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ABSTRACT
Simulators offer a scalable platform to train robots, offering a path
to creative and innovative solutions that are difficult for humans
to envision a priori. We introduce a way to leverage this property,
along with a new paradigmwhere robots discover creative solutions
in simulation, then teach humans or other agents to physically
execute the learned solutions via reverse teleoperation. We provide
various examples ranging from learning new skills, to rehabilitation,
to everyday activities, where such a system would be valuable.

KEYWORDS
Teleoperation; Reinforcement Learning; Physical Simulation

ACM Reference Format:
Rika Antonova and Ankur Handa. 2022. Robots Teaching Humans: A New
Communication Paradigm via Reverse Teleoperation: Blue Sky Ideas Track.
In Proc. of the 21st International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 5 pages.

1 MOTIVATION: COMMUNICATING NEW
KINESTHETIC INSIGHTS

The 37th move of the 2nd game between the computer program
AlphaGo [29] and the 18-time world champion Lee Sedol caught
the human champion by surprise. The move was puzzling to most
observers as well – it did not follow any known strategies. What
seemed a mistake at first turned the course of the game. ‘Move 37’
was eventually recognized as AlphaGo’s own innovation, since
it could not be attributed to memorizing human strategies used
during training. The successors AlphaZero [30] and MuZero [26]
learned from self-play without human guidance. Go enthusiasts
now recognize the potential of these programs to generate unique
insights for new game strategies.

Robots – the embodied programs – could generate valuable inno-
vative insights for solving physical tasks. They could safely attempt
a myriad tries in simulation, and the resulting strategies would be
applicable to the real world if the simulation-to-reality mismatch is
not large. They could also learn from real-world interactions, and
instantly share progress with other robots that have a similar em-
bodiment. However, robots lack an effective way to communicate
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their innovations to humans. It is unlikely that people pick up the
new strategies by watching robot motions, just as the approach of
learning to play the piano by watching is unlikely to succeed. What
could be an effective way for the robots to teach their innovations
to us? Our blue-sky idea is to develop a new paradigm that would
allow robots to communicate to humans their kinesthetic insights
directly via reverse teleoperation.

2 ROBOT-TO-HUMAN SKILL TRANSFER:
POTENTIAL BENEFITS

With rapid advances in learning and simulation, running large-
scale distributed optimization should soon allow robots to find
novel ways of solving various tasks. They are likely to improve
beyond human-level performance evenwhen constrained by similar
physical and hardware characteristics.

Instead of using this only for perfecting robotic performance, we
propose to think about how this could help humans. For now, we
will assume that we either train anthropomorphic agents in simula-
tion, or train humanoid robots in reality and can solve the mapping
to the human morphology. Below we summarize the benefits of
transferring kinesthetic knowledge from robots to humans.

Increasing motivation and reducing time to mastery: Be-
ginners that fail to make progress can become demotivated and
disengaged. Reverse teleoperation could help execute a new skill
correctly right away. A robot can then slowly attenuate the support
to reduce human’s reliance on hardware, balancing challenges vs
success to maintain a high level of motivation even in unskilled
beginners. Moreover, reverse teleoperation can ensure high quality
for the full duration of the practice, reducing the amount of time
wasted on rehearsing incorrectly, i.e. avoid forming ‘bad habits’.

Improving ergonomics: Repetitive tasks are not going to dis-
appear even if robots replace humans in factory work, because we
need to do office work and household tasks that are difficult to fully
automate. We can encode ergonomics guidelines into the reward
signal directly when training simulated/robotic agents. Teaching
humans to perform repetitive tasks in ergonomically optimal ways
could ensure better well-being and prevent repetitive strain injuries.
Even when people know about the correct approach they frequently
lack the habit/discipline to follow it. Reverse teleoperation would
be an easy way to help them acquire correct habits e.g. helping to
hold the correct arm posture for typing, help keeping one’s back
straight during lifting, etc.
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Figure 1: Overview of the proposed reverse teleoperation architecture: policies are learned in simulation and then run on
hardware that activates a person’s motions with feedback-driven control.

New ways of solving old tasks: High jump has been a popular
sport since the 19th century, but the optimality of the ‘Fosbury flop’
to go over the bar backwards has not been evident to all, until
Dick Fosbury won the 1968 Olympics [36]. The skills and tool use
strategies we have for many of our everyday and professional tasks
could be suboptimal. Daring exploration strategies during large-
scale simulation training could let us overcome these local optima.

