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Abstract 

Currently, chronic hepatitis B virus infection is still one of the most serious public health problems in the 
world. Though current strategies are effective in controlling infection and slowing down the disease 
process, it remains a big challenge to achieve a functional cure for chronic hepatitis B in a majority of 
patients due to the inability to clear the cccDNA pool. The mammalian target of rapamycin (mTOR) 
integrates nutrition, energy, growth factors, and other extracellular signals, participating in gene 
transcription, protein translation, ribosome synthesis, and other biological processes. Additionally, 
mTOR plays an extremely important role in cell growth, apoptosis, autophagy, and metabolism. More and 
more evidence show that HBV infection can activate the mTOR pathway, suggesting that HBV uses or 
hijacks the mTOR pathway to facilitate its own replication. Therefore, mTOR signaling pathway may be a 
key target for controlling HBV infection. However, the role of the central cytokine mTOR in the 
pathogenesis of HBV infection has not yet been systematically addressed. Notably, mTOR is commonly 
activated in hepatocellular carcinoma, which can progress from chronic hepatitis B. This review 
systematically summarizes the role of mTOR in the life cycle of HBV and its impact on the clinical 
progression of HBV infection. 
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Introduction 
Hepatitis B virus (HBV) infection remains a 

major global public health concern, with an estimated 
257 million individuals worldwide suffering from 
chronic HBV infection[1]. Chronic HBV infection can 
lead to serious progressive liver diseases, such as 
cirrhosis, liver failure, and hepatocellular carcinoma 
(HCC)[2,3], which is the third leading cause of 
cancer-related deaths globally[4]. While effective 
vaccines have been instrumental in reducing HBV 
infection rates, particularly in infants, the efficacy of 
existing medications, including alpha interferon and 
nucleoside analogues that block viral DNA 
polymerase is hindered by low rates of sustained 
response, adverse effects, and the emergence of drug 
resistance[1,5–7]. The pathogenesis of HBV infection 

emphasizes that the specific immune response is not 
only responsible for viral clearance but also results in 
hepatocyte inflammatory and regenerative responses. 
It triggers mitogenic stimuli and mutagenic factors for 
the formation of DNA damage that can lead to the 
development of HCC[8–12]. 

It is worth noting that there is a contradiction 
between the theory of the pathogenesis of HBV 
infection and the clinical practice of medication. 
Currently, the pathogenesis emphasizes that the 
damage caused by HBV infection is mediated by 
immunity, while the clinical treatment focuses on 
inhibiting HBV replication to alleviate liver disease. 
This incongruity raises questions about the need for 
additional supplements to the pathogenesis of HBV 
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infection, which could enhance our understanding of 
the disease and optimize the treatment plans. The 
mammalian target of rapamycin (mTOR) signaling 
pathway has been found to regulate the life cycle of 
many viruses[13,14], and understanding the role of 
mTOR in the life cycle of HBV is not only significant 
for clarifying the pathogenesis of HBV, but also for 
developing effective treatment strategies[15].  

HCC is one of the most common tumors 
worldwide, and its treatment methods include 
surgical resection, percutaneous ethanol injection 
(PEI), radiofrequency ablation (RFA), transcatheter 
arterial chemoembolization (TACE), and liver 
transplantation. However, these methods are only 
suitable for a small number of patients and often lead 
to postoperative complications[16]. Fewer than 10% of 
HCC patients are cured, and most eventually progress 
to advanced HCC. At present, only systemic 
treatment can effectively delay the natural course of 
the disease[17]. The current frontline treatment for 
systemic therapy in clinical practice is the tyrosine 
kinase inhibitor (TKI) Sorafenib, both the 
RAF/MEK/ERK pathway and receptor tyrosine 
kinases to inhibit tumor growth and angiogenesis[18]. 
However, its median survival is only 10.7 months[19]. 
Given that mTOR is activated in 40% -50% HCC 
cases[20–23], it is essential to elaborate on the role of 
mTOR in the progression of HCC. This review aims to 
summarize the latest developments in the interaction 
between HBV and mTOR, as well as the impact of 
mTOR on HCC progression. 

