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ABSTRACT
The stable matching problem sets the economic foundation of sev-
eral practical applications ranging from school choice and medical
residency to ridesharing and refugee placement. It is concerned
with finding amatching between two disjoint sets of agents wherein
no pair of agents prefer each other to their matched partners. The
Deferred Acceptance (DA) algorithm is an elegant procedure that
guarantees a stable matching for any input; however, its outcome
may be unfair as it always favors one side by returning a matching
that is optimal for one side (say men) and pessimal for the other
side (say women). A desirable fairness notion is minimizing the
sex-equality cost, i.e. the difference between the total rankings of
both sides. Computing such stable matchings is a strongly NP-hard
problem, which raises the question of what tractable algorithms to
adopt in practice. We conduct a series of empirical evaluations on
the properties of sex-equal stable matchings when preferences of
agents on both sides are correlated. Our empirical results suggest
that under correlated preferences, the DA algorithm returns stable
matchings with low sex-equality cost, which further confirms its
broad use in many practical applications.
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1 INTRODUCTION
Matching theory sets the economic foundation for achieving stable
allocations through market design. It has shaped the cornerstone of
many practical applications ranging from school choice [1, 2] and
medical residency [54] to refugee placement [16, 34] and rideshar-
ing [8, 24]. In its essence, the stable matching problem deals with
finding a matching between two disjoint sets of agents (colloqui-
ally men and women) according to their preferences. The primary
objective is to achieve stability, that is, finding a matching between
the two sides wherein no pair of agents prefer each other to their
matched partners.

Over the past few decades, numerous theoretical breakthroughs
and developments were pioneered to study mathematical and ax-
iomatic properties of the stable matching problem [17, 21, 53, 59] as
well as its computational and algorithmic aspects [26, 36, 40, 57, 62].
However as problems become increasingly more challenging, there
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has been a need for moving from theory about simple markets to
more complex settings that account for subtle, but vital, differences
in constraints in preference structures or other factors that may
pose computational or axiomatic challenges. Hence, as Roth and
Peranson [54] suggested “as game theory moves from simple con-
ceptual problems to complex design problems, we will need to make
more general use of this interaction among theory, computational
investigation of market data, and theoretical computation, and that
this in turn will produce new problems and directions for traditional
theory”. This doctrine motivated a large body of work in taking
empirical or statistical approaches in exploring markets through
studying (real or synthetic) data sets or analyzing statistical distri-
butions [6, 11, 39, 61]. In this vein, we investigate the fairness of
stable matchings through empirical simulations to paint a thorough
picture of the structure of fair stable solutions in matching markets.

A motivating insight. The Deferred Acceptance algorithm (DA)—
due to Gale and Shapley [20]—provides an elegant solution to the
stable matching problem wherein agents from one side (say men)
make proposals to the agents from the other side (say women). Each
woman tentatively accepts her favorite proposal and rejects the rest.
Despite the popularity and success of the DA algorithm in many real-
world matching markets [53, 54], it always favors the proposing
side to the receiving side, that is, the DA algorithm always returns a
stable matching that is men-optimal [20] but women-pessimal [48].
This unequal treatment of the sides raises critical questions about
the fairness of the DA algorithm, which may result in (extremely)
unequal welfare between both sides.

One of the most prominent and well-studied fairness notions—
proposed by Gusfield and Irving [23]—is sex-equality that aims
at finding a matching that equalizes the welfare of both sides by
minimizing the difference between the total rankings of men and
women in a stable matching. While sex-equal stable matchings al-
ways exist, computing one has shown to be strongly NP-hard [36].
For any instance of the matching problem, there may be an expo-
nential number of stable solutions [31] and these stable matchings
form a distributive lattice. Thus, one may hope to find a “fair” stable
matching that equalizes the welfare of both sides.

On a closer scrutiny, however, we notice that a sex-equal stable
matching is highly correlated with the structure of preference lists
of each side of the market. This observation suggests that even
though the number of stable matchings grows exponentially in
general [31], surprisingly a sex-equal solution lies at the extreme
points of the stable lattice in certain settings.

Example 1.1. Consider the following instance with five men and
five women and the following preference lists. The men-optimal and
women-optimal matchings are marked by † and ∗ respectively. The
stable lattice of this preference profile contains five matchings as il-
lustrated in Figure 1. A sex-equal stable matching assigns a total
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𝜇𝑀

(𝑤2,𝑤3,𝑤1,𝑤4,𝑤5), Men-optimal

𝜇1

(𝑤4,𝑤3,𝑤1,𝑤2,𝑤5)
𝜇2

(𝑤2,𝑤3,𝑤5,𝑤4,𝑤1)

𝜇3

(𝑤4,𝑤2,𝑤1,𝑤3,𝑤5)
𝜇4

(𝑤4,𝑤3,𝑤5,𝑤2,𝑤1)

𝜇𝑊

(𝑤4,𝑤2,𝑤5,𝑤3,𝑤1), Women-optimal (Sex-equal)

𝜌1

𝜌3

𝜌2

𝜌3

𝜌2

𝜌1

𝜌3

Figure 1: The stable lattice for the profile described in Ex-
ample 1.1 with six stable solutions. Matchings are denoted
as lists of womenmatched tomen according to their indices,
rotations are indicated by 𝜌𝑥 on arcs.

ranking of 12 to women and 13 to men, minimizing the welfare dif-
ference between the two sides. Notice that the sex-equal solution for
this profile lies precisely on the extreme point of the stable lattice and
is equivalent to the women-optimal solution.1

