategies. The strategy exploration
problem in EGTA is how to direct this process so to construct ef-
fective models with minimal iteration. A variety of approaches
have been proposed in the literature, including methods based on
classic techniques and novel concepts. Comparing the performance
of these alternatives can depend sensitively on criteria adopted
and measures employed. We investigate some of the methodolog-
ical considerations in evaluating strategy exploration, proposing
and justifying new evaluation methods based on examples and ex-
perimental observations. In particular, we emphasize the fact that
empirical games create a space of strategies and evaluation should
reflect how well it covers the strategically relevant space. Based on
this fact, we suggest that the minimum regret constrained profile
(MRCP) provides a particularly robust basis for evaluating a space of
strategies, and propose a local search method for computing MRCP.
However, MRCP computation is not always feasible especially in
large games. To evaluate strategy exploration in large games, we
propose a new evaluation scheme that measures the strategic cov-
erage of an empirical game. Specifically, we highlight consistency
considerations for comparing across different approaches. We show
that violation of the consistency considerations could yield mis-
leading conclusions on the performance of different approaches.
In accord with consistency considerations, we propose a profile-
selection method, which effectively discovers the profile that can
represent the strategic coverage of an empirical game through its
regret information. We show that our evaluation scheme reveals the
authentic learning performance of different approaches compared
to previous evaluation methods.

KEYWORDS
Multi-agent Learning; Multi-agent Evaluation; Empirical Game-
Theoretic Analysis

ACM Reference Format:
Yongzhao Wang, Qiurui Ma, and Michael P. Wellman. 2022. Evaluating
Strategy Exploration in Empirical Game-Theoretic Analysis. In Proc. of the
21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Recent years havewitnessed dramatic advances in developing game-
playing strategies through iterative application of (deep) reinforce-
ment learning (RL). DeepMind’s breakthroughs in Go and other
two-player strategy games [16, 17] demonstrated the power of
learning through self-play. In self-play the learner generates an
improved strategy assuming its opponent plays the current strat-
egy. For many games, iterating best-response in this manner will
cycle or otherwise fail to converge, which has led to consideration
of alternative approaches to generate new strategies. For example,
DeepMind’s milestone achievement in the complex video strategy
game StarCraft II entailed an elaborate population-based search
approach [21] informed by game-theoretic concepts.

Many recent works [1, 6, 9] have likewise appealed to game-
theoretic methods to direct iterative RL for complex games. At each
iteration, a new strategy is generated for one agent through RL,
fixing other agents to play strategies from previous iterations. A
general formulation of this approach is the Policy Space Response
Oracle (PSRO) algorithm [6]. PSRO can be viewed as a form of
empirical game-theoretic analysis (EGTA) [20, 24], a general name
for the study of building and reasoning about game models based
on simulation. In EGTA, game models are induced from simula-
tions run over combinations of a particular set of strategies. The
strategy exploration problem in EGTA [4] considers how to extend
the considered strategy set, based on the current empirical game
model. For example, one natural approach is to compute a Nash
equilibrium (NE) of the current model, and generate a new strategy
that optimizes payoff when other agents play that equilibrium. This
approach of iteratively extending strategy sets by best-response to
equilibrium was introduced by McMahan et al. [8] for two-player
games and called the double oracle (DO) method.

PSRO defines an abstract operation on empirical games, termed
meta-strategy solver (MSS), that extracts an opponent profile from
the current empirical game as target for the next best-response
calculation. In this framework, choosing an MSS determines the
strategy exploration method. For example with NE-calculation as
MSS in a two-player game, PSRO reduces to DO. An MSS that sim-
ply selects the most recently added strategy corresponds to self-play
(SP). A variety of MSSs have been proposed and assessed in the
literature on iterative RL-based approaches to games. We survey
some of these ideas in §2, as well as alternative approaches to strat-
egy exploration outside the PSRO framework (e.g., not involving
RL or varying from best-response).

In practical terms, the proof of a method is whether it produces
a superior solution (e.g., a champion Go program). However, we
also seek to understand the relative effectiveness of strategy ex-
ploration methods across problem settings, and this remains an
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open problem for EGTA methodology. Comparing the performance
of alternative methods is subtle because each generates a distinct
sequence of strategies, and thus the empirical game model at any
point reflects a distinct strategy space. The relevant comparisons
are across different strategy spaces, which may not be faithfully
represented by a simple summary such as an interim solution. This
fact has tended to be neglected in studies proposing and evaluating
new ideas on strategy exploration [6, 9], and as we demonstrate
below, this can lead to misleading conclusions on the performance
of different approaches.

The present study illuminates several methodological considera-
tions for strategy exploration. First, we identify a key distinction
between PSRO and other learning dynamics, which is that the
empirical game model evolves through extending a space of strate-
gies and hence its evaluation should reflect how well it covers the
strategically relevant space.