The structure and function of mTOR 
The mTOR protein is a member of the 

phosphoinositide 3-kinase (PI3K)-related kinase 
(PIKK) family and is an evolutionarily conserved 
Ser/Thr kinase. it was discovered that mTOR and 
yeast TOR/DRR proteins, previously identified as 
rapamycin targets in genetic tests for rapamycin 
resistance, shared a similarity[24–26]. The mTOR 
protein consists of about 2,500 amino acids and 
contains functional domains including HEAT repeats, 
FAT, FRB, Kinase, and FATC (Figure 1). The FAT and 
FATC domains participate in the interaction between 
mTOR and its ligands, while the FRB 
(FKBP12-Rapamycin Binding) domain is involved in 
the binding of Rapamycin and FKBP12 to inhibit 
mTOR activity[27,28], and the Kinase domain is 
responsible for the phosphorylation of downstream 
targets of mTOR. Overall, the structure of mTOR is 
intricate, with different domains participating in 
different functions in signal transduction, protein 
synthesis, and cellular metabolism[29].  

mTOR is the catalytic subunit of two complexes, 
mTORC1 and mTORC2[30] (Figure 1), and their 
activation and function depend on their subcellular 
localization [31]. These complexes can be 
distinguished by their specific substrates and 
activities, auxiliary proteins, and varying sensitivity 
to rapamycin. Three primary constituents comprise 
mTORC1: the catalytic subunit mTOR, the regulatory 
subunit Raptor, and mLST8[32,33]. Raptor guarantees 
appropriate subcellular localization and aids in the 
recruitment of substrates into the complex. By 

 

 
Figure 1. The composition of both mTORC1 and mTORC1. mTORC1 comprises a core of mTOR, mLST8, and Raptor that is suppressed by PRAS40 and DEPTOR. mTORC2 
is composed of a basic complex of mTOR, mLST8, and Rictor, which is inhibited by DEPTOR and regulated by mSin1 and Protor1/2. A combination consisting of rapamycin and 
the cytoplasmic receptor FKBP12 binds to the FRB domain, allosterically inhibiting mTOR action. 
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attaching itself to the catalytic domain, mLST8 keeps 
the kinase activation loop stable. In addition to these 
elements, mTORC1 contains two inhibitory subunits: 
DEPTOR and PRAS40 (Akt substrate). mTORC2 
consists of mLST8, mTOR subunit and Rictor, which 
is insensitive to rapamycin and comparable with 
Raptor. Together with the other regulatory subunits, 
mSin1 and Protor1/2, mTORC2 also contains the 
inhibitory Deptor subunit[34–37]. 

mTORC1 plays a crucial role in regulating 
numerous essential cellular processes, including 
glucose homeostasis, lipid synthesis, and autophagy, 
by functioning as a sensor for growth factors, 
pressure, energy status, oxygen, and amino 
acids[38,39]. On the other hand, the mTORC2 
complex regulates cell survival and cytoskeletal 
structure[34,35]. It also participates in the 
transcription factor forkhead box protein O3 (FOXO3) 
pathway, which controls autophagy[40]. Through a 
negative feedback loop between the mTORC1 and 
PI3K-AKT pathways, mTORC1 also controls 
mTORC2 signaling[41]. Tuberous sclerosis 1 (TSC1) 
and 2 (TSC2) are key upstream regulators of 
mTORC1. The GTP-bound form of Ras homolog 
enriched in the brain (Rheb) directly interacts with 
mTORC1 and strongly stimulates its kinase 
activity[42–44]. However, TSC1/2 negatively 
regulates mTORC1 activity by reversing Rheb into its 
inactive GDP-bound state [45,46]. Conversely, 
mTORC2 is a rapamycin-insensitive companion of 
mTOR[47] and can be directly activated by 
PI3K[48,49]. Compared with the mTORC1 pathway, 
the mTORC2 pathway is much less understood. Its 
downstream targets include several members of the 
AGC kinase subfamily, such as Akt, serum and 
glucocorticoid-induced protein kinase 1 (SGK1) and 
protein kinase C-a (PKC-a). mTORC2 directly 
activates Akt by phosphorylating the hydrophobic 
motif (Ser473) of Akt, which is required for its 
maximum activation[50]. Akt then regulates cellular 
metabolism, survival, apoptosis, growth and 
proliferation through the phosphorylation of several 
effectors. This involves the classic PI3K-AKT-mTOR 
pathway.  