𝑚1 : 𝑤
†
2 𝑤∗4 𝑤5 𝑤1 𝑤3 𝑤1 : 𝑚4 𝑚2 𝑚1 𝑚∗5 𝑚

†
3

𝑚2 : 𝑤
†
3 𝑤∗2 𝑤4 𝑤1 𝑤5 𝑤2 : 𝑚∗2 𝑚4 𝑚

†
1 𝑚5 𝑚3

𝑚3 : 𝑤
†
1 𝑤∗5 𝑤4 𝑤3 𝑤2 𝑤3 : 𝑚∗4 𝑚

†
2 𝑚1 𝑚3 𝑚5

𝑚4 : 𝑤
†
4 𝑤2 𝑤∗3 𝑤1 𝑤5 𝑤4 : 𝑚2 𝑚∗1 𝑚

†
4 𝑚5 𝑚3

𝑚5 : 𝑤2 𝑤3 𝑤
†
5 𝑤∗1 𝑤4 𝑤5 : 𝑚1 𝑚4 𝑚2 𝑚∗3 𝑚

†
5

Motivated by this observation, we study stable matching prob-
lems when both sides of the market have correlated preference lists.
We focus on correlated random preference lists sampled from Mal-
lows distribution models [45]. The Mallows model is the cornerstone
of a variety of ranking problems in machine learning [7, 44] and so-
cial choice [30], and has been shown to correctly capture the prefer-
ence rankings of individuals in many practical applications [13, 58].
Under the Mallows models, preferences are correlated through a
reference ranking, where the probability of a preference list to be
sampled is inversely proportional to its Kendall-tau distance [37]
(number of swaps between the two lists) from the reference ranking.
Therefore, focusing on settings with correlated preference lists on
both sides of the market we ask the following questions:

How does the correlation between preference lists of two
sides impact the fairness of stable matchings? What
algorithmic solutions should we adopt in practice when
preferences are correlated according to Mallows models?

1.1 Our Results
Focusing on markets with correlated preferences on both sides, we
empirically investigate the sex-equality of stable matchings through
a series of extensive experiments on synthetic data:
• Stable lattice: We first focus on the size of the stable lattice
when preferences of both sides are drawn from Mallows
distributions. We show that the size of the stable lattice is

1We refer the readers to the full version of the paper [12] for a detailed discussion of
lattices and rotations.

heavily dependent on the relationship between the corre-
lation intensity in preferences of two sides (Section 3). In
particular, we show that when correlations between the two
sides of the market are symmetric, that is, preferences are
distributed according to the same dispersion parameter, the
stable lattice grows rapidly–as it was theoretically proved
by Levy [43]. However, when correlations are asymmetric,
i.e. distributed according to different dispersion parameters,
the size of the stable lattice sharply decreases.
• Asymmetric correlations: When preferences of the two
sides are sampled from different Mallows distributions, we
show that in overwhelming majority of cases, a sex-equal
stable matching is located at the extreme points of the stable
lattice. In Section 4.1 we discuss how this key observation
immediately results in a polynomial-time algorithm for find-
ing a sex-equal matching by computing a men-optimal or
women-optimal stable matching through the DA algorithm
[20].
• Symmetric correlations: When preferences are sampled
from the same Mallows distribution, even though the size of
the stable lattice may be exponential, the cost of a sex-equal
matching is considerably close to the cost of the DA outcome.
As the difference between the welfare of men and women is
sufficiently small, the importance of which group proposes
(men or women) becomes negligible (Section 4.2).
• Comparing the performance of algorithms: In Section 5
we conduct a series of empirical comparisons between well-
studied heuristic and procedurally fair algorithms. We show
that with correlated preferences, the DA algorithm—with a
careful selection of the proposing side—performs as good
as the best known local search algorithm with respect to
the sex-equality cost even on large instances. This result
further justifies the use of the DA algorithm which is more
computationally efficient compared to other methods.

1.2 Related Work
Stability is a key condition for the success and longevity of two-
sided markets [53]. The seminal work by Gale and Shapley showed
that a stable matching always exists and can be found in polynomial
time using the Deferred Acceptance algorithm (DA) [20]. The impor-
tant property of DA is its inherent asymmetry: favouring one side at
the cost of another [23]. This bias should be taken into account as
many central clearinghouses use DA as the basis for their decisions,
including the National Resident Matching Program (NRMP) [54]
and the New York City school assignment [1].

Several papers investigate the difference between the expected
rank of partners in an optimal and a pessimal stable matching
(aka the welfare gap) [5, 6, 51, 52]. In one-to-one balanced markets
(i.e. with an equal number of men and women) and when prefer-
ences drawn uniformly at random, the expected total rank of agents
asymptotically approaches 𝑛 log𝑛 in their optimal matching and
𝑛2/log𝑛 in their pessimal matching [51]. The same order of scores
is preserved in markets with constant tier-based preferences, in
which agents rank partners proportionally to their real-numbered
popularity scores [5]. Large real-world markets usually admit an
exceedingly small number of stable matchings. For example, for

Main Track AAMAS 2022, May 9–13, 2022, Online

191



the NRMP hospital-resident matching and for Boston Public School
student admission there were only a couple of stable matchings
each year [50, 54]. It was shown theoretically, that a lattice becomes
essentially a singleton in large one-to-one markets, wherein one
side draws shorter fixed-sized preference lists from an arbitrary dis-
tribution [28]. Similar results were shown for many-to-one settings:
balanced [41] and unbalanced [6]. At the same time, large stable
lattices were theoretically proven in markets with correlated pref-
erences induced by the Watts–Strogatz “small world” model (even
when unbalanced) [52], and the Mallows model [43]. Empirically,
large lattices are found in settings of matching-with-contracts [25].