Second, we seek a principled evaluation metric for empirical
games, and suggest the proposal by Jordan et al. [4] that the regret
of the minimum-regret constrained-profile (MRCP) can serve this
purpose. We show the effectiveness and advantages of using MRCP
as a metric through examples. To find MRCP more accurately, we
propose a variant of the amoeba method [10] that outperforms pre-
vious approaches in matrix games. MRCP calculation is not always
computationally feasible, so we identify some desiderata for alter-
native evaluation metrics. Per the first point above we highlight the
importance of evaluating the whole space of strategies in an em-
pirical game. Further, we propose some consistency considerations
for comparing across different MSSs. We point out the MSS used
for evaluation is not necessarily the same as the MSS in strategy
exploration and define solver-based regret for evaluation purposes.
Based on these considerations, we propose a new evaluation solver
selection scheme for EGTA, which leads to a sensible comparison
across MSSs. We demonstrate the significance of our considerations
and approaches in both synthetic and real-world games.

Finally, we consider the problem of regret-based evaluation in
situationswhere calculating exact best response is infeasible thus ac-
curate regret is not available. One alternative that is widely applied
is using generated strategies for evaluation purpose where regret
calculation for different MSSs only considers deviations within the
generated strategies.

Contributions of this study include:

(1) Recognition that empirical games create a space of strategies
and evaluation should reflect how well they cover the strate-
gically relevant space. To serve this purpose, we suggest
MRCP as evaluation metric and present evidence that MRCP
provides a particularly robust basis for evaluation.

(2) The notion of solver-based regret for evaluation, with focus on
consistency considerations for comparing MSSs. We demon-
strate the potential for misleading results when consistency
is violated as in the prior literature.

(3) A new evaluation solver selection scheme which leads to a
sensible comparison across MSSs;

(4) A variant of the amoeba method that outperforms previous
approaches in matrix games, plus some insight on MRCP
approximation in games wherein regret calculation is re-
stricted.

2 RELATEDWORK ON STRATEGY
EXPLORATION

In the first instance of automated strategy generation in EGTA,
Phelps et al. [13] employed genetic search over a parametric strat-
egy space, optimizing performance against an equilibrium of the
empirical game. Schvartzman & Wellman [15] combined RL with
EGTA in an analogous manner. Questioning whether best response
to equilibrium is an ideal way to add strategies, these same authors
framed and investigated the general problem of strategy exploration
in EGTA [14]. They identified situations where adding a best re-
sponse to equilibrium would perform poorly, and proposed some
alternative approaches. Jordan et al. [4] extended this line of work
by proposing exploration of strategies that maximize the gain to
deviating from a rational closure of the empirical game.

Investigation of strategy exploration was furthered significantly
by introduction of the PSRO framework [6]. PSRO entails adding
strategies that are best responses to some designated other-agent
profile, where that profile is determined by the meta-strategy solver
(MSS) applied to the current empirical game. The prior EGTA ap-
proaches cited above effectively employed NE as MSS as in the
DO algorithm [8]. Lanctot et al. [6] argued that with DO the new
strategy may overfit to the current equilibrium, and accordingly
proposed and evaluated several alternative MSSs, demonstrating
their advantages in particular games. For example, their projected
replicator dynamics (PRD) employs an RD search for equilibrium
[18, 19], but truncates the replicator updates to ensure a lower
bound on probability of playing each pure strategy. Any solution
concept for games could in principle be employed as MSS, as for
example the adoption by Muller et al. [9] of a recently proposed
evolutionary-based concept, 𝛼-rank [11], within the PSRO frame-
work.

The MSS abstraction also connects strategy exploration to iter-
ative game-solving methods in general, whether or not based on
EGTA. Using a uniform distribution over current strategies as MSS
essentially reproduces the classic fictitious play (FP) algorithm [2],
and as noted above, an MSS that just selects the most recent strat-
egy equates to self-play (SP). Note that these two MSS instances
do not really make substantive use of the empirical game, as they
derive from the strategy sets alone.

Wang et al. [23] illustrated the possibility of combining MSSs,
employing a mixture of NE and uniform which essentially aver-
ages DO and FP. Motivated by the same aversion to overfitting
the current equilibrium, Wright et al. [26] proposed an approach
that starts with DO, but then fine-tunes the generated response by
further training against a mix of previously encountered strategies.

In the literature, a profile’s fitness as solution candidate is mea-
sured by its regret in the true game. Jordan et al. [4] defined MRCP
(minimum-regret constrained-profile) as the profile in the empirical
game with minimal regret relative to the full game. Regret of the
MRCP provides a measure of accuracy of an empirical game, but we
may also wish to consider the coverage of a strategy set in terms
of diversity. Balduzzi et al. [1] introduced the term Gamescape to
refer to the scope of joint strategies covered by the exploration pro-
cess to a given point. They employed this concept to characterize
the effective diversity of an empirical game state, and proposed a
new MSS called rectified Nash designed to increase diversity of the
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Gamescape. Finally, we take note of a couple of recent works that
characterize Gamescapes in terms of topological features. Omid-
shafiei et al. [12] proposed using spectral analysis of the 𝛼-rank
best response graph, and Czarnecki et al. [3] visualize the strategic
topography of real-world games as a spinning top wherein layers
are transitive and strategies within a layer are cyclic.