The growth factor-mediated receptor tyrosine 
kinases (RTKs)/PI3K/Akt signaling pathway is an 
important upstream signaling pathway for the mTOR 
protein molecule[51](Figure 2). Upon stimulation by 
growth factors, the RTKs initiate signaling cascades 
that activate PI3K. Generally, PI3K activity is tightly 
controlled to a basal level under normal conditions. 
Subsequently, PI3K catalyzes the synthesis of 
phosphatidylinositol 3,4,5-triphosphate (PIP3) by 
phosphorylating phosphatidylinositol 4,5-bisphos-
phate (PIP2). This process is antagonized by 

phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN), a tumor suppressor that 
converts PIP3 to PIP2[52]. PIP2 and PIP3 directly 
interact with the pleckstrin homology (pH) domain of 
AKT[53–55], resulting in its phosphorylation by PDK1 
at Thr308[56–58]. Additionally, the phosphorylation 
of AKT on Ser473 by mTORC2 is also necessary for its 
activity[50,59]. TSC2 undergoes inactivation through 
Akt-dependent phosphorylation, which destabilizes 
TSC2 and disrupts its interaction with TSC1[60], and 
acts as a GTPase-activating protein (GAP) complex 
toward the GTPase RAS homolog enriched in the 
brain (Rheb)[61]. The mTORC1, a direct target of 
Rheb-GTP, activates the TOR kinase[62]. The 
mobilized mTORC1 then relays signaling by 
phosphorylating two key substrate protein molecules, 
p70S6K, and 4E-binding protein1 (4EBP1), resulting in 
activation of p70S6K at Thr229 and inactivation of 
4EBP1[63]. Activated p70S6K subsequently 
phosphorylates eIF4B to initiate protein synthesis[64]. 
4E-BP1 also releases inhibition on eIF4E to enhance 
protein synthesis [65,66]. Furthermore, mTORC1, 
similar to yeast TOR, phosphorylates mammalian 
ULK1, ATG13, and FIP200 complex[67,68], thereby 
inhibiting ULK1 and ULK2 kinase activity by 
phosphorylating ULK1 at Ser758. Then, the activated 
ULK1 phosphorylates Beclin-1 at Ser14, which is 
necessary to induce autophagy[49,67,69–72]. 

HBV infection and mTOR 
After the HBV particles enter liver cells through 

receptor sodium taurocholate cotransporting 
polypeptide (NTCP) and heparan sulfate 
proteoglycan (HSPG)[73,74], they undergo uncoating 
in the nucleus, and relaxed circular DNA (rcDNA) is 
released from the nucleocapsid into the liver nucleus. 
The rcDNA is converted into the template 
cccDNA[75,76], which is transcribed and then 
translated to L-HBsAg, M-HBsAg, S-HBsAg, HBx 
proteins, HBeAg, and core proteins[77]. In some cases, 
these viral proteins can affect the normal 
physiological activities of liver cells, resulting in ER 
stress, activating mTOR, and ultimately leading to the 
progression of liver-related diseases such as cirrhosis 
and liver cancer (Figure 3). 

HBx protein activate mTOR 
The HBV genome consists of four overlapping 

open reading frames (ORFs). One of these, ORFs X, 
encodes the small non-structural regulatory HBV X 
protein (HBx). HBx is composed of 154 amino acids 
and has a molecular mass of about 17.5 kDa[78]. The 
multifunctional HBx protein interacts with several 
host factors to affect cellular signal transduction 
pathways, transcriptional regulation, cell cycle 
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progression, DNA repair, apoptosis, and genetic 
stability[79]. 

Early research found that in vitro cell 
experiments conducted on Chinese Hamster Lung 
cells showed that, compared to the control group, 
cells transfected with HBx exhibited significantly 
higher PI3K and Akt activities[80]. However, this 
study did not use the liver cell line. Subsequently, 
experiments on human liver cancer cell lines and 
HBx-transgenic mice have demonstrated that 
overexpression of HBx increases the level of 
phospho-S6K1, which is downstream of mTOR[81].  