Fairness and stability. The potential exponential size of stable
solutions [31] alongside the inherent bias of DA, has motivated
the discussion of fairness in stable matching markets. Various al-
gorithms were proposed to ensure fairness towards individuals
[18, 19], socio-economic groups [3, 27], regions [35], and sides (e.g.
hospitals vs. residents) [47, 60]. Below, we will briefly discuss a vari-
ety of fairness notions that have received attention in the literature
of stable matchings.

The egalitarian stable matching, is a stable matching that mini-
mizes the sum of rankings of all partners for men and women, hence
maximizes the total welfare of all agents [32]. The minimum regret
stable matching minimizes the highest rank of agents, therefore
minimizing the rank of a partner for the most unsatisfied agent.
Egalitarian and minimum regret stable matchings can be found in
polynominal time [18, 32], but do no ensure cross-sided fairness:
they both can substantially favor one of the sides, by optimizing
the welfare on the level of the whole system (egalitarian), and in-
dividual agents (minimum regret). In the median stable matching,
each agent is matched to its middle favorite partner across all part-
ners from stable matchings; the resulting matching is a median
element of a stable lattice. Finding a median stable matching is
NP-hard in general, but it could be done in polynomial time in
some restricted families of the rotation poset [14]. The median
stable matching might not satisfy cross-sided fairness if one side
prefers their middle stable partners substantially more than the
other side. A procedurally fair algorithm aims to provide agents an
equal probability to affect the resultant stable matching by issuing
proposals [61], reducing the set of stable matchings [4], or satis-
fying blocking pairs [55]. Procedural fairness does not necessarily
result in cross-sided fair matchings, and thus, one side may receive
much higher welfare compare to the other side [38].

A sex-equal stable matching minimizes the gap between the sum
of partners’ ranks of men and women. The sex-equal stable match-
ing problem is an NP-hard problem and fixed parameter tractable
with respect to the treewidth of the Hasse diagram of the rotation
poset [22] and 𝑘 parameter in the 𝑘-range model [15]. To tackle the
sex-equal stable matching problem various heuristics have been
proposed: for example, performing local search series on a stable
lattice (iBILS) [64], and transforming a stable matching using ge-
netic algorithm [49]. While some of these approximate algorithms
(e.g. iBILS) perform well in experiments, they bear no theoretical
bounds on the quality of an outcome.

Correlated and random preferences. Several recent works in
stable matching have focused on investigating a variety of natural
structures of profiles, from profiles generated uniformly at random

[6, 51] to random profiles with soft and hard constraints on rankings
[5, 39, 61]. The Mallows distribution model drew the attention of
researchers as it was shown to realistically capture the preference of
agents in several applications involving individual decision-makers
[58]. In the Mallows model, preferences are correlated through
a reference ranking, representing the objective order of agents’
attractiveness. In contrast to the tiered and random utility models,
the Mallows model generates a variety of correlated preferences
using only a few parameters: two dispersion parameters and two
reference rankings; one of each for each side of the market.

2 PRELIMINARIES
We start by providing a formal representation of the model and
define the necessary properties.

Problem setup. An instance of the stable matching problem is
specified by the tuple 𝐼 = ⟨𝑀,𝑊 , ≻⟩, where 𝑀 is a set of 𝑛 men,
𝑊 is a set of 𝑛 women, and ≻ is a preference profile which consists
of the preference lists of all men and women. The preference list
of any man 𝑚 ∈ 𝑀 , denoted by ≻𝑚 , is a strict total order over
all women in𝑊 (for any woman 𝑤 ∈ 𝑊 , the list ≻𝑤 is defined
analogously). The rank of woman 𝑤 in man 𝑚’s preference list,
≻𝑚 , is denoted by 𝑟 (𝑤,𝑚). For instance, given ≻𝑚= (𝑤2,𝑤1,𝑤3),
we say 𝑤2 is ranked first in𝑚’s preference list, i.e., 𝑟 (𝑤2,𝑚) = 1.
Similarly, 𝑟 (𝑚,𝑤) denotes the rank of𝑚 in ≻𝑤 .

Stable matchings. A perfect matching is a mapping 𝜇 : 𝑀 ∪
𝑊 → 𝑀 ∪𝑊 such that 𝜇 (𝑚) ∈𝑊 for all𝑚 ∈ 𝑀 , 𝜇 (𝑤) ∈ 𝑀 for all
𝑤 ∈𝑊 , and 𝜇 (𝑚) = 𝑤 if and only if 𝜇 (𝑤) =𝑚. Given a matching 𝜇,
a man-woman pair (𝑚,𝑤) is called a blocking pair, with respect to
the preference profile ≻, if they prefer each other to their assigned
partners under 𝜇, i.e.,𝑤 ≻𝑚 𝜇 (𝑚) and𝑚 ≻𝑤 𝜇 (𝑤). A matching is
stable if it contains no blocking pairs.

Given a preference profile ≻, the set of all corresponding sta-
ble matchings, 𝑆≻ , forms a distributive lattice. The maximum and
minimum points of a stable lattice correspond to the men-optimal
(𝜇𝑀 ) and the women-optimal (𝜇𝑊 ) matchings respectively [23], i.e.
a matching where all men (respectively women) receive their best
stable partners. A men-optimal matching is simultaneously women-
pessimal: it matches all woman to their worst stable partners [48].
Figure 1 illustrates a lattice consisting of six stable matchings. The
expected size of a stable lattice (correspondingly the size of 𝑆≻)
is asymptotic to 𝑒−1 ln𝑛 when preferences are drawn uniformly
at random [51] and may grow exponentially with the number of
agents [31].