Designing new tools & teaching humans how to use them:
Distributed large-scale training in simulation could help create new
tools and optimize their shapes. Shape optimization using physics
(aerodynamics) simulation has been employed in automotive and
aerospace industries [18, 19], and more recently in robotics [4, 15].
We could search for new tools, optimize tool shapes, then quickly
teach humans to use these tools. We can learn basic use of a novel
tool first (e.g. with [34]), then attempt risky exploration strategies
when optimizing in simulation or with a simplified robust robot
hardware. This would ease innovation, even for risky tasks, without
injuries (e.g. test new designs of a nail holder for hammering).
This could also automate design of custom tools for people with
disabilities and impairments, e.g. for the elderly. Overall, this could
improve efficiency and safety of the tools.

Surgeries: Just as DaVinci robot [12] helped pioneer teleoper-
ation for complex surgical operations, we could imagine future
robots training surgeons to do delicate surgeries with known or
new strategies. General surgical training takes at least five years
after finishing medical school. Speeding up the process of correct
muscle memory formation for the surgeons would yield quicker
training. Making reverse teleoperation systems accessible to people
throughout the world could be crucial to ensuring enough highly
skilled surgeons, in both developed and developing countries.

Rehabilitation: Patients with various functional limb actuation
or grasp pathologies can benefit from having a glove [23, 31] or
full-body exoskeleton to enable learning to move and interact in the
real world with various strategies that are tailored to their situation.
Importantly, the robot could also help rehabilitation patients follow
the correct progression of rehabilitation exercises, and facilitate

faster recovery by providing a personalized schedules based on
their current recovery progress.

Arts, Sports, and Fun: Lastly, we envision a wide range of
further scenarios in our daily lives where reverse teleoperation
can help to speed up muscle memory formation, e.g. playing piano
[31], using chopsticks, touch typing, mastering novel painting tech-
niques, forming correct habits for yoga poses and other physical
exercises. Reverse teleoperation can also help mastering difficult
fun skills, such as juggling and balancing for slacklining.

3 BACKGROUND AND PRIORWORK
3.1 Teleoperation
The standard teleoperation paradigm in robotics is comprised of
a hardware system and a user interface that allow a human to re-
lay the desired motions to a robotic system. In our paradigm the
direction is reversed: robot hardware is used to teach a human
new skills by physically moving the limbs and inducing the desired
muscle activations. Nonetheless, some of the conventional teleoper-
ation hardware and interfaces can be useful for implementing our
proposed paradigm as well. Below we review various modern and
historical teleoperation systems, and outline the relevant concepts.

Teleoperation has been most frequently used as an intuitive
interface for humans to control robotic systems. For example, the
developers of HaptX [7] show that their teleoperation system can
be used to perform extremely fine manipulations using Shadow
Hand hardware system [27] by relaying human finger movements
over to the robot hand. Their system also provides haptic feedback
and therefore the teleoperator can get a sense of the force needed
to manipulate various objects. Advanced teleoperation systems can
help with critical tasks, such as telesurgery. For example, it has
been estimated that da Vinci surgical systems have already helped
to complete more than 7 million surgical procedures [12].

Complex teleoperation hardware is usually expensive, but re-
cently [6] introduced DexPilot — a low-cost teleoperation system
that is also able to perform fine manipulations using a low-cost
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Figure 2: Left: A ‘remote doctor’ concept on the cover of the
1924 “Radio News” magazine; source: magazineart.org [17].
Right: A recent powered full-body exoskeleton suite that
allows users to lift heavy objects; source: sarcos.com.

Allegro hand [37]. The system operates directly with RGB cameras;
it does not use haptic feedback as of now, but could benefit from
it. Telexistence [32] is a company that designs robots to help with
physical work in supermarkets and also aims to make their system
accessible in terms of cost.

Teleoperation has also been used as a tool in shared autonomy
with a goal of augmenting the capabilities of a robotic system. In
such settings, a human is still always in the loop to ensure that a
task is completed reliably, providing ingenuity for tackling difficult
problems and correcting unwanted behaviours even in setupswhere
a robot has partial autonomy. For example, a relevant application
is space exploration. SpaceJustin robot developed by the German
Aerospace Center (DLR) has been used for teleoperation to rehearse
scenarios such as robots on a different planet being teleoperated
by humans. An astronaut on board the International Space Station
has remotely operated a humanoid robot to inspect and repair a
solar farm on a simulated Mars environment set up in Munich [11].
Such setups are called supervised autonomy — a concept somewhere
between full autonomy and direct teleoperation.

Teleoperation has also been a topic of interest in popular science
fiction stories e.g. the 1942 short story "Waldo" by Robert Heinlein
features a man who invents and teleoperates a device using his
hand and fingers [8]. Below is a short extract from the story:

Waldo put his arms into the primary pair before him; all three
pairs, including the secondary pair before the machine, came to life.
Waldo flexed and extended his fingers gently; the two pairs of waldoes
in the screen followed in exact, simultaneous parallelism.