Further studies suggested that the expression of 
p-mTOR and its upstream p-AKT was significantly 
upregulated in liver-derived cells after transfection 
with HBx[82–84]. This upregulation leads to increased 
cell proliferation, which is also linked to inflammation 
and tumor angiogenesis. The occurrence of this result 
is based on the following clarified mechanisms: (1) 
HBx inhibits TSC1 and then activates mTOR through 
the IκB kinase (IKK) complex subunit β (IKK-β), 
ultimately promoting cell proliferation and new 

vessel formation by enhancing vascular endothelial 
growth factor A (VEGF-A), which promotes 
malignant transformation of liver cells[81,85]. (2) HBx 
prevented hepatocyte apoptosis and accelerated the 
cell cycle from the G1 phase to the S phase by 
increasing the expression of cyclinD1 through the 
Akt/mTOR signaling pathway[82,83,86–88]. (3) HBX 
induced Alpha-fetoprotein (AFP) expression to 
activate the PI3K/AKT/mTOR signaling pathway by 
binding PTEN with AFP, and then p-mTOR (Ser2448) 
enhanced HIF-1α binding to the promoters of Src, 
C-X-C chemokine receptor 4 (CXCR4), and Ras genes, 
which are oncogenes[89]. Or p-mTOR (Ser2448) 
promotes CXCR4 expression through binding to 
CXCR4 gene promoter elements directly[90]. Finally, 
overexpression of these oncogenes promotes invasion 
and metastasis in hepatocytes[91–95]. To summarize, 
it can be observed that mTOR signaling plays an 
important role as a molecular regulatory factor in 
connecting metabolic disorders and cancer in chronic 
HBV infection (Figure 3). 

 

 
Figure 2. The mTORC1/2 signaling pathways. The receptor tyrosine kinases (RTKs)/PI3K/Akt signaling pathway, stimulated by growth factors, is pivotal to mTOR protein 
regulation. PI3K, typically maintained at a basal level, is activated to synthesize phosphatidylinositol 3,4,5-triphosphate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). 
This process is counteracted by the tumor suppressor PTEN. PIP2 and PIP3 trigger AKT phosphorylation, leading to TSC2 inactivation and Rheb-GTP generation. Upon 
phosphorylation by mTORC1, ULK1/2 induces autophagy by phosphorylating Beclin-1.  
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Figure 3. The Interaction between mTOR pathway and HCC. HBx activates the PI3K/AKT/mTOR signaling pathway by increasing the expression of AFP and activating IKKβ, 
which encourages malignant transformation. Besides, the accumulation of mutant L-HBsAg and excessive L-HBsAg could also activate the mTOR signaling pathway. Then the 
activated mTOR promotes carcinogenic-related life activities, such as aerobic glycolysis, angiogenesis, lipogenesis, migration, inflammation, and cell cycle. 

 

HBsAg activates mTOR 
According to the research, accumulating 

wild-type and mutant HBsAg can cause ER stress and 
turn on the Akt/mTOR signaling pathway to induce 
cell transformation and inflammation[96–99]. 
Particularly, the overexpression of large hepatitis B 
surface antigen (L-HBsAg) may participate in 
HBV-related hepatocarcinogenesis by activating the 
PI3K/Akt/mTOR pathway[100]. Besides, 
overexpression of small hepatitis B surface antigen 
(S-HBsAg) cannot change the phosphorylation levels 
of mTOR[101]. Additionally, numerous studies have 
shown that mutations in the pre-S region are 
associated with the formation of liver cancer through 
the mediating mTOR signaling pathway, which is 
situated within the coding region of L-HBsAg 
[97,102–110]. 

Firstly, pre-S1/2 deletion mutants (pre-S1: nt 
3040-3111, pre-S2 mutant: nt 4-57) induced the 

enhanced expression of p-Akt and p-mTOR in HuH-7 
cells[97]. The pre-S2 deletion mutant-induced mTOR 
activation signal cascade can not only promote 
lipogenesis by activating key regulators of lipid 
metabolism, such as sterol regulatory element binding 
transcription factor 1 (SREBF1) and ATP citrate lyase 
(ACLY), but also stimulate cell proliferation, both of 
which may lead to the occurrence of HCC[108]. 
Besides, pre-S2 deletion mutants may activate 
mTOR/Yin Yang 1(YY1) /myelocytomatosis 
oncogene (MYC) signaling to upregulate SLC2A1, 
which would sustain high activation rates of aerobic 
glycolysis and lead to tumorigenesis[109,110]. 
Interestingly, Teng et al. indicated that some pre-S1 
deletions and site mutants can activate mTOR in 
HuH-7 cells. In turn, the up-regulated mTOR 
inhibited L-HBsAg synthesis at the transcriptional 
stage through the transcription factor YY1, which 
binds to the preS1 promoter (nt 2812-2816)[102].  
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mTOR affects the transcription and replication 
of HBV 