Welfare measure. Let 𝑆𝑀 (𝜇) denote the sum of ranks of men’s
partners in matching 𝜇, that is, 𝑆𝑀 (𝜇) =

∑
𝑚∈𝑀 𝑟 (𝜇 (𝑚),𝑚). Sim-

ilarly for women, we let 𝑆𝑊 (𝜇) be the sum of ranks of women’s
partners given matching 𝜇, i.e. 𝑆𝑊 (𝜇) =

∑
𝑤∈𝑊 𝑟 (𝜇 (𝑤),𝑤). Note

that the smaller values indicate higher social welfare. Thus, a men-
optimal matching 𝜇𝑀 is the one that minimizes the sum of rankings
for men, that is, 𝜇𝑀 = argmin𝜇∈𝑆≻ 𝑆𝑀 (𝜇). And similarly, for the
women-optimal matching we have 𝜇𝑊 = argmin𝜇∈𝑆≻ 𝑆𝑊 (𝜇). For
simplicity, we will refer to the scores of a men-optimal matching
𝑆𝑀 (𝜇𝑀 ), 𝑆𝑊 (𝜇𝑀 ) as 𝑆𝑀 -optimal and 𝑆𝑊 -pessimal scores. Simi-
larly, for a women-optimal matching we write 𝑆𝑀 -pessimal and
𝑆𝑊 -optimal to indicate 𝑆𝑀 (𝜇𝑊 ) and 𝑆𝑊 (𝜇𝑊 ).
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The Deferred Acceptance algorithm. Given a preference pro-
file ≻, the Deferred Acceptance (DA) algorithm, proposed by Gale
and Shapley [20], consists of rounds of proposal and rejection phases
and proceeds as follows: In each round every man who is currently
unmatched proposes to his favorite woman from among those who
have not rejected him yet. Each woman tentatively accepts her
favorite proposal and rejects the rest. The algorithm terminates in
O(𝑛2) when no further proposals can be made.

Given any profile ≻ as input, the DA algorithm is guaranteed
to return a stable matching [20]. Moreover, the DA algorithm is si-
multaneously men-optimal [20] and women-pessimal [48], i.e. men
receive their favorite stable partners among all matchings available
to them in 𝑆≻ , and women receive their least favorite stable part-
ners. The DA algorithm returns the stable matchings at the extreme
points of the stable lattice depending on which set (men or women)
are proposers. Thus, the DA algorithm with women proposing is
respectively women-optimal and men-pessimal.

2.1 Fair Stable Matchings
Given a matching 𝜇, the sex-equality cost of 𝜇 is the absolute differ-
ence between the total welfare of men and women, i.e. 𝑆𝑀 and 𝑆𝑊
scores. Formally, the sex-equality cost of a matching 𝜇 is defined as

𝑐 (𝜇) = |𝑆𝑀 (𝜇) − 𝑆𝑊 (𝜇)) |. (1)

Given preference profile ≻, a sex-equal stable matching is a match-
ing in 𝑆≻ that minimizes the sex-equality cost across the stable
lattice, that is,

𝜇∗ ← arg min
𝜇∈𝑆≻
(𝑐 (𝜇)). (2)

Intuitively, in a sex-equal stable matching the total rank of men’s
partners is as close as possible to that of women (subject to the
stability condition). Kato [36] showed that for an arbitrary pref-
erence profile the problem of finding a sex-equal stable matching
is strongly NP-hard. However, it is fixed parameter tractable with
respect to the range of the profile – a metric showing the maximum
discrepancy between an agent’s worst and best rank in the pref-
erence profile [15]. Also, it can be found efficiently when agents
have a specific two-dimensional single-peaked model [56] or if
preferences are identical on one side [33].

2.2 Correlated Preferences
There are several plausible ways to study preference models gener-
ated from uniform distributions [6, 51] or correlated preferences [5,
9, 52, 61]. The vast majority of these works focused on profiles
wherein the preferences of one side are correlated while the other
side is considered uniform. We focus on a more general distribution
models where both sides of the market have correlated preferences
through the Mallows model.

TheMallowsmodel. AMallows distribution is a distance-based
probabilistic model for permutations correlated with some common
reference [45]. It is parameterized by a reference ranking, 𝜋 , and
a dispersion parameter 𝜙 ∈ (0, 1]. Let 𝜋 be a permutation of a
preference list. For any permutation 𝜋 , the Mallows model specifies
a probability as follows:

𝑝 (𝜋 |𝜋, 𝜙) = 1
𝑍
𝜙𝜏 (𝜋,𝜋 )

where 𝜏 (𝜋, 𝜋) is a Kendall-tau distance (the number of pairwise
inversions) between 𝜋 and 𝜋 and 𝑍 is a normalization constant
with 𝑍 = 1(1 + 𝜙) (1 + 𝜙 + 𝜙2) . . . (1 + 𝜙 + . . . + 𝜙𝑛−1).

Note that the dispersion parameter 𝜙 indicates the ‘intensity’
of correlation between the sampled preferences. When 𝜙 = 0, the
correlation is maximal, that is, the distribution mass is entirely on
the reference ranking and all preference lists are identical. When
𝜙 = 1, the correlation is minimal, the probability mass is distributed
evenly between all possible permutations and the Mallows model
is equivalent to the Uniform distribution model (also known as
Impartial Culture [10] in the computational social choice literature).

