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ABSTRACT
This study proposes a new scheme for implementing actual data into
artificial market simulations at the level of trader agents. Because
humans can introduce bias or overlook the important features of
actual traders, we implemented the actual data and automated the
strategy learning (imitating) of agents using machine learning (ML).
We then ran artificial market simulations in the treader model,
which imitates the actual trading behaviors in an ML architecture.
Through this study, we demonstrate the potentials and limitations
of the proposed scheme.
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1 INTRODUCTION
Existing artificial market simulations may not be sufficiently reli-
able, mainly because models are built by humans, who introduce
their own biases and might omit some features of actual traders’
behaviors. Recently, [4] discussed the differences between actual
and simulated data and pointed out that simulation models cannot
completely reproduce the essential features of actual markets.

Clearly, the development of models for artificial market sim-
ulations needs to be reconsidered. One possible approach is the
“reverse engineering” of actual traders. In this study, we build and
evaluate a trader model for artificial market simulations, which
automatically learns (imitates) the actual behavior of traders.

Our model is aimed at high-frequency-trading market-making
traders (HFT–MM). HFT–MM traders were chosen for four main
reasons: distinctness in markets; existing well-accepted human-
designed model; limitation of computational resources; the increas-
ing shares in markets [6].

2 STUDY OVERVIEW
Figure 1 is an overview of this study. The data in this study is the
same as and explained in Hirano et al. [5], which were extracted
by a method based on cluster analysis [8].

The data gathered from January to July of 2015 and from August
of 2015 were applied as the training and test data, respectively. Then,
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Figure 1: Overview
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Figure 2: Learning model of the ML HFT–MM trader model
(see Table 1 for details)

using the training data, we trained the ML HFT–MM trader models
to imitate the actual ordering behavior. Trade models without data
were also prepared for two purposes. First was the traditional HFT–
MM trader model based on [1], employed for referencing our ML
HFT–MM traders. The other model was the stylized trader model
based on [7], which simulates traders other than HFT–MM.

In the first evaluation phase, we tested the prediction perfor-
mances of the ML HFT–MM trader models on the test data to esti-
mate their learning abilities. In the next evaluation phase, we built
an artificial market simulation and evaluated the behaviors of the
HFT–MM trader models in simulations. This evaluation evaluates
how well each HFT–MM trader model could simulate the distinc-
tive ordering behaviors of HFT–MM traders via order distribution
comparison based on Kullback–Leibler divergence (KLD).

The simulation model was based on [4], who focused on HFT–
MM traders. For realizing this essential feature of HFT-MM, we set
the delay of 100-steps for other agents. This delay affects stylized
traders in terms of information and order chance. As an information
delay, we set stylized traders to refer 100-step behind information
always. On the other hand, stylized agents can put their orders only
every 100 steps in terms of ordering chance.
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Table 1: ML architecutures

Name Architecture of 1○ Architecture of 2○ # of parameters Note

STBM LSTM Dense 378,389 Originally proposed in [5].
LN STBM+ LSTM Dense w/ Layer Normalization (LN) 379,101 LN was proposed in [2].
RB STBM+ LSTM 4 Residual Blocks (RB) with LN 1,398,685 RB was proposed in [3].

2-layered Tr STBM+ LN Transformer (2 blocks) 2,654,229 Transformer was proposed in [9].
Transformer encoder, decoder are used for
trader and market states respectively.

4-layered Tr STBM+ LN Transformer (4 blocks) 5,290,005
6-layered Tr STBM+ LN Transformer (6 blocks) 7,925,781

Attn STBM+ I LN + RB Attention + 4 × [LN + RB] 875,285
In attention mehanisms, key and value are
from 1○ and query is from trader state.

Attn STBM+ II LN + RB + Self-attention Attention + 4 × [LN + RB] 1,204,245
LSTM Attn STBM+ LSTM LN + Attention + 4 × [LN + RB] 1,128,453

Traditional - - - For comparison. Based on [1].
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Figure 3: Correlation analysis. For comparison, KLD (Simulation) of the traditional model is 0.4994.

For the HFT-MM model, we made some types of agents. One is
the traditional HFT–MM trader model based on [1]. The others are
ML models based on STBM [5], whose base architecture is shown
in Figure 2. However, in this study, we tested some ML models with
different parameters and architectures shown in Table 1.

3 RESULTS & DISCUSSION
Figure 3 shows all the results and the correlations between the
evaluation measures in the learning and simulation phases and the
number of parameters in each model. Here, KLD is used as the
loss function and evaluation measure. According to left-column
figures, the better-learned model in behavior prediction tests shows
the worse performance in simulation regarding the similarity be-
tween actual HFT–MM behavior and HFT–MM models’ behavior
in simulations. The correlation coefficients for KLD is -0.80, and
statistically significant (𝑝 < 0.01). These values suggest that the
tendency of inverse performance between learning and simulation
performances is significantly high.

The mid and right columns in Figure 3 show the impact of the
number of ML models’ parameters on the performances. The mid-
column figures show the relational analysis between learning per-
formance and the number of parameters for each ML HFT–MM
model. Moreover, the right-column figures show the relational
analysis between simulation performance and the number of pa-
rameters for each ML HFT–MM model. According to these figures,
we confirm the following tendencies: (1) ML HFT–MM trader model
with more parameters shows a better performance in model learn-
ing; (2) ML HFT–MM trader model with more parameters shows
a worse performance in simulations; These tendencies are statis-
tically significant. Figures in the right column in Figure 3 show

the comparison between the number of parameters in each ML
HFT–MM model and each ML HFT–MM model’s performance in
simulations in terms of the similarity of their ordering behavior in
actual data and simulations. According to these figures, the more
model parameters ML HFT–MM models have, the more dissimilar
the ordering behaviors in simulations compared to the actual be-
haviors became. The correlation coefficients is more than 0.85 and
are statistically significant. Thus, this tendency (tendency (2)) is
very strong.

Moreover, comparing the results that KLD (Simulation) of the
traditional model is 0.4994, some outperforming models in simu-
lations, which have a comparatively small number of parameters,
outperformed the traditional model.

Summarizing these results, we can estimate the dynamics of the
model performances: (1) Including more parameters in theMLHFT–
MM trader models improved the performance of model learning;
(2) Including more parameters in the ML HFT–MM trader models
worsened the performance in the simulations; (3) Points (1) and
(2) imply that a strong learning ML model is a weak simulation
model, and vise versa; (4) The most primitive ML HFT–MM trader
model displayed the best performance in the simulations and out-
performed the traditional model without ML learning.
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