mTOR inhibits HBV transcription and 
replication. Related studies have shown that 
constitutively active Akt1 significantly suppressed 
HBV RNA transcription, which in turn decreased 
HBV DNA replication. Given that the mTOR inhibitor 
rapamycin reversed this decrease in HBV gene 
transcription, it appears that mTOR activation was the 
cause[111]. Besides, treatment with mTOR inhibitors 
(rapamycin) on HepG2.2.15 cells increased the 
transcription of 3.5-kb and 2.4-kb viral RNA, the 
replication of HBV DNA within the cell, and the 
secretion of HBeAg and HBsAg [111–113]. In 
addition, when using small interfering RNA (siRNA) 
specific to Akt and mTOR, similar to the use of 
chemical inhibitors, HBV replication and secretion of 
HBsAg and HBeAg were also significantly 
increased[112,113]. Another study found that these 
inhibitors enhance HBV replication and transcription 
in an HBx-dependent manner[114]. Furthermore, in 
HBV-infected dHepaRG cells, prolonged treatment 
with PI3K-AKT inhibitors also increased the 
extracellular HBV DNA[114].  

The specific physiological mechanism impacting 
the replication of HBV following the activation of the 
Akt/mTOR signaling pathway is based on 
autophagy[112,113,115]. Studies have shown that 
inhibiting the mTOR/ULK1 signaling pathway 
promotes autophagy, thereby upregulating HBV 
replication[113,116]. Conversely, knocking down the 
downstream effector ULK1 results in a significant 
decrease in HBV replication as well as HBsAg and 
HBeAg secretion in HepG2.2.15 cells. ULK1, as a 
classic autophagy mediator, is essential for the 
initiation of autophagosome formation[117,118]. and 
silencing ULK1 significantly reduces the frequency of 
autophagic puncta[113]. The formation of autophagic 
cells is crucial for the effective replication of HBV in 
various cells and animal models during HBV 
infection[101,115,116,119–123]. If autophagy is 
suppressed, there is only a slight reduction in HBV 
RNA levels and pgRNA packaging. However, it 
significantly inhibits HBV DNA replication. This 
indicates autophagy primarily enhances HBV 
replication during the process of viral DNA 
replication[115]. In turn, HBV can induce the 
formation of autophagic lysosomes in liver cells, as 
supported by in vitro cell experiments, animal 
experiments using HBV transgenic mice, and clinical 
pathology. It is worth noting that HBV enhances 
autophagy flux without increasing the degradation 
rate of autophagic proteins, suggesting a positive role 
of autophagy in HBV DNA replication[115]. 

Non-viral HCC and mTOR 
The mTOR signaling pathway is frequently 

dysregulated in cancer and metabolic diseases[124]. 
Constitutive activation of the mTOR pathway may 
cause diet-independent HCC[125]. A comprehensive 
microarray study on a large number of human 
hepatocellular carcinoma patients shows that 
activation of Akt1 is one of the most consistent 
characteristics of HBV-induced HCC[126]. Inhibition 
of the PI3K/Akt/mTOR pathway can induce 
apoptosis and autophagy in hepatocellular carcinoma 
cells[127]. The previous mentioned evidence has 
shown that HBV infection can regulate the activity of 
the mTOR signaling pathway through different 
mechanisms, thus affecting the occurrence and 
development of HCC. However, some non-HBV 
infection factors can also lead to the activation of 
mTOR, which in turn leads to the occurrence of HCC 
(Figure 3). 