For each set involved in the stable matching problem, we con-
sider an independent probabilistic preference model: one Mallows
model for the set of men parameterized by 𝜋𝑚 and 𝜙𝑚 and another
preference model for women specified by 𝜋𝑤 and 𝜙𝑤 . In this way,
the preferences of men (similarly women) are globally correlated
with 𝜋𝑚 (𝜋𝑤 ).2

Symmetric and asymmetric models. We let 𝜙Δ = |𝜙𝑚 − 𝜙𝑤 |
to represent the correlation disparity in preferences of men and
women sampled for this particular instance. Simply put, correlation
disparity reflects how similar the probabilistic preferences of men
are in comparison to the similarity of women’s preferences. We call
stable matching instances simulated from the Mallows model with
zero correlation disparity, 𝜙Δ = 0, symmetric correlation markets,
and asymmetric correlation markets when simulated with 𝜙Δ ≠ 0.

3 STABLE LATTICE UNDER THE MALLOWS
MODEL

In this section, we show empirically that in one-to-one markets
with correlated preferences induced by Mallows models the size of
the stable lattice depends on the correlation disparity. The empiri-
cal investigations give insights on how searching for a sex-equal
matching can computationally vary with the size of a stable lattice
in a given market.3

3.1 Setup and Preference Sampling
We generate 1, 000 instances of a stable matching problem for each
𝑛 ∈ [10, 150] and𝜙𝑚, 𝜙𝑤 in [0.1, 1.0]. When generating a preference
profile under probabilistic models, we draw a preference list for
each agent i.i.d from the Mallows distribution using the sampler
from PrefLib library [46].

In all sampled stable matching instances we built the stable lat-
tice, and measured 𝑆𝑀 , 𝑆𝑊 welfare scores. For each experimental
setting, we estimate a target statistic (the median for numerical vari-
ables like size and mean for binary variables) over 1, 000 instances
along with the confidence intervals. Confidence intervals were ob-
tained using bootstrap sampling with replacement with sample size
1, 000with 100 repeats. We report the results only for 𝑛 = 150, as for
the smaller 𝑛 the results are qualitatively the same. We occasionally
considered larger instances with 𝑛 = 300, when comparing the size
of the lattice of the Uniform and the Mallows (𝜙𝑚 = 𝜙𝑤 = 0.5)
models.4

2Throughout the paper, we assume 𝜋𝑚 = 𝜋𝑤 , because one can simply relabel the
preferences on one side to create any arbitrary distance.
3The source code is available at https://github.com/Restel/mallows-smp
4We use the same instance generation and setup in all remaining sections.
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n Type Median L CI(L) max(L)
1 150 Mallows 16.00 (2;256) 1024
3 150 Uniform 82.00 (32;231) 626
4 300 Mallows 144.00 (8;7008) 147456
5 300 Uniform 209.00 (91;567) 1262

Table 1: The size of the stable lattice (L) under the Uniform,
and the Mallows distributions with 𝜙𝑚 = 𝜙𝑤 = 0.5 models.
𝐶𝐼 (L) denotes the 95% confidence interval.

3.2 The Size of the Stable Lattice
The size of the stable lattice depends on the correlation dis-
parity. Our empirical investigation illustrates an intriguing obser-
vation about the size of the stable lattice: Under the Mallows model
the size of the stable lattice is affected by the correlation intensity
in men’s and women’s preferences (measured by the dispersion pa-
rameters 𝜙𝑚 , 𝜙𝑤 ) as well as the discrepancy between them, i.e. the
correlation disparity 𝜙Δ. The size of the lattice is maximum when
the preferences of men and women are sampled from a distribution
with identical dispersion parameters, 𝜙Δ = 0, and decreases with
the rise of the correlation disparity. This relationship is confirmed
by median values, 25%-75% percentiles, 95% confidence intervals,
maximum values and holds for all combinations of dispersion pa-
rameters (Figure 2). These findings are aligned with theoretical
results indicating that when the preferences are sampled from the
same distribution (parametrized by identical dispersion parameters,
𝜙𝑚 = 𝜙𝑤 ), the size of the stable lattice grows exponentially in the
number of agents [43], making the use of an exhaustive search
algorithm impractical in these settings.

More importantly, they reveal that the primary predictor of the
lattice size is the correlation disparity between the two sides, and
the intensity of the correlations (dispersion parameters) have less
significant impact on the lattice size.5

Mallows preferences induce large lattices. It is thought that
introducing correlation in preferences reduces the stable lattice
size compared to the random uncorrelated case [6, 42, 54]. In their
empirical work, Roth and Peranson [54] conjectured that having
a common objective ranking for the agents’ preferences is one of
the main reason behind the observed small lattice sizes. Our em-
pirical results suggest that while in general the median size of the
lattice was indeed smaller in the Mallows compared to the Uniform
distribution, some 𝜙 parameters have much larger maximum val-
ues and confidence intervals.6 For example, in case of asymmetric
correlation with 𝜙𝑚 = 0.5, 𝜙𝑤 = 0.3, 𝑛 = 150, the maximum size of
the lattice was larger than that of the Uniform model. Similarly, for
symmetric case with 𝜙𝑚 = 0.5, 𝜙𝑤 = 0.5, and 𝑛 = 300, 95% confi-
dence interval of a stable lattice size spans from 8 to 7008matchings
compared to 91–567 interval under the Uniform distribution (see
Table 1).

Our results suggest that symmetrically correlated markets have
extraordinarily large lattices compared to the Uniform case (147456
vs. 1262), aligning well with the results of Levy [43] on asymptotic
exponential lattices in the Mallow model. Note, that such large

5Similar results hold for rotation posets as described in the full version [12].
6The details are provided in [12].

Figure 2: The size of the stable lattice with respect to 𝜙𝑚 −
𝜙𝑤 in the Mallows model for 𝑛 = 150: median values (left),
maximum values (right). Dotted lines denote the medians,
shadowed gray area denotes 1st and 3rd quartiles. Y-axes of
left and right figures have different scales.

instances appeared for such small number of agents as 300, while
real-world markets often have many more agents [50, 54].

