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ABSTRACT

Multi-agent reinforcement learning (MARL) enables us to create
adaptive agents in challenging environments, even when the agents
have limited observation. The cooperative multi-agent setting intro-
duces numerous challenges compared to the single-agent setting,
such as the moving target problem and the curse of dimensionality
with respect to the action space. It also aggravates the credit assign-
ment problem, as the credit is not only spread across a sequence
of actions, but also multiple agents. This setting also introduces
new possibilities, such as task parallelization, specialization, and
communication. The Centralized Training with Decentralized Ex-
ecution paradigm has emerged as a popular strategy to mitigate
some of the difficulties in MARL, while still ensuring that the policy
of the agents is only conditioned on their local history. However,
how to fully leverage this paradigm is still an open question. Dur-
ing the first year of my Ph.D., I developed a novel algorithm, Local
Advantage Networks (LAN), that proposes an alternative direction
to value factorization, that is more scalable, not limited in its repre-
sentation and state-of-the-art. The next parts of my research will
focus on multi-agent exploration and learning to communicate.
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1 INTRODUCTION

Reinforcement learning (RL) [38] is the branch of machine learning
dedicated to learning through trial-and-evaluation by interaction
between an agent and an environment.

While single-agent RL has been highly successful, many real-
word tasks — such as sensor networks [24], wildlife protection [46],
and space debris cleaning [21] - require multiple agents to act au-
tonomously. When these agents need to act on local observations,
or the problem becomes too large to centralize due to the exponen-
tial growth of the joint action space in the number of agents, an
explicitly multi-agent perspective is required. As such, Multi-Agent
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Reinforcement Learning (MARL) [8, 13, 34] introduces additional
layers of complexity over single-agent RL.

In my research I focus on partially observable cooperative MARL
where the agents aim to optimize a team reward. This setting,
modeled as a Dec-POMDP, introduces two main challenges that do
not exist in single-agent RL. 1) The moving target problem [40]: the
presence of multiple learners in an environment makes it impossible
for an agent to infer the conditional probability of future states.
This invalidates most single-agent approaches, as the Markovian
property no longer holds. 2) The multi-agent credit assignment
problem: to learn a policy each agent needs to determine the actions
that yield the maximum reward. While in single agent RL this
problem is only temporal, as the reward can be sparse and delayed,
the shared reward increases the complexity of this problem as the
agents also need to determine their individual contribution.

Centralized Training with Decentralized Execution (CTDE) [12,
22, 28], has become a popular learning paradigm for MARL. The
core idea behind CTDE is that even though decentralized execution
is required the learning is allowed to be centralized. Specifically,
during training, it is often possible to access the global state of the
environment, the observations and actions of all agents allowing to
break partial observability, to mitigate the moving target problem
and the credit assignment problem.

The subsequent parts are about the three main axes of my Ph.D.
research. The first part focuses on Local Advantage Network (LAN)
[2] a new CTDE algorithm for Dec-POMDPs. LAN offers an alter-
native to value factorization by learning a local sufficient represen-
tation of its incoming influences, and a best response to that. The
second part considers exploration strategies for Dec-POMDP, as
this area is mainly unexplored. The third part is about learning to
communicate to improve the quality of the learned policies but also
their robustness against unexpected events.

2 ANOVEL ALGORITHM

Modern MARL methods have hitherto focused on finding factor-
ized value functions into individual utilities conditioned on local
observation-action history that can be used for decentralized exe-
cution [32, 37, 44]. This approach is appealing as it transforms the
multi-agent problem into a single-agent one while still being able
to extract decentralized policies. However, to mitigate the curse of
dimensionality those algorithms limit the type of function learnable
or require convoluted network structures, which might limit their
applicability in complex environments, as well as their scalability.
Much recent work builds on the structure of QMIX [32] and offers
gradual improvement. However, we believe that another approach
is needed to widen the possibilities of cooperative deep MARL.
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Inspired by influence-based abstraction [29], we developed a
novel algorithm called Local Advantage Networks (LAN) [2]. In-
stead of learning a factorization of the centralized Q-value, LAN
learns the advantage of the best response policy to the other agents’
policies for every agent. These local advantages, which are solely
conditioned on the agent observation-action history, are sufficient
to build a decentralized policy. In this sense, the architecture of
LAN resembles independent Q-learners more than other CTDE
approaches such as QMIX or QPLEX. A key element of our solution
is to derive a proxy of the local Q-value that leverages CTDE to
stabilize the learning of the local advantages. For each agent, the
Q-value proxy is composed of the sum of the local advantage with
the centralized value of the joint policy. Compared to the local
Q-value, LAN’s proxy is able to provide better updates by break-
ing the partial observability while mitigating the moving target
problem by integrating the changes of the other agents’ policies
faster. As LAN learns the local advantage function for each agent
it naturally reduces the multi-agent credit assignment problem as
well. LAN is also highly scalable as the centralized value network
reuses the hidden states of the local advantages to represent the
joint observation-action history and the number of parameters of
the centralized value does not depend on the number of agents.