Due to the liver being an organ for fat 
metabolism, the impact of mTOR on the development 
of HCC through lipid metabolism cannot be ignored 
in the special microenvironment of hepatocytes. The 
process of aliphatic acid production by hepatocytes is 
mediated by insulin through the PI3K/AKT/mTOR 
signaling pathway. Imbalance in mTOR pathway can 
lead to the production of lipid synthesis 
intermediates, which can ultimately result in steatosis 
and cancer[128,129]. The enhancement of lipid 
synthesis leads to the pathological accumulation of 
fatty acids(FA), thereby promoting inflammation and 
contributing to tumor progression[130]. It is found 
that mTORC2 can regulate the expression of certain 
key lipid synthesis genes at the transcriptional 
level[128]. However, on the contrary, another study 
suggested that the imbalance in the mTOR pathway is 
associated with cancer, rather than the development 
of liver steatosis[125]. In addition to lipid synthesis, 
mTOR can also regulate lipid lipolysis and the 
mobilization of lipid storage in liver cells by 
regulating autophagy and lysosomes[131–133].  

mTOR inhibitor treatment in HCC  
Due to the abnormal activation of the mTOR 

pathway in 40% to 50% of HCC patients[134–136], 
there is growing interest in developing HCC 
treatment strategies that target mTOR. First 
generation mTOR inhibitors are Rapamycin (also 
known as Sirolimus) and its derivatives, targeting 
mTOR and FKBP12 to directly inhibit mTORC1. 
Derivatives include medications such as 
Temsirolimus (CCI-779), Deforolimus (AP23573), and 
Everolimus (RAD001)[137]. Some of them have been 
approved by the FDA for the treatment of advanced 
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renal cell carcinoma or neuroendocrine tumors. For 
example, Sirolimus has been approved by the FDA for 
reducing organ rejection in patients undergoing renal 
transplantation in 1999[138–140], and temsirolimus 
has been approved by the FDA for patients with 
advanced renal cell carcinoma (RCC) in 2007[141]. 
Besides, Everolimus was approved by the FDA for the 
treatment of adult patients with specific pulmonary 
and gastrointestinal neuroendocrine tumors in 

2016[142,143]. Although the second and third 
generations of mTOR inhibitors have been developed, 
the majority of current clinical trials related to HCC 
still choose the first generation for research. Recent 
years, mTOR inhibitors have shown effectiveness in 
inhibiting the growth of HCC cells in both cell and 
animal experiments[144–146]. However, clinical trials 
conducted to test the efficacy of Rapalogs in treating 
HCC showed mixed results (Table 1). 

 

Table 1. Summary of completed clinical trials with mTOR inhibitors in HCC  

 Drug 
 

Trail 
Phase 

Number 
of 
enrolled 
patients  

HCC Stage Child-Pugh 
Score 

Study design Countries 
And 
Regions 

Result 
 

ID 

Adjuvant 
therapy after 
liver 
transplantation 

Sirolimus vs 
mTOR 
inhibitor free 

III 510 Milan criteria 
and extended 

NA 
 

Randomized global 
multicenter 

Completed[157,158,174]. 
Sirolimus prolonged OS and reduced the 
risk of death. 

NCT00355862 
 

III 397 Exceeding the 
Milan criteria 

NA Non-randomized China Not yet completed[175]. 
 

ChiCTR2100042869 
 

Sirolimus vs 
Tacrolimus 

II 45 Exceeding the 
Milan criteria 

NA Randomized Korea Completed [159]. 
While sirolimus prolongs OS, it does not 
reduce HCC recurrence. 

NCT01374750 
 

III 220 Exceeding the 
Milan criteria 

NA Randomized China Recruiting. NCT00554125 

Adjuvant 
therapy after 
TACE 

TACE +/− 
Everolimus 

I/II 27 Intermediate 
stage B 

A, B (＜8) Randomized Switzerland 
multicenter 

The study was terminated due to low 
enrollment. 

NCT01009801 

II 65 Intermediate 
stage B 

A, early B Randomized Asia, 
multicenter 

This study was terminated due to low 
enrollment. 

NCT01379521 

Single agent for 
advanced HCC 

Sirolimus pilot 21 I to IV (TNM) A/B/C Non-randomized Sweden Completed[176]. 
A temporary disease-control rate (PR + 
SD) was observed. 

NA 

II 25 B,C (BCLC) A/B Non-randomized France Completed [177]. 
Sirolimus shows antitumoural efficacy.  

Sirolimus 

pilot 18 B,C,D (BCLC) A/B/C Non-randomized Austria Completed [150]. 
Sirolimus shows minimal effectiveness in 
patients with liver cirrhosis and advanced 
HCC. 