In the past, correlation in preferences of agents was considered
a sole factor contributing to small lattice sizes [6, 54]. Our experi-
ments imply that in case of the correlation induced by the Mallows
model, this effect depends not on the presence of correlation itself,
but rather on its disparity between the two sides i.e. how strongly the
preferences of one set are correlated compared to the preferences of the
other set. Symmetric correlation markets seem to be the worst case
scenario, and the lattice tends to grow smaller when the sets are
having preferences correlated dissimilarly. This raises the question
of whether real-world markets with observed small lattices suffer
from such correlation disparity in preference profiles or it should
be attributed to other factors.

4 SEX-EQUAL STABLE MATCHINGS
In this section, we discuss how the position of a sex-equal matching
within a stable lattice is determined by the relationship between
men andwomenwelfare scores, which enables us to find a sex-equal
matching using the DA algorithm.

The relationship between 𝑆𝑀 and 𝑆𝑊 of men- and women-
optimal stable matchings dictates the location of a sex-equal solu-
tion within the lattice. In particular, it determines whether or not it
lies on the extreme points of the lattice. Based on this relationship,
we identify two “easy” cases, in which DA guarantees to return a
sex-equal stable matching, and a “hard” case, in which it does not.

Lemma 1 (Kato [36]). A sex-equal stable matching is:
1) the men-optimal stable matching, 𝜇𝑀 , if 𝑆𝑀 (𝜇𝑀 ) ≥ 𝑆𝑊 (𝜇𝑀 )
2) the women-optimal matching, 𝜇𝑊 , if 𝑆𝑀 (𝜇𝑊 ) ≤ 𝑆𝑊 (𝜇𝑊 )
3) the stable matching 𝜇𝑍 such that 𝑐 (𝜇𝑍 ) = argmin𝜇∈𝑆≻ (𝑐 (𝜇)),
otherwise.

Corollary 1. A sex-equal stable matching can be computed in
polynomial time when either 𝑆𝑀 (𝜇𝑀 ) ≥ 𝑆𝑊 (𝜇𝑀 ) or 𝑆𝑀 (𝜇𝑊 ) ≤
𝑆𝑊 (𝜇𝑊 ).

Proof. Find a men-optimal matching 𝜇𝑀 by running a men-
proposing DA algorithm. Compute 𝑆𝑀 (𝜇𝑀 ) and 𝑆𝑊 (𝜇𝑀 ) and if
𝑆𝑀 (𝜇𝑀 ) ≥ 𝑆𝑊 (𝜇𝑀 ), than by Lemma 1, Case 1 the men-optimal
matching is a sex-equal stablematching. Analogously, find awomen-
optimal matching 𝜇𝑊 by running a women-proposing DA algorithm.
Compute 𝑆𝑀 (𝜇𝑊 ) and 𝑆𝑊 (𝜇𝑊 ) and if 𝑆𝑀 (𝜇𝑊 ) ≤ 𝑆𝑊 (𝜇𝑊 ), than
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Figure 3: The fraction of instances where a sex-equal solu-
tion is an outcome of DA algorithm for 𝑛 = 150: men propos-
ing if 𝜙𝑚 < 𝜙𝑤 , women-proposing if 𝜙𝑚 > 𝜙𝑤 , any side
proposing if 𝜙𝑚 = 𝜙𝑤 . Confidence intervals are given in
parentheses.

Figure 4: The median sex-equality cost of a DA solution with
respect to 𝜙𝑚 , 𝜙𝑤 , for 𝑛 = 150. Confidence intervals are given
in parentheses.

by Lemma 1, Case 2 the women-optimal matching is a sex-equal sta-
ble solution. The running time of DA and calculating 𝑆𝑀 , 𝑆𝑊 scores
is O(𝑛2). Thus, a sex-equal stable matching can be found in polyno-
mial time when 𝑆𝑀 (𝜇𝑀 ) ≥ 𝑆𝑊 (𝜇𝑀 ) or 𝑆𝑀 (𝜇𝑊 ) ≤ 𝑆𝑊 (𝜇𝑊 ). □

In the first and the second cases of Lemma 1, the sign of the
difference between the scores 𝑆𝑀 (𝜇) − 𝑆𝑊 (𝜇) is preserved across
the lattice, in other words 𝑆𝑀 (𝜇) is either always greater or equal
than 𝑆𝑊 (𝜇) (Case 1), or smaller or equal than 𝑆𝑊 (𝜇) (Case 2). The
third case corresponds to the instances, in which the sign of 𝑆𝑀 (𝜇)−
𝑆𝑊 (𝜇) changes across the lattice, and the location of the sex-equal
matching within the lattice is not known a priori.

4.1 Asymmetric Markets (𝜙𝑚 ≠ 𝜙𝑤)
When preferences of men and women have different levels of cor-
relation intensity with the reference rankings, a sex-equal stable
matching is often found on an extreme point of the stable lattice:
men-optimal in case men have higher correlation and women-
optimal otherwise. Empirically, we observe this behavior in all
instances, including the largest stable lattices with up to 1024match-
ings (Figure 3). We found that agents from the side with a smaller
dispersion parameter 𝜙 of the Mallows model, are less satisfied
with their optimal matching than their partners with their pessimal
one (and the market belongs to Case 1 or Case 2 scenario from
Lemma 1). This fact might imply that, in asymmetric correlation
markets, “hard” cases rarely occur and the DA algorithm can be
considered a fair alternative to the exhaustive search, especially
since such markets can induce large lattices as shown in Section 3.