3 PRELIMINARIES
A normal-form game G = (𝑁, (𝑆𝑖 ), (𝑢𝑖 )) consists of a finite set of
players 𝑁 indexed by 𝑖; a non-empty set of strategies 𝑆𝑖 for player
𝑖 ∈ 𝑁 ; and a utility function 𝑢𝑖 :

∏
𝑗 ∈𝑁 𝑆 𝑗 → R for player 𝑖 ∈ 𝑁 ,

where
∏

is the Cartesian product.
A mixed strategy 𝜎𝑖 is a probability distribution over strategies

in 𝑆𝑖 , with 𝜎𝑖 (𝑠𝑖 ) denoting the probability player 𝑖 plays strategy 𝑠𝑖 .
We adopt conventional notation for the other-agent profile: 𝜎−𝑖 =∏

𝑗≠𝑖 𝜎 𝑗 . Let Δ(·) represent the probability simplex over a set. The
mixed strategy space for player 𝑖 is given by Δ(𝑆𝑖 ). Similarly, Δ(𝑆) =∏

𝑖∈𝑁 Δ(𝑆𝑖 ) is the mixed profile space.
Player 𝑖’s best response to profile 𝜎 is any strategy yielding maxi-

mum payoff for 𝑖 , holding the other players’ strategies constant:

br𝑖 (𝜎−𝑖 ) = argmax
𝜎′
𝑖
∈Δ(𝑆𝑖 )

𝑢𝑖 (𝜎 ′
𝑖 , 𝜎−𝑖 ).

Let br (𝜎) = ∏
𝑖∈𝑁 br𝑖 (𝜎−𝑖 ) be the overall best-response correspon-

dence for a profile 𝜎 . A Nash equilibrium (NE) is a profile 𝜎∗ such
that 𝜎∗ ∈ br (𝜎∗).

Player 𝑖’s regret in profile 𝜎 in game G is given by

𝜌
G
𝑖
(𝜎) = max

𝑠′
𝑖
∈𝑆𝑖

𝑢𝑖 (𝑠 ′𝑖 , 𝜎−𝑖 ) − 𝑢𝑖 (𝜎𝑖 , 𝜎−𝑖 ).

Regret captures the maximum player 𝑖 can gain in expectation by
unilaterally deviating from its mixed strategy in 𝜎 to an alternative
strategy in 𝑆𝑖 . An NE strategy profile has zero regret for each player.
A profile is said to be an 𝜖-Nash equilibrium (𝜖-NE) if no player can
gain more than 𝜖 by unilateral deviation. The regret of a strategy
profile 𝜎 is defined as the sum over player regrets:

𝜌G (𝜎) =
∑
𝑖∈𝑁

𝜌
G
𝑖
(𝜎). (1)

Some treatments employ max instead of sum for this; when neces-
sary to disambiguate we refer to (1) as sum-regret. Both are relevant
measures of distance from equilibrium, and we appeal to the max-
regret variant in our approach to approximating MRCP in §5.3.

An empirical game G𝑆↓𝑋 is an approximation of the true game
G, in which players choose from restricted strategy sets 𝑋𝑖 ⊆ 𝑆𝑖 ,
and payoffs are estimated through simulation. That is, G𝑆↓𝑋 =

(𝑁, (𝑋𝑖 ), (𝑢𝑖 )), where 𝑢 is a projection of 𝑢 onto the strategy space
𝑋 .1 We use the notation 𝜌G𝑆↓𝑋 to make clear when we are referring
to regret with respect to an empirical game as opposed to the full
game.

A meta-strategy solver (MSS), denoted by ℎ ∈ 𝐻 , is a function
mapping from an empirical game to a strategy profile 𝜎 within
the empirical game. Examples of MSS (introduced in §2) include
NE, PRD, uniform, etc. PSRO employing a given MSS may have an
established name (e.g., PSRO with NE is DO, with uniform is FP);
1Because payoffs are estimated through simulation, �̂� is also subject to sampling error.
This presents additional statistical issues [20, 22, 25]; here we ignore those and focus
on the issues that arise from strategy set restriction.

otherwise we may simply refer to the overall algorithm by the MSS
label (e.g., PRD may denote the MSS or PSRO with this MSS).

4 EVALUATING STRATEGY EXPLORATION
The purpose of evaluating strategy exploration is to understand the
relative effectiveness of different exploration methods (e.g., MSSs)
across different problem settings. We achieve this purpose through
analyzing the intermediate empirical game models they generate
during exploration.

4.1 Evaluating an Empirical Game Model
From the perspective of strategy exploration, the key feature of an
empirical game model is what strategies it incorporates.2 In EGTA,
the restricted strategy set 𝑋 is typically a small slice of the set of all
strategies 𝑆 , so the question is how well 𝑋 covers the strategically
relevant space. There may be several ways to interpret “strategically
relevant”, but one natural criterion is whether the empirical game
G𝑆↓𝑋 covers solutions or approximate solutions to the true game G.