In future work, I plan to explore how classic single-agent ex-
tensions of DQN [25] can be adapted to LAN such as Prioritized
Experience Replay [33] or Hindsight Experience Replay [1], and
also how LAN can leverage environment structures through Graph
Neural Networks [5, 20].

3 EXPLORING EFFICIENTLY

Exploring efficiently is a key element to learning good policies in
complex environments [3, 16]. In MARL the difficulty increases
compared to single-agent, as the agents need to balance local and
global exploration in a coordinated manner [23, 47]. Indeed, in
many real-world environments agents depend on each other to
succeed.

One important area of RL exploration consists in measuring the
different types of uncertainty in an attempt to reduce the epistemic
uncertainty [30, 42] while being aware of the zones with high
aleatoric uncertainty [26, 27]. In MARL, the presence of multiple
learners increases the difficulty to measure those uncertainties as
the different outcomes could be a consequence of the exploration of
the other agents or of their policy evolving. I plan to explore how
CTDE, by breaking the partial observability, accessing the other
agents’ policies, and knowing when the other agents are exploring,
might allow to mitigate this problem.

The other main area of RL exploration focuses on designing
intrinsic rewards when the environment reward is not informative
enough or too sparse. In single RL, the intrinsic rewards are usually
derived from novelty scores [7], prediction errors [31], or informa-
tion gain [14]. In a multi-agent setting, those elements are harder
to measure, due to the increased dimension of the problem and the
moving target problem. They also induce a trade-off between the
local and global scope of those measures [6]. However, the presence
of multiple learners also presents opportunities such as deriving
intrinsic rewards from the influence agents have on each other
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[17]. I plan to extend this idea to Q-learning algorithms [45] as it is
currently limited to policy-based algorithms.

As three key elements for collaborative MARL exploration are
adaptivity, commitment, and diversity [10], I plan to build on an al-
gorithm that will leverage successor feature representations [4] and
Thompson sampling [39]. LAN will be used as a building block for
its adaptivity, while the successor features and Thompson sampling
will ensure the commitment and diversity aspect.

4 LEARNING TO COMMUNICATE

Communication is an essential tool to achieve deep coordination
as it allows to mitigate partial observability and the stochasticity
of the world. Communication can exist in many forms, it can be
indirect, such as when an agent performs actions in an environment
to send a message, or direct, through a communication channel
allowing agents to broadcast or send targeted messages depending
on the channel.

While in the tabular setting communication is typically limited
to observation sharing or sending discrete messages, deep neural
networks allow for continuous communication to be learned in an
end-to-end fashion [11].

Many recent papers focus on persistent and perfect communi-
cation between all the agents [9, 15, 35, 36]. This setting, while
appealing, goes against the principle of autonomous agents, at least
in its implementation, as the algorithms can be seen as centralized
learning and execution with alternative neural network architec-
tures. Furthermore, persistent and perfect communication is usually
not available in the real world and it creates single points of failure
if the communication goes down or an agent stops to communicate,
as the rest of the agents would not be able to act. While some work
has already been done in this setting [18, 19, 43, 48], mainly by
introducing a communication budget, it is still unexplored.

We will investigate how to learn to communicate under realistic
conditions such as a limited bandwidth channel. We will leverage
attention neural networks [41] to handle the variation of incoming
messages, while ensuring scalability.

5 CONCLUSION

My research focuses on collaborative Multi-Agent Reinforcement
Learning and is built around three main axes. The first one is the
development of LAN, a new CTDE algorithm for Dec-POMDP that
learns best responses policies instead of value factorization. I aim to
explore how LAN can be further enhanced by leveraging different
types of replay buffer and network architecture. The second one
is designing new exploration strategies. To this end, I will focus
on how CTDE can be exploited in uncertainty measurement, but
also on how to extend societal influence to Q-learning algorithms,
and on combining successor features and Thompson sampling in
a novel way. The third one is learning how to communicate to
increase the quality and robustness of the policies. To match the
autonomy requirement in multi-agent systems and to be widely
applicable, I will focus on a limited bandwidth setting.
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