Experimentally, in every stable matching instance belonging to
an asymmetric correlation market with 𝜙𝑚 < 𝜙𝑤 , 𝑆𝑀 -optimal was
larger than 𝑆𝑊 -pessimal, and therefore a men-optimal matching
was sex-equal (Lemma 1, Case 1). Similarly, whenever 𝜙𝑚 > 𝜙𝑤 ,
𝑆𝑊 -optimal was larger than 𝑆𝑀 -pessimal, rendering the women-
optimal matching sex-equal (Lemma 1, Case 2). This is well illus-
trated by the distribution of 𝑆𝑀 and 𝑆𝑊 scores of men- and women-
optimal matchings for various combinations of 𝜙𝑚 , 𝜙𝑤 . Figure 5
illustrates this relationship when men sample their preferences
with 𝜙𝑚 = 0.9, and women have their dispersion parameter in
range [0.1, 1.0] (the graphs for other values of 𝜙𝑚 are analogous).

In the part of the graph, where women’s preferences have a lower
dispersion parameter 𝜙𝑤 < 𝜙𝑚 , the distribution of 𝑆𝑊 -scores of a
women-optimal matching lies strictly above the distribution of its
𝑆𝑀 -scores with no overlap.7
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Figure 5: Illustrating 𝑆𝑀 , 𝑆𝑊 scores under theMallowsmodel
with 𝜙𝑚 = 0.9 and varying 𝜙𝑤 based on 1000 samples.

Implications on the DA algorithm. Interestingly, increasing the
variability of women’s preferences, results in 1) higher welfare for
women in optimal and pessimal matchings and 2) a higher number
of proposals from men. The total number of proposals in the DA
algorithm corresponds to the optimal score of the proposing side
[51]. In Figure 5 we can see a noticeable increase in the 𝑆𝑀 -scores
with the increase of 𝜙𝑤 as well as a decrease in 𝑆𝑊 scores (same
pattern occurs for other values of 𝜙𝑚). Imagine that the propos-
ing side samples its preferences from the model with a smaller
dispersion parameter, and hence has less variable preferences and

7A more fine-grained analysis with 𝜙𝑤 ∈ {0.9, 0.91, 0.92, . . . , 0.99} confirms the
same finding (see the full paper for details [12]).
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demonstrates a higher competition for partners (than the oppo-
site side). Intuitively, during the course of DA those agents would
propose to the same set of partners over and over again and their
potential partners get to choose from a diverse set of proposals,
which improves the rank of their matches. This makes the total
rank of proposers’ partners greater than that of the agents from
the accepting side. This fact distinguishes the Mallows model from
the Uniform model in which the proposing side gets a substantially
smaller score than the accepting side [51].

4.2 Symmetric Markets (𝜙𝑚 = 𝜙𝑤)
When the preferences of men and women have the same intensity
of correlation, reflected in zero correlation disparity, the lattice
size can quickly become very large. The size of the stable lattice is
expected to be asymptotically exponential [43], which is confirmed
in our experiments: even for small number of agents as 𝑛 = 300,
there were significantly large (compared to the Uniform model)
lattices with up to 147456matchings (Table 1). Despite the large size
of the stable lattice, the cost of a sex-equal solution is considerably
close to the cost of DA outcomes (Figure 4). In this case, the DA
algorithm can be considered cost-effective as the exhaustive search
takes significantly more time for large lattices and gives only a
moderate gain in the sex-equality cost.

We discussed in Section 4.1, that under the Mallows model,
𝑆𝑀 -optimal and 𝑆𝑊 -pessimal scores (similarly 𝑆𝑊 -optimal, 𝑆𝑀 -
pessimal) are close to each other and their distributions overlap
significantly. This can explain the small sex-equality cost of DA
outcomes (see Figure 5). It could indicate, that under this scenario,
the expected score of the proposing side under DA is similar to the
expected score of the receivers. This finding differs sharply from the
Uniformmodel wherein the expected pessimal score is substantially
greater than the optimal one [5, 51]. As the difference between the
welfare of men and women is sufficiently small, the importance of
which group proposes (men or women) in DA becomes negligible.
Hence, not only can the DA algorithm be adopted to ensure sex-
equality, but it may also provide a natural framework for achieving
procedural fairness as it has recently been studied [60, 61].

4.3 Implications on manipulation strategies
In our experiments, the Mallows model with symmetric and asym-
metric correlations results in a considerably small difference be-
tween the pessimal and the optimal scores for one side (the welfare
gap), for example, between 𝑆𝑊 pessimal and 𝑆𝑊 -optimal (Figure 5).
This difference represents how much on average an agent can im-
prove by shifting from her worst stable partner to her best one, and
therefore has implications on manipulation incentives [6, 52]. Since
the welfare gap is small for both men and women, in symmetric and
asymmetric correlation settings, the accepting side has a limited
scope/incentive for manipulations in practice. This observation
suggests that one-to-one markets with Mallows preferences might
be less susceptible to manipulation compared to the Uniform model,
for which a larger welfare gap, and subsequently, higher incentive
for manipulation has been established [51] and shown empirically
[26, 59].

5 COMPARINGWITH OTHER ALGORITHMS
We compare the DA algorithm with several state-of-the art algo-
rithms (as implemented in [61]) such as multiple variants of the pro-
cedurally fair algorithms, and the best known heuristic algorithm
when preferences are drawn from the Mallows model.8 We use an
exhaustive search algorithm as our baseline to find sex-equal stable
matchings [60]. In particular, we test several procedures allowing
both sides to issue and receive proposals such as Late Discontent
Dispension (LDS), Early Discontent Dispension, and Powerbalance
[61]. We also measure the performance of an enhanced bidirectional
local search iBILS, which is one of the best-performing existing
heuristic for finding sex-equal stable matchings.