The profile in the empirical game closest to being a solution of
the full game is the MRCP, as described above. Formally, 𝜎 is an
MRCP of G𝑆↓𝑋 iff:

𝜎 = argmin
𝜎 ∈Δ(𝑋 )

∑
𝑖∈𝑁

𝜌
G
𝑖
(𝜎) (2)

The regret of MRCP thus provides a natural measure of how well
𝑋 covers the strategically relevant space. In prior literature, MRCP
was studied in games with fixed strategy sets rather than a setting
where strategy sets are iteratively built. We extend the study of its
properties to our strategy exploration setting. We first note that
the regret of MRCP decreases monotonically as the empirical game
model is being extended, since adding strategies can only increase
the scope of minimization. Moreover, MRCP tracks convergence
in that the regret of MRCP reaches zero exactly when an NE of G
is contained in the empirical game, that is, 𝑋 covers the support
of the NE. We claim both properties of MRCP are important and
desirable for evaluation purposes.

Unfortunately, direct use of MRCP as a means for evaluating
strategy exploration can be computationally challenging. Calculat-
ing regret of a profile, the quantity we are minimizing, generally
requires a best-response oracle for the full game, which itself can
be quite computationally expensive (which is why we often find
RL the best available method). And even given an effective way to
calculate regret, the search for MRCP is a non-convex optimization
problem over the profile space of the empirical game.

4.2 Solver-Based Regret
Given the general difficulty of computing MRCP, studies often em-
ploy some other method to select a profile from the empirical game
to evaluate. Any such method can be viewed as a meta-strategy
solver, and so we use the term solver-based regret to denote regret
in the true game of a strategy profile selected by an MSS from the
empirical game. In symbols, the solver-based regret using a partic-
ular MSS is given by 𝜌G (MSS(G𝑆↓𝑋 )). By definition, MRCP is the
MSS that minimizes solver-based regret.

2The accuracy of the estimated payoff functions over these strategies is also relevant,
but mainly orthogonal to exploration and outside the scope considered here.
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An MSS that is commonly employed for solver-based regret is
NE. NE-based regret measures the stability in the true game of a
profile that is perfectly stable in the empirical game. Whereas any
MSS is eligible to play the role of solver, not all are well-suited
for evaluating strategy exploration. For example, SP simply selects
the last strategy added, and is completely oblivious to the rest of
the strategy set 𝑋 . This clearly fails to measure how well 𝑋 as a
whole captures the strategically relevant part of 𝑆 , which is the
main requirement of an evaluation measure as described above.

4.3 Solver Consistency for Evaluation
Our framework as described to this point employs MSSs in two dis-
tinct ways: to direct a strategy exploration process, and to evaluate
intermediate results in strategy exploration. It may seem natural
to evaluate exploration that employs MSS 𝑀 in terms of solver-
based regret with 𝑀 as solver. Indeed, much prior work in PSRO
exploration has done exactly this [6, 7, 9].3

As we demonstrate below, however, evaluating alternative MSSs
𝑀 and 𝑀 ′ for exploration using their respective MSSs as solvers
can produce misleading comparisons, caused by neglecting the
principle of evaluating the empirical game as a whole. Instead, we
argue, one should apply the same solver-based regret measure to
evaluate results under𝑀 and𝑀 ′. In other words, the MSS employed
in solver-based regret should be fixed and independent of the MSSs
employed for exploration. We term this the consistency criterion.

To illustrate the necessity of solver consistency, we offer two ex-
amples to demonstrate how a violation of our consistency criterion
could lead to a misleading conclusion.

Example 1. Consider the symmetric zero-sum matrix game of
Table 1. Starting from the first strategy of each player, we perform
PSRO with uniform and NE as MSSs, respectively. The first few
iterations of PSRO are presented in Table 2. Due to symmetry, the
two players’ strategy sets andMSS-proposed strategies are identical.

𝑎1
2 𝑎2

2 𝑎3
2

𝑎1
1 (0, 0) (-0.1, 0.1) (-3, 3)

𝑎2
1 (0.1, -0.1) (0, 0) (2, -2)

𝑎3
1 (3, -3) (-2, 2) (0, 0)

Table 1: A symmetric zero-sum game (Example 1).

Fig. 1a presents regret curves for both MSSs using NE-based
regret, as well as the uniform-based regret curve for FP. If we
violate the consistency criterion and compare uniform-based regret
of FP with the NE-based regret of DO (i.e., green versus blue curves
in Fig. 1a), we would conclude FP converges faster than DO in
the first two iterations. However, FP cannot actually be better at
3Although Li and Wellman [7] is not focused on strategy exploration, it does present
some plots (Figs. 2 and 3) with multiple curves using different MSSs for evaluating
regret. For other works, we verified this by examining the published code and through
our own efforts to reproduce the results in these papers. Specifically, we found the
code published as part of OpenSpiel [5] evaluates progress in exploration by regret of
the MSS employed for exploration. We also reproduced the learning performance of
PSRO with different MSSs and inferred that the MSS used for evaluation is the same
as the one for strategy exploration, which is often apparent by examination of regret
curves. For example, the NE-based regret curve of fictitious play oscillates dramatically
while its uniform-based regret curve is much more smooth. So it is easy to identify
which MSS was used for evaluation.