Such has been the popularity of this story that many real remote ma-
nipulators developed later also came to be called waldoes. See [24]
for a history of teleoperators, exoskeletons and industrial robots.

3.2 Teaching Humans
Prior research in passive learning provides evidence that our par-
adigm could indeed bring tangible benefits for teaching humans.
One example is a prototype of a music instruction system with
fingerless gloves and vibrators on each finger that activates based
on which finger is used to play a musical note [10]. Such passive
haptic gloves can teach the user to build “muscle memory" to play
piano. This system can also be used for passive haptic rehabilitation:

helping people with partial spinal cord injury improve sensation
and dexterity in their affected hands.

In contrast with the above prior work, our idea is to go further
than re-playing pre-recorded signals. We aim to first let reinforce-
ment learning (RL) agents figure out good strategies for solving a
task without human input, then use policies from such agents to
teach humans. For this, relevant prior work includes approaches in
the area of AI for teaching/instruction. One example is a framework
where an RL agent instructs students by suggesting actions the stu-
dents can take as they learn and aims to find optimal moments for
giving suggestions [33]. Another relevant approach is to define a
parameterized space of instructional policies and search this space
to identify an optimum [16]. This approach was extended to make
the teaching policy adapt to the current student performance and
also automatically identify which activities are beneficial for fur-
thering the student learning progress [1]. Building on these ideas,
we envision a tutoring system comprised of a set of RL agents,
which learn to solve the given task autonomously (without the
human input); we select among these agents based not only on how
well an agent’s policy solves the given task, but also based on how
easy it is to teach the human to perform the task using each policy.

4 REVERSE TELEOPERATION: HARDWARE
AND ALGORITHMS

To enable the robot-to-human transfer we need a safe and effec-
tive reverse teleoperation system. Figure 1 outlines the necessary
components. We start by setting up a task in simulation, speci-
fying a general RL objective/reward function and the constraints
that the learned policy must satisfy to be safe. We propose to keep
objectives relatively high level, e.g. sparse rewards as opposed to
dense, not too specific (no reward tweaking or demonstrations).
This should allow creative solutions to emerge and avoid biasing
RL to only seek solutions that humans can envision. It has been
demonstrated that interesting behaviors emerge with sufficiently
diversified large-scale training [2, 28]. These solutions may range
from exploring novel shapes/designs (e.g. new tools) to finding new
trajectories that solve the task, covering the a range of aspects to
explore in simulation about the environment structure and the task.
With recent progress in GPU-accelerated simulation, it is possible
to train more than 10K environments in parallel on one GPU, even
for advanced cases like ShadowHand [20].

Parallelizing across GPUs would enable scaling to 1 million paral-
lel environments. We will aim to train a ‘main’ policy for an average
human profile/size, then fine-tune it to accommodate humans of
various ages, customizing for different levels of flexibility and other
physical characteristics.

The next stage is a mechanism to actuate a person to follow
trajectories proposed by the robot. The learned policies can be
downloaded and run on the hardware that is worn by the user. This
hardware would be composed of a sensing module to keep track
of the human pose and muscle activities, and an actuation module
that safely executes the next actions to move human limbs. When
users resist the suggested movements, the controller would re-plan
and adapt to ensure comfort and safety. Highly sensitive force-
torque sensors that can detect such resistance reliably along with
impedance control can enable this [13]. If user data is shared via
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Figure 3: Exopulse Mollii Suit; source: exopulse.com [21].
a central repository, reverse teleoperation systems could improve
user preference models based on feedback from similar users.

4.1 Exoskeletons
Exopulse Mollii Suit [21] is a full-body suit for neuromodulation. It
includes 58 embedded electrodes positioned to stimulate 40 muscles
in various parts of the body through low frequency electro stimula-
tion. Mollii Suit is used to relax muscle spasms, activate muscles
to increase blood circulation and prevent atrophy [22]. It can also
alleviate tremors from Parkinson’s disease. We envision extending
a suite like this to activate fine muscles for reverse teleoperation.
Experimenting with various electrode types that could support
more targeted muscle activation could allow to extend this suite
beyond its current applications. The fact that the suite is a medical
device offers a safe starting point. A safe full-body exoskeleton has
been recently introduced by Sarcos (rightmost in Figure 1). It pro-
vides power-assist for users who need to lift heavy objects, apply
large torques to turn industrial valves, etc. We envision that this
full-body exoskeleton could be combined with work on rehabilita-
tion exoskeletons for limbs (e.g. [5]) to create a powerful yet agile
system for human actuation. Work on ‘teleoperating’ users’ own
ankle prosthesis (middle in Figure 1) provides insights for how to
sense user’s fine motions, and could give insights on how users
react to a part connected to their body being actuated [35].