5.1 Experimental Setup
We evaluate the sex-equality cost and the run-time of these algo-
rithms for the number of agents varying from 20 to 1000. For the
symmetric correlation case, we select 𝜙𝑚 = 𝜙𝑤 = 0.5 as these pa-
rameters results in the largest lattice size among all combinations
of 𝜙𝑚 and 𝜙𝑤 . We sample 1000 instances of the stable matching for
each experimental setting.

The exhaustive search algorithm uses the break-marriage opera-
tion ofMcVitie andWilson [48]: breaking a singleman’s assignment
initiates a chain of proposals and rejections. It terminates when
either all women reject the last man, or his proposal is accepted by
a single woman. The latter case results in a new stable matching.
All the elements of the stable lattice can be found by applying this
operation recursively from the men-optimal solution [48].9

The enhanced bidirectional local search, iBILS, uses rotations to
generate the successors of a stable matching to search over the
stable lattice starting from its extreme points [60, 63].

5.2 Fairness and Running Time
Symmetric correlation. For symmetric correlation markets we
used a smaller number of agents (up to 150), to avoid instances
with extremely large lattices, for which exhaustive search would
not terminate in a reasonable time (Section 4.2). Under symmetric
correlations, stable lattice can grow exponentially [43]. In our exper-
iments, all algorithms performed similarly on average with respect
to the sex-equality cost (Figure 6). Among them, the iBILS algorithm
performed better, and in most instances, found the sex-equal stable
matching that was computed by the exhaustive search algorithm.
These results and the good performance of other algorithms are jus-
tified by the fact that under the Mallows model, 𝑆𝑀 and 𝑆𝑊 scores
of all stable matchings are close to one another (i.e. the welfare gap
between the two sets is small). Therefore, many stable matchings
have costs close to that of the the sex-equal solution.

While the DA and procedurally fair algorithms give higher sex-
equality costs (on average twice as much as the exhaustive search
and the iBILS algorithms), they have much smaller running times.
For larger instances, this discrepancy between the running times
will become even more pronounced. The exhaustive search has
exponential complexity in the worst case. The running time of the

8The comparison of algorithms for the Uniform model can be found in the full paper
[12].
9An example of the break-marriage operation is provided in the full paper [12].
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Figure 6: Mallows model (symmetric): comparing the sex-
equality cost of various matching algorithms when 𝜙𝑚 =

𝜙𝑤 = 0.5. Subscript 0 indicates that men start proposing first,
and 1 indicates women propose first.

Figure 7: Mallows model (asymmetric): the sex-equality cost
of iBILS and a pre-processed Deferred Acceptance (DA*) for
an asymmetric correlation market with 𝜙𝑚 = 0.5, 𝜙𝑤 = 0.7.

iBILS algorithm depends on the stable lattice size and its configura-
tion: it is O(𝑑𝑘𝑛2), where 𝑑 is the maximum search depth and 𝑘 is
the maximum width of the lattice [60, 64]. The DA algorithm and
procedurally fair algorithms run in polynomial time.
Asymmetric correlation. In asymmetric correlation markets, we
focused on comparing the performance of iBILS and DA with ad-
ditional pre-processing step (aka DA*). Given the findings in Sec-
tion 4.1, we modify the DA algorithm by deciding which side should
propose according to the dispersion parameters: the side with
smaller dispersion parameter proposes, i.e. when𝜙𝑚 < 𝜙𝑤 men pro-
pose, otherwise women propose. In real-world markets, dispersion
parameters can be inferred from preference profiles in polynomial
time when the reference ranking is known [29].

Figure 7 presents the sex-equality cost of DA* compared to the
iBILS algorithm for large markets with 300 and 1000 agents. In
almost all instances, DA* finds the same stable matching as iBILS.
More importantly, as shown in Figure 8, the run-time of the DA*
remains in O(𝑛2) while iBILS requires more steps to estimate a sex-
equal solution. Given the performance of iBILS in most cases, our
results suggest that DA* is a reasonable cost-effective fair algorithm
for matching markets with asymmetric correlations.

6 CONCLUDING REMARKS
For decades, market design has played a crucial role in setting the
foundations of decision-making through mechanism design. While
the theoretical guarantees sometimes fall short due to incompati-
bilities between axiomatic requirements or challenges imposed by
computational complexity, empirical evaluations can still shed light
on practical implications and guide the design of new mechanisms.
This in turn could help produce new problems and directions for
traditional theory.

In this spirit, our extensive empirical investigations revealed an
intriguing relation between the disparity of preferences of both
sides and the fairness of stable matchings. We showed that surpris-
ingly, the primary factor affecting the sex-equality cost of the DA
algorithm is the difference between dispersion parameters of both
sides. These observations suggest that the DA algorithm could still

Figure 8: Mallows model (asymmetric): the running time of
iBILS and a pre-processed Deferred Acceptance (DA*) for an
asymmetric correlation market with 𝜙𝑚 = 0.5, 𝜙𝑤 = 0.7
(other combinations of parameters give analogous results).

be a prime candidate both in symmetric and asymmetric markets,
further justifying its wide use in practice.

From the theoretical perspective, investigating the bounds of fair-
ness in stable matchings under correlated preferences is certainly
an interesting future direction. From the practical perspective, a
noteworthy, and perhaps more important, direction is to inves-
tigate the structure of preferences in various matching settings
(e.g. refugee matching, residency matching, and school choice) and
develop domain-specific models that can correctly capture the cor-
relations between the preferences with high accuracy. We believe
that these models, alongside with theoretical studies, should shape
governmental and societal policies—prescribed by social planners—
in the adoption of suitable mechanisms in each specific domain.
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