NA 

Temsirolimus II 45 advanced A Non-randomized Hong Kong, 
China 

Completed [151]. 
The targeted PFS endpoint was not 
reached. 

NCT00321594 
 

II 25 advanced A/B NA America Completed [152]. 
Temsirolimus showed higher responses 
than previous report. 

NCT01567930 
 

Everolimus I/II 28 B,C (BCLC) 
 

A/B Non-randomized America Completed[178].  
Everolimus was observed initial 
anticancer activity. 

NA 

I/II 39 advanced A, B(≤9) Randomized Taiwan, 
China 

Completed[179].  
This study recommends that future HCC 
studies on the dosage of everolimus 
should be conducted at a dose of 
7.5mg/day. 

NCT00390195 

III 546 advanced A Randomized global 
multicenter 

Completed [149]. 
The OS of patients with HCC was not 
improved by everolimus. 

NCT01035229 

Adjuvant 
combination 
therapy for 
advanced HCC 

Sorafenib and 
Temsirolimus 

I 25 III, IV A, B (≤7) Non-randomized America 
multicenter 

Completed[180].  
The maximum-tolerated dose (MTD) was 
sorafenib 200 mg twice daily plus 
temsirolimus 10mg/week. 

NA 

I 25 III, IV (AJCC) A, B (≤7) Non-randomized America 
multicenter 

Not yet published. NCT01008917 

II 29 II,III,IV(AJCC) A, B (≤7) Non-randomized America 
multicenter 

Not yet published. NCT01687673 

Sorafenib and 
Everolimus 

II 30 advanced A Randomized America  Completed [181]. 
The MTD was sorafenib 400 mg twice 
daily plus everolimus 2.5mg/day. 

NA 

II 106 B,C (BCLC) A, B (≤7) Randomized global 
multicenter 

Completed[148]. 
Sorafenib and Everolimus combination 
failed to improve the efficiency compared 
to Sorafenib solely. 

NCT01005199 

Temsirolimus 
+ 
Bevacizumab 

II 28 advanced A NA Canada Completed [155]. 
The overall response rate and median OS 
have both improved under Temsirolimus 
and Bevacizumab combination therapy. 

NCT01010126 
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 Drug 
 

Trail 
Phase 

Number 
of 
enrolled 
patients  

HCC Stage Child-Pugh 
Score 

Study design Countries 
And 
Regions 

Result 
 

ID 

Everolimus+ 
Bevacizumab 

II 36 B,C (BCLC) A/B randomized Germany 
multicenter 

Not yet published. NCT00775073 

Sirolimus + 
Bevacizumab 

II 27 advanced A/B Non-randomized Singapore Completed[156].  
The recommended dose was 
bevacizumab 
5mg/kg /14 days and rapamycin 4 
mg/day. 

NCT00467194 

Everolimus 
and 
Pasireotide 

II 24 C (BCLC) A(≤6) randomized America 
multicenter 

Not yet published. NCT01488487 

 
For patients with advanced-stage HCC, the 

first-line treatment drug is the multi-kinase inhibitor 
Sorafenib[147]. However, when combined with 
Everolimus, there is no improved efficacy compared 
to Sorafenib alone[148]. Additionally, using 
single-agent Sirolimus was found to be modestly 
beneficial for patients. While Everolimus combined 
with the best supportive care did not improve 
survival compared to the placebo group[149,150]. 
Except for Everolimus and Sirolimus, Termosimox 
also fails to achieve the targeted progression free 
survival (PFS) endpoint of HCC[151]. However, 
intravenous injection of Termosimox showed a higher 
response in HCC compared to previously reported 
systemic Prescription[152]. Despite compelling 
preclinical evidence and scientific justification 
[20,22,23,144,146,153,154], mTOR inhibitors 
demonstrated only modest efficacy in advanced HCC 
patients. 