4.2 Simulation and Reinforcement Learning
The recent success of RL has spurred massive interest in simulators
to train robots. Today, high quality image rendering is tractable and
physics simulators and renderers run on GPU gathering 100-1000x
more experience compared to CPUs [20, 25]. Moreover, there is
progress on simulating muscles and tendons [14]. As the scene
complexity increases, so does the simulation time. Nonetheless, we
anticipate that the growth of available computational resources will
continue, enabling faster and higher fidelity simulation in the near
future. In the meantime, we could employ approaches that function
even in the presence of a moderate simulation-to-reality gap [9]. We
also expect to see further improvements in RL algorithms. For ex-
ample, RL could be combined with hierarchical reasoning, symbolic
planning, model-based optimisation and other learning/robotics
approaches to create data efficient hybrid methods. Hence, even if
some tasks would be beyond the simulation fidelity and RL capabil-
ities initially, we can count on improvements in the near future.

While we can expect to acquire enough computational resources
for training flexible and imaginative RL agents, the need to teach

Algorithm 1: Adaptive Reverse Teleoperation Tutor
Set up target task in sim. and train 𝑁 parallel RL agents
Init policy weights:𝑤𝜋𝑛 ← 𝑟𝑒𝑤𝑎𝑟𝑑 (𝜋𝑛 |𝑡𝑎𝑠𝑘) for 𝑛 = 1..𝑁
B ← default Bayesian knowledge tracing (𝐵𝐾𝑇 ) params
O ← {} ; 𝑡 ← 0
while 𝑡 < ℎ𝑢𝑚𝑎𝑛_𝑡𝑖𝑚𝑒_𝑏𝑢𝑑𝑔𝑒𝑡 do

𝜋 ← sample RL policy (using𝑤𝜋𝑛 weights)
𝑜𝑏𝑠 ← {}
for k = 1..K do

Run reverse teleop to train the human to mimic 𝜋
𝑜𝑘←observe teaching progress: lighten exoskeleton

forces, see if human actions and 𝜋 diverge
𝑜𝑏𝑠 ← 𝑜𝑏𝑠 ∪ 𝑜𝑘
if 𝑃 (𝑠𝑡𝑎𝑡𝑒ℎ𝑢𝑚𝑎𝑛 = 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 |B, 𝑜𝑏𝑠) > 𝑡ℎ𝑒𝑠ℎ. then

break

𝑤𝜋𝑛 ← 𝛼 ·𝑤𝜋𝑛 + (1 − 𝛼) · 𝑟𝑒𝑤𝑎𝑟𝑑 (𝜋ℎ𝑢𝑚𝑎𝑛 |𝑡𝑎𝑠𝑘)
O ← O ∪ 𝑜𝑏𝑠 ; (re)-train 𝐵𝐾𝑇 model using O
𝑡 ← 𝑡 + 𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒

a human being creates the pressure to make the overall teaching
approach data-efficient. Hence, we envision a tutoring system that
selects among various RL policies based not only on the task reward,
but also based on how easy it is to teach the human using each policy.
Algorithm 1 gives the outline.We start by setting up the desired task
in simulation. Then, we train 𝑁 RL agents in parallel, and for each
policy 𝜋𝑛 record mean episode reward𝑤𝜋𝑛 after training. We then
sample a policy 𝜋 from 𝑁 trained policies using weights𝑤𝜋𝑛 . After
that, we run reverse teleoperation using 𝜋 and periodically lighten
the forces exerted by the exoskeleton to see whether the human
keeps following the trajectory that 𝜋 would follow. We can treat
these periods of motion as observations of whether the human
has made progress towards learning to mimic policy 𝜋 . We can
therefore use Bayesian knowledge tracing (BKT) [3] to compute the
probability that the human has reached the state ‘trained’ for policy
𝜋 . We then evaluate how well the human can complete the task
without exoskeleton forces and update the weight for 𝜋 accordingly,
then re-sample the next policy to try for instruction.

5 CONCLUSION
We hope that our paradigm of reverse teleoperation will offer a way
to teach users “muscle memory” for various everyday tasks, help
design new tools and teach humans to use them, improve medical
surgery and rehabilitation. We also imagine that deployment of
such a system at scale would offer a chance to continually improve
it, leveraging user data that would be uploaded regularly to a com-
mon repository. Any user can therefore benefit from others that
use the system across the world, yielding a direct consumer-to-
consumer model. Furthermore, as more users deploy this system
for various innovative use cases, the repository would benefit from
an ever increasing category of skills, leading to reduced adaptation
time and faster learning for new users. Ultimately, this offers a
new digital layer for humans to improve learning of new skills,
where algorithmic creativity in simulation, together with kines-
thetic movements in the real world, provide a fundamentally new
way to transform the teaching/learning process for physical skills.
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