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ABSTRACT
Existing approaches to coalition formation assume that task re-
quirements are precisely specified by the human operator. Further,
existing approaches ignore the fact that tasks could often be per-
formed by following one of many equivalent strategies. However,
prior work has demonstrated that humans, while extremely adept
at solving complex problems, struggle to explicitly state the intu-
ition that led to their solution. In this work, we propose a two-part
framework to i) learn implicit heterogeneous strategies for coalition
formation directly from expert demonstrations, and ii) adaptively
select one of the inferred strategies based on available resources,
without additional training.
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1 INTRODUCTION
Coalition formation problems require a team of agents to be par-
titioned into non-overlapping sub-teams (i.e., coalitions) in order
to perform multiple concurrent tasks [1, 2]. In this work, we are
interested in coalition formation for heterogeneous teams (i.e., teams
made of agents with different capabilities). Formally, task allocation
problems are categorized based on three axes: Single-Task (ST) vs.
Multi-Task (MT) robots; Single-Robot (SR) vs. Multi-Robot (MR)
tasks; and Instantaneous Allocation (IA) vs. Time-extended Allo-
cation (TA). Our work addresses the coalition formation problem,
which is an instance of the ST-MR-IA problem.

Most existing approaches to coalition formation assume that the
requirements associated with different tasks are explicitly speci-
fied by the human operator (e.g., [5, 6]). However, prior work has
demonstrated that manually specifying multi-dimensional objec-
tive functions that capture trade-offs between various factors can
be very challenging [3, 8, 9]. Therefore, we extract implicit task re-
quirements from expert demonstrations, similar in spirit to inverse
reinforcement learning (IRL). We model task requirements in terms

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

of traits (i.e., multi-dimensional capabilities) that are required to
accomplish the task.

A rich body of work in psychology and human-robot teaming
suggest that complex tasks are often solved using one of many com-
parable strategies [4, 7]. For instance, consider a search task as part
of a disaster response mission. To search effectively, one can either
allocate i) a slow-moving coalition with a large collective sensing
area, or ii) a fast-moving coalition with a small collective sensing
area. We denote such different, yet equivalent, trait requirements
as heterogeneous strategies. Our approach explicitly accounts for
and extracts such diverse strategies. Further, we propose a strategy-
selection algorithm that chooses the most appropriate strategy
given the resources available from a new team.

In summary, we contribute: 1) a coalition formation framework
that accounts for heterogeneous strategies, 2) a clustering-based
approach for inferring such generalizable heterogeneous strategies
from expert demonstrations, and 3) an optimization-based method
for resource-aware strategy selection that can generalize to entirely
new teams without additional training.

2 PROBLEM FORMULATION
We consider a heterogeneous team composed on 𝑆 species (i.e.,
robot types), in which the 𝑠th species contains 𝑁𝑠 robots. Let the
team be tasked with a set of 𝑀 concurrent tasks denoted by T =

{𝑇1,𝑇2, ..,𝑇𝑀 }. Please refer to [10] for a more formal description.
Let a set of heterogeneous strategies associated with the𝑚th

task be made up of 𝑃𝑚 strategies. The 𝑟 th strategy for the𝑚th task
is given by 𝑟𝑦∗𝑚 ∈ R𝑈+ ,∀𝑟 ∈ {1, · · · , 𝑃𝑚}. Let a set of 𝑁 expert
demonstrations in the form of robot assignments be given by

D = {𝑋 (𝑖) , 𝑄 (𝑖) }𝑁𝑖=1 (1)

where 𝑋 (𝑖) represents the expert-specified assignment matrix for a
team with capabilities encoded by the Species-Trait matrix 𝑄 (𝑖) .

Given the above definitions, our problem consists of two steps:
i) extracting the set of approximated strategies 𝑟𝑦𝑚 for each task
from D, and ii) optimizing the Assignment matrix 𝑋 ( 𝑗) of a new
team with Species-Trait matrix 𝑄 ( 𝑗) ∉ D.

3 PROPOSED METHOD
3.1 Extracting heterogeneous task requirements
To extract implicit task requirements, we first compute the trait ag-
gregations from the demonstrations D as 𝑦 (𝑖)𝑚 = 𝑄 (𝑖)𝑇 𝑥 (𝑖)𝑚 , ∀𝑚, 𝑖

where𝑦 (𝑖)𝑚 represents trait aggregation associated with the𝑚th task
of the 𝑖th demonstration. We apply agglomerative (i.e., hierarchical
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bottom-up) clustering on the computed trait aggregation vectors
for each task to obtain clusters denoted by {𝑟𝐶𝑚}𝑃𝑚

𝑟=1. Once the clus-
ters are identified, we compute the approximate task requirements
associated with each strategy on every task as follows

𝑟𝑦𝑚 =
∑︁

𝑦
(𝑖 )
𝑚 ∈𝑟𝐶𝑚

𝑦
(𝑖)
𝑚

|𝑟𝐶𝑚 | (2)

where |𝑟𝐶𝑚 | denotes the number of demonstrations for Task 𝑇𝑚
that are identified as a part of the 𝑟 th cluster. Revisiting our disaster
response example, we could extract two distinct strategies from
multiple expert coalitions assigned to the search task: one requiring
large sensing radius and slow speed, and another requiring small
sensing radius and high speed.