Iter# Strategy Sets DO proposed strategy

1 (𝑎1
1), (𝑎

1
2) (1), (1)

2 (𝑎1
1, 𝑎

3
1), (𝑎

1
2, 𝑎

3
2) (0, 1), (0, 1)

3 (𝑎1
1, 𝑎

2
1, 𝑎

3
1), (𝑎

1
2, 𝑎

2
2, 𝑎

3
2) (0, 1, 0), (0, 1, 0)

Iter# Strategy Sets FP proposed strategy

1 (𝑎1
1),(𝑎

1
2) (1), (1)

2 (𝑎1
1, 𝑎

3
1),(𝑎

1
2, 𝑎

3
2) ( 1

2 ,
1
2 ), (

1
2 ,

1
2 )

3 (𝑎1
1, 𝑎

3
1),(𝑎

1
2, 𝑎

3
2) ( 1

3 ,
2
3 ), (

1
3 ,

2
3 )

4 (𝑎1
1, 𝑎

2
1, 𝑎

3
1),(𝑎

1
2, 𝑎

2
2, 𝑎

3
2) ( 1

4 ,
1
4 ,

1
2 ), (

1
4 ,

1
4 ,

1
2 )

5 (𝑎1
1, 𝑎

2
1, 𝑎

3
1),(𝑎

1
2, 𝑎

2
2, 𝑎

3
2) ( 1

5 ,
2
5 ,

2
5 ), (

1
5 ,

2
5 ,

2
5 )

Table 2: PSRO process for DO and Fictitious Play.

strategy exploration, as the strategies introduced, 𝑎1 and 𝑎3, are
identical under two MSSs. Moreover, at the third iteration, FP fails
to add any new strategy, and so the improvement shown is not
attributable to the exploration process.

Comparing the two MSSs under NE-based regret (i.e., green ver-
sus orange regret curves), we see that where FP and DO generate
identical empirical games their evaluations coincide. Thus, follow-
ing the rule of consistency avoids reaching a misleading conclusion
about exploration. Note that we would reach the same conclusion
if the two MSSs are evaluated under uniform-based regret (i.e., red
versus blue curves). However, we observe that not all MSSs are
equally effective for evaluation. In this example, although uniform-
based regret consistently evaluates equivalent empirical games, its
low weight on newly added strategies fails to adequately reflect
exploration achievements. For example, the uniform-based regret
curve remains well above zero even after the full-game NE has
been covered in the empirical game. In Section 4.4, we provide a
detailed discussion of this phenomenon and propose a scheme for
evaluation solver selection.

Of course, if the goal is just to evaluate DO and FP as online
algorithms, then the green versus blue comparison is appropriate.
A key virtue of the PSRO framework, however, is that it highlights
exploration as a distinct issue and provides the MSS abstraction
for addressing it. Within an iterative EGTA approach, the choice
of solver to employ for decision making at any stage is completely
orthogonal to the method used to extend the game model, and so
focusing attention on algorithms that couple these in particular
ways (e.g., using the same MSS for solving and exploration) is
unnecessarily limiting.

Example 2. We further verify our observations in a synthetic zero-
sum game with 100 strategies per player. Resulting regret curves
averaged over 10 random starts are shown in Fig. 1b. As for the
previous example, comparing uniform-based regret of FP against
NE-based regret of DO—breaking our consistency criterion—would
lead us astray. First, we see that FP performs best initially, but is
ultimately overtaken by DO. More importantly, as we demonstrate
in §5.1 below, even the assessment that FP’s strategy exploration is
more effective than DO’s over the first thirty iterations is invalid.
Indeed, the blue-versus-green comparison up to iteration 30 shows
that the uniform strategy profile in the empirical game of FP is
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(a) 3 × 3 game (Example 1). (b) 100 × 100 game (Example 2).

Figure 1: Regret curves evaluating NE and uniform as MSSs strategy exploration, under different solvers.

more stable (has lower regret) than NE in the empirical game of
DO. But as in the prior example, this is an artifact of selecting the
uniform rather than the NE profile for evaluation. Moreover, as
illustrated below in Fig. 3, we should generally expect there to exist
non-NE profiles in the empirical game of DO with significantly
lower regret in the true game.

This example demonstrates mixed use of evaluation metrics may
result in improper comparison among the performance of MSSs.
Indeed, we have found that this phenomenon is quite common
in prior work, leading in particular to misleading evaluations of
FP as a strategy exploration approach. In formulating the general
consistency criterion, we emphasize that improper comparisons
could be made with any two MSSs; the issue is not limited to FP or
any specific MSSs employed in these examples.