3.2 Resource-aware coalition formation
To denote the choice of strategy for each task, we introduce one-hot
encoded strategy selectors 𝑧𝑚 ∈ {0, 1}𝑃𝑚 ,∀𝑚. We also introduce in-
teger decision variables 𝑥𝑚 ∈ Z𝑆+,∀𝑚 representing the assignment
of robots to each task. We simultaneously optimize the overall
assignment such that the chosen set of trait requirements are sat-
isfied for all tasks. Let 𝑟𝑒𝑚 be the trait mismatch error between
the aggregated traits and the trait requirements of the 𝑟 th strategy
𝑟𝑒𝑚 = ∥𝑟𝑦𝑚 −𝑄 ( 𝑗)𝑇 𝑥𝑚 ∥22 where 𝑥𝑚 represents the assignment for
the Task 𝑇𝑚 . Hence, the net trait mismatch error for Task 𝑇𝑚 is
given by 𝐸𝑚 = 𝑧𝑇𝑚 𝑒𝑚 where 𝑒𝑚 = [1𝑒𝑚, · · · ,𝑃𝑚 𝑒𝑚]𝑇 ∈ R𝑃𝑚+ .

Finally, we cast the resource-aware optimization of robot assign-
ments for the new team with 𝑄 ( 𝑗) ∉ D as a constrained quadratic
integer program:

{𝑥∗( 𝑗)𝑚 , 𝑧
∗( 𝑗)
𝑚 }𝑀𝑚=1 = arg min

𝑥𝑚,𝑧𝑚

∑︁
𝑚

𝐸𝑚 (3)

s.t.
∑︁
𝑚

𝑥𝑚 ≤ 𝑁𝑎, 𝑧
𝑇
𝑚 · 1 = 1, 𝑌𝑚𝑧𝑚 ≤ 𝑄 ( 𝑗)𝑇 𝑥𝑚, ∀𝑚 (4)

where 𝑁𝑎 ∈ Z𝑆+ represents the vector of total robots per species, 1 is
a vector of ones, and 𝑌𝑚 = [1𝑦𝑚, · · · ,𝑃𝑚 𝑦𝑚] ∈ R𝑈×𝑃𝑚

+ represents
all the distinct trait requirements for Task 𝑇𝑚 extracted from the
demonstrations.

Revisiting our disaster response example, our framework chooses
between the two strategies for the search task (low speed and large
sensing radius vs. high speed and small sensing radius) depending
on the capabilities of the available team. Indeed, one of the two
strategies is likely to be better suited than the other for a given target
team. Further, the resource constraint in (4) helps our framework
realize that if all ground vehicles are assigned to the search task,
we will not be able to utilize them to remove debris.

4 EXPERIMENTAL EVALUATION
We evaluate our approach against several baselines, including some
that resemble existing approaches, using detailed numerical simu-
lations, StarCraft II battles, and a multi-robot emergency-response
scenario. Our results indicate that our framework consistently out-
performs all baselines in terms of requirement satisfaction, resource
utilization, and task success rates. For further details and more com-
prehensive results, please refer to [10].

Figure 1: The figure shows subplots of measures of minimum
trait mismatch, exact trait mismatch, and robot utilization
(from left to right) observed in the numerical analyses. As
shown, our approach achieves the lowestminimumand exact
trait mismatch percentage error computed across 3 tasks over
60 test teams.We performed theKruskal-Wallis test, followed
by the Dunn test for post-hoc pairwise comparisons and FDR
adjustment, and found that all comparisons are statistically
significant (𝑝 < 1𝑒 − 5).

4.1 Numerical analyses
We evaluate our approach against four baselines using numerical
simulations across a wide variety of problems by altering aspects
such as team size, robot capabilities, and task strategies. We con-
sider simulated task allocation problems, each with four species
(𝑆 = 4), three traits (𝑈 = 3), three tasks (𝑀 = 3), three strategies per
task (𝑃𝑚 = 3,∀𝑚), and the number of robots per species uniformly
randomly sampled between 6 and 33. We generate teams and strate-
gies such that our data contains a mix of under-, sufficiently-, and
over-resourced teams. We set 1800 seconds as an upper bound on
the optimization time for all approaches.

Our approach identified three distinct strategies for each task
from the demonstration set D. Given the inferred strategies, our
approach outperformed all baselines pointing to the deficiencies
of existing coalition formation approaches that either ignore het-
erogeneous strategies or the context of available resources (see
Fig. 1). Moreover, the results indicate that the baseline embodying
unstructured supervised learning performed the worst, as it does
not account for inter-task dependencies nor does it generalize to
any new species.

4.2 Evaluation on StarCraft II
We designed battles on the game, StarCraft II, to emulate tasks
that require careful allocation using combinations of the available
species. The key finding from this experiment was the fact that
ignoring heterogeneity and relying on statistical averages of multi-
modal distributions could lead to adverse effects.
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