4.4 Evaluation Solver Selection
We further examine the consistency criterion in simplified poker
games, specifically two-player Kuhn poker and Leduc poker. These
poker games have been commonly employed in prior work within
the PSRO framework, facilitating comparison of experimental re-
sults. Specifically, we evaluate FP, PRD, and NE as MSSs. Moreover,
to select an effective solver to implement the consistency criterion,
we propose a new evaluation solver selection scheme, designed to
reveal the authentic performance of MSSs for strategy exploration.

4.4.1 Solver Consistency with FP. For Leduc poker, Fig. 2a indicates
DO performs better than FP under NE-based regret. However, the
uniform-based regret is quitemisleading as ameasure of exploration
performance of DO. It actually increases over much of the range,
which would seem to suggest that adding strategies makes the game
model worse, which intuitively makes little sense.

In Kuhn poker (Fig. 2b), DO again outperforms FP under NE-
based regret. Uniform-based regret of DO is misleading for Kuhn
as it is for Leduc poker.4 FP shows much faster convergence under

4Our conjecture is that the new poker strategies introduced by DO after a point are
very good at exploiting vulnerabilities in the current equilibrium, but quite poor as
poker players overall. These strategies are quite important to include in the empirical

NE-based rather than uniform-based regret after twenty iterations
or so. Indeed, the uniform-based regret is far from zero even at
a hundred iterations. As we saw in the examples above, uniform-
based evaluation may misleadingly show smooth improvement
where there is none. Here we see again that it can also leave the
impression of slow progress even when the empirical game actually
contains the key strategies needed for accurate solution.

4.4.2 Solver Consistency with PRD. We show experimental results
of PSRO with PRD in Leduc poker in Fig. 2c. We first note that
following the rule of consistency, there is little performance gap
between PRD and DO (i.e., the blue and orange curves). If we violate
consistency and compare PRD-based regret of PRD against NE-
based regret of DO (green versus blue curves), however, we would
be prone to conclude that PRD clearly and significantly outperforms
DO. For Kuhn poker (Fig. 2d) we would conclude there is little
difference, but looking closely and ignoring consistency might lead
us to conclude that PRD is slightly worse in the limit. In both cases,
we see that the choice of evaluation solvers can drive assessments
about exploration performance.

The above examples have shown that not all MSSs are equally
suited for evaluation, even if used in compliance with the consis-
tency criterion. Consistency is important for achieving meaningful
comparisons, but not sufficient. Conclusions about exploration
performance are also sensitive to the selection among MSSs as
evaluation solvers.

4.4.3 An Evaluation Solver Selection Scheme. Recall that MRCP is
the MSS minimizing solver-based regret and thus the regret of the
MRCP of an empirical game measures how well the empirical game
covers the strategically relevant space. If we could feasibly compute
the MRCP or an approximation, that would be a natural choice for
solver-based regret. Though this is infeasible in general, we can
capture the spirit of MRCP by attempting to minimize solver-based
regret. Toward this end, we propose a heuristic evaluation solver

game, to prevent exploitable solutions, even though they should not be part of the
solutions themselves. This is a common game-reasoning phenomenon, providing
another explanation for why uniform is a poor choice of solver for evaluation.
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(a) Fictitious Play in 2-player Leduc (b) Fictitious Play in 2-player Kuhn

(c) PRD in 2-player Leduc (d) PRD in 2-player Kuhn

(e) PRD strategies in DO run (f) Regret curves by Combined Games

Figure 2: Experimental regret curves for poker games.

selection scheme that chooses the solver with lowest-regret curve
among running solvers. We demonstrate the significance of our
scheme for evaluating different MSSs by checking the previous PRD
example.

In the example, if we merely adhere to solver consistency with
NE-based regret (i.e., comparing blue versus orange regret curves
in Fig. 2c), we would not distinguish the performance difference
between PRD andDO. In this case, NE in the empirical game exhibits
relatively high regret with respect to the true game. We know it
is far from MRCP, as the green curve in this plot demonstrates
the existence of lower-regret profiles in the same empirical games.
Although we cannot tell exactly where the MRCP lies, the PRD

solver in this example clearly provides a better approximation than
does the NE solver. Considering PRD as the solver for evaluation
and following solver consistency, we can likewise evaluate DO
using PRD-based regret. The result is shown in the purple curve of
Fig. 2e (other regret curves are as in Fig. 2c). PRD-based regret of
DO is indeed lower than NE-based regret of DO (purple versus blue
curves), and thus PRD as an evaluation solver successfully identifies
the profiles with lower regret in the empirical games across DO
iterations. This achieves our purpose of identifying profiles closer
to MRCP as the basis for evaluation.

By comparing the PRD-based regret curves of DO and PRD, we
observe that they exhibit similar improvement rates through early
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iterations, but eventually PRD shows a small consistent advantage.
This we regard as the best available evidence from these experi-
ments on the authentic relationship between PRD and DO. Had
we ignored solver consistency and compared the green and blue
curves, we would have correctly concluded PRD’s superiority but
grossly overestimated the performance gap.

To state our proposal more explicitly: we argue for selecting the
solver that minimizes regret in the given context. Specifically, fix
a set of MSSs M, typically the same set of MSSs being evaluated
for strategy exploration. Let R be a set of PSRO runs employed to
select the evaluation solver. At each iteration 𝑡 of each run 𝑟 ∈ R,
we have an empirical game over strategy set 𝑋𝑟

𝑡 . For each 𝑋𝑟
𝑡 and

solver𝑀 ∈ M, we evaluate regret in the full game of the empirical
game solution under𝑀 . We then designate as evaluation solver𝑀∗

the MSS that performs the best over these runs:

𝑀∗ = argmin
𝑀 ∈M

∑
𝑟 ∈R

∑
𝑡

𝜌G (𝑀 (G𝑆↓𝑋 𝑟
𝑡
)) .

Alternatively, we can accommodate the possibility that which solver
minimizes true-game regret may vary over the course of the strat-
egy exploration process. We propose a pointwise selection scheme,
which designates an evaluation solver𝑀∗

𝑡 for each iteration 𝑡 :

𝑀∗
𝑡 = argmin

𝑀 ∈M

∑
𝑟 ∈R

𝜌G (𝑀 (G𝑆↓𝑋 𝑟
𝑡
)).

Note that the pointwise scheme, like that for selecting a single solver,
accords with our consistency criterion. Variations that combine
regrets across runs and time in some way other than summation
are also admissible.

5 PERFORMANCE OF MRCP AND
CALCULATION REFINEMENT

5.1 Evaluation Performance of MRCP
Though computation ofMRCP in large games is generally infeasible,
for experimental purposes we can evaluate it in a feasible context.
Here we present such an evaluation on matrix games of fixed and
modest size. Fig. 3 displays averaged regret curves of PSRO runs
on the same synthetic matrix game of Example 2, with FP and DO
evaluated by MRCP-based regret. We observe that the MRCP-based
regret by definition is lower than its NE-based regret counterpart.
In this instance, the comparison using MRCP-based regret validates
the qualitative comparison using NE-based regret. Notice that the
gap between NE-based regret and MRCP-based regret diminishes
as DO and FP gradually converge to a true game NE (i.e., all re-
grets approach zero). We also observe that the MRCP-based regret
curves are much smoother than the NE-based regret curves. MRCP
is monotone by definition, the steady performance improvement
reflects more accurately the progress in quality of empirical game
model achieved by strategy exploration.

5.2 MRCP Calculation Refinement
In matrix games, MRCP can be approximated by solving an op-
timization problem, for example, using the amoeba method [10].
When applying the amoeba method to the MRCP optimization prob-
lem, we have to reconcile the fact that the optimization problem

Figure 3: MRCP-based Regret vs NE-based regret.

is constrained while the amoeba method is an unconstrained opti-
mization technique. To handle this issue, Jordan et al. [4] propose a
binary search (BS) to select the maximum feasible reflection and
expansion scaling parameters (step sizes), respectively. However,
this approach handles infeasibility by compromising the quality of
the reflected and expanded points since the optimal solution points,
which are high-dimensional vectors, may not be reached given
fixed scaling parameters. We fix this problem instead by projecting
an infeasible point onto the unit simplex to maintain feasibility.
Our algorithm is specified in detail in Appendix A.

5.3 MRCP Approximation in Large Games
Calculating MRCP in large games can be infeasible since it de-
mands a large number of regret queries each entailing an expensive
best-response calculation. We therefore seek an affordable way to
approximate MRCP in large games. We start by deriving an up-
per bound for the regret of a mixed-strategy profile through the
deviation payoff of a finite set of pure-strategy profiles. We then
approximate MRCP by minimizing the upper regret bound. This
approach allows us to focus on pure-strategy deviations which is a
moremanageable space compared to the search overmixed-strategy
profiles.

We derive the upper regret bound as follows:

𝜌
G
𝑖
(𝜎) = max

𝑠′
𝑖
∈𝑆𝑖

𝑢𝑖 (𝑠 ′𝑖 , 𝜎−𝑖 ) − 𝑢𝑖 (𝜎𝑖 , 𝜎−𝑖 ) (3)

= max
𝑠′
𝑖
∈𝑆𝑖

∑
𝑠−𝑖 ∈𝑆−𝑖

𝜎 (𝑠−𝑖 )𝑢𝑖 (𝑠 ′𝑖 , 𝑠−𝑖 ) −
∑
𝑠𝑖 ∈𝑆𝑖

∑
𝑠−𝑖 ∈𝑆−𝑖

𝜎 (𝑠𝑖 )𝜎 (𝑠−𝑖 )𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 )

≤
∑

𝑠−𝑖 ∈𝑆−𝑖
𝜎 (𝑠−𝑖 ) max

𝑠′
𝑖
∈𝑆𝑖

𝑢𝑖 (𝑠 ′𝑖 , 𝑠−𝑖 ) −
∑
𝑠𝑖 ∈𝑆𝑖

∑
𝑠−𝑖 ∈𝑆−𝑖

𝜎 (𝑠𝑖 )𝜎 (𝑠−𝑖 )𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) .

Note that the utility structure of a game may affect the quality
of our regret bound. For example, in two-player zero-sum games,
since the sum of players’ utilities is zero for every profile, the term∑
𝑠𝑖 ∈𝑆𝑖

∑
𝑠−𝑖 ∈𝑆−𝑖 𝜎 (𝑠𝑖 )𝜎 (𝑠−𝑖 )𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) (i.e., expected utility of play-

ing 𝜎 for player 𝑖) is canceled when we sum the regret bound over
players. As a result, minimizing the summation of upper bounds
always produces a pure strategy profile, which could result in a
large estimation error.
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Size = 3 Size = 5 Size = 7

Index 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

𝜌 (𝜎) 359 262 232 428 305 176 124 487 364 75 95 228 627 103 322
𝜌 (�̃�) 505 275 265 532 353 253 144 727 365 106 575 397 794 183 322
𝜌 (𝜎∗) 615 275 242 554 949 535 144 806 737 377 491 514 973 172 507

Size = 9 Size = 11 Size = 13

Index 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

𝜌 (𝜎) 160 121 180 181 17 247 250 243 68 108 324 60 209 103 204
𝜌 (�̃�) 249 156 205 230 21 263 405 378 165 108 435 60 318 134 483
𝜌 (𝜎∗) 236 314 759 330 420 388 596 446 152 646 705 216 327 479 204

Table 3: MRCP quality with approximation in symmetric-zero sum games.

We handle this issue by replacing sum-regret (1) with the max-
imal regret over players. Our approximate MRCP �̃� employs the
max-regret variant:

�̃�𝑋 = argmin
𝜎 ∈Δ(𝑋 )

max
𝑖∈𝑁

𝜌
G
𝑖
(𝜎) (4)

This modification prevents the expected utility term from being
canceled, leading to a more effective result from minimizing the
regret bound.

To verify that using max-regret does not unduly distort results,
we can evaluate the sum-regret of the profile produced by mini-
mizing either version. Let 𝜎𝑋 be the profile minimizing sum-regret
with respect to strategy set 𝑋 , and �̃�𝑋 the corresponding MRCP
using max-regret (4). Note that for any 𝑋 , 𝜌 (𝜎𝑋 ) ≤ 𝜌 (�̃�𝑋 ). Table 5
in Appendix compares the two MRCP definitions in five instances
of Kuhn poker, for each of three sizes of two-player Kuhn poker.
As we see, the MRCP calculated using max-regret is quite close to
the actual sum-regret MRCP in minimizing sum-regret.

We now measure the quality of our approximation using the
upper regret bound (3) with the max-regret version of MRCP (4).
Our experiment employs a synthetic two-player zero-sum game
with 200 strategies and utilities uniformly sampled from [−𝑅, 𝑅],
𝑅 = 1000. Table 3 compares the regrets of exact MRCP 𝜎 , approxi-
mated MRCP �̃� (we overload the notation for convenience), and NE
𝜎∗ (i.e., a benchmark). We observe that in some sampled empirical
games, the approximation gives profiles with very similar regret as
that of the MRCP.

6 EVALUATIONWITHOUT EXACT BEST
RESPONSE

As noted above, calculating profile regret for purposes of evaluat-
ing MSSs generally requires identifying a best-response strategy.
However, computing the exact best response may not be feasible
in complex games. A particular approach is to collect the strate-
gies generated across a set of PSRO runs, and evaluate regret with
respect to that set. We refer to the game with all generated strate-
gies as the combined game. In general, regret with respect to the
combined game is a lower bound on regret with respect to the true
full game. Since the combined game has been used in practice as a

heuristic approach to evaluate strategy exploration, it is important
to examine its effectiveness.

To test the effectiveness of this approach, we compare results
for evaluation with respect to a combined game with that of exact
best response (i.e., the ground truth in our context), for some games
where calculating exact best responses is feasible. Results are shown
in Fig. 2f. We observe that high-regret profiles in the true game may
exhibit quite low regret in the combined game. Most concerning
is that the slack in the regret bound may vary across MSSs being
evaluated, thus producing misleading comparisons. Specifically
in Fig. 2f, despite the apparent higher regret of FP profiles in the
true game, FP profiles exhibit lower regret in the combined game.
Our explanation for the phenomenon is that when one MSS can
explore certain strategy to which strategies generated by other
MSSs can deviate largely but not vice versa, the combined game fails
to identify the correct ordering of MSSs. Details of our combined-
game analysis are provided in Appendix B.

7 CONCLUSION
The primary contributions of this study are methodological con-
siderations for evaluating strategy exploration in EGTA, within
the PSRO framework. Our observations address nuances that have
not been observed before, and may have led to misleading conclu-
sions about the effectiveness of proposed methods. In particular,
we propose an evaluation scheme with a consistency condition,
dictating that progress in strategy exploration under different MSSs
be evaluated with respect to the same solver. This condition, while
seemingly obvious, has not always been followed, perhaps because
it is natural in online learning settings to evaluate a method at any
point based on its own solution criterion. In the context of strategy
exploration, in contrast, what is important is not what the latest
strategy is, but how it affects the solution of the model it is being
added to.
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