Owing to the limited effectiveness of Rapalogs as 
a standalone therapy for HCC, numerous clinical 
trials have been conducted or are currently underway 
to evaluate their therapeutic efficacy in combination 
therapies. Temsirolimus in combination with 
Bevacizumab increased the objective response rate 
(ORR) and overall survival (OS) in this population 
with advanced HCC[155], which is promising but 
calls for more research at a more optimal dose and 
timing. The therapeutic efficacy of Sirolimus/ 
Bevacizumab doublet for advanced HCC also showed 
evidence of anti-vascular activity[156]. The 
differences in the effectiveness of mTOR inhibitors in 
single and combination therapies may be due to the 
complexity of the mTOR pathway and the 
heterogeneity of liver tumors. 

mTOR inhibitors are not only effective in 
treating advanced HCC but also demonstrate 
impressive efficacy following liver transplantation for 
HCC. In the clinical trials of Sirolimus as adjuvant 
therapy after liver transplantation for HCC, it 
significantly prolonged OS and reduced the risk of 
death. Significantly, the benefits of Sirolimus in the 
initial 3-5 years of recurrence free survival (RFS) and 
OS are more pronounced in low-risk patients 
compared to high-risk groups[157]. Moreover, 

subgroups with AFP≥10ng/ml benefited mostly from 
sirolimus treatment, which improved OS, disease free 
survival (DFS) and HCC recurrence[158,159]. 
Therefore, focusing on the subgroups of HCC patients 
in clinical trials of mTOR inhibitors may be more 
promising.  

The above clinical experiments have shown that 
the success of raptalogs in the treatment of HCC is not 
significant, and the limited therapeutic effect may be 
due to the following reasons: (1) mTORC1 inhibition 
leads to AKT activation through a negative feedback 
loop stemming from S6K1 or upregulating the 
insulin-like growth factor-1 receptor 
(IGF-R1)[160,161]. Therefore, it may actually reduce 
the anticancer activity of rapalogs[162]. (2) Raptalogs 
mainly inhibits its substrate S6K, which is related to 
cell proliferation. But another key substrate, 4E-BP1, 
has not been fully blocked[163]. (3) Patients exhibit 
rapamycin resistance mutations in the FRB domain of 
mTOR after or before treatment [164,165]. 
Furthermore, elevated amounts of the antiapoptotic 
proteins Bcl-2, survivin, or Bcl-XL have resulted in 
rapalog resistance[166–169]. Therefore, genetic testing 
can be performed before medication to prevent 
rapalog resistance from delaying treatment. 

In addition, mTORC1 can also be inhibited by 
acyclic nucleoside phosphonates (ANPs) in vitro, 
which are a kind of nucleoside analogue for clinical 
use of HBV infection. Studies have shown that ANPs 
reduce IL-10 production by inhibiting mTOR, and 
downregulation of IL-10 may promote HBV clearance 
in vivo by restoring the function of T cells and NK 
cells [170–172]. Can nucleoside analogues contribute 
to inhibit HCC development? However, in another 
article, activation of mTOR was found in the liver 
tissue of patients taking the same type of ANP (ADV 
or TDF)[173]. Considering the presence of two 
complexes of mTOR, further research is needed on the 
specific effects of nucleoside analogues on mTOR and 
HCC progression.  

Summary and Outlook 
This review has illustrated the pivotal role of 

mTOR in the nexus of nutrition, growth, aging, and 
disease, particularly in the replication of HBV 
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particles at the level of DNA replication, RNA 
transcription, and antigen secretion. Simultaneously, 
activated mTOR, serving as an important carcinogenic 
pathway, also exhibits intricate interactions in 
HBV-related and non-viral HCC. Some studies 
suggest that the pathogenesis of HBV is attributed to 
the high-level replication of the virus, as the 
continuous accumulation of transcription templates 
will lead to the damage of infected cells. This elevated 
level of replication will lead to the consumption of 
cellular resources, such as synthetic cell membranes, 
lipoproteins, phospholipids, etc[182]. Additionally, 
mTOR is the central regulatory factor for nutrition 
and growth. Therefore, in the pathogenesis of HBV, 
mTOR is likely to have special regulation. The 
activation of mTOR signaling pathway during 
HBV-related tumorigenesis negatively regulates HBV 
replication and surface antigen synthesis. Therefore, 
the decrease of HBsAg and HBV DNA levels in serum 
or liver cells may not necessarily represent favorable 
disease improvement during the natural course of 
HCC, but on the contrary, it may suggest that the 
disease is developing toward a tumor, especially in 
the late stage of the disease. Considering the 
important role of the mTOR signaling pathway in 
various types of cancer[183–185], currently, many 
rapamycin analogs, such as Everolimus and 
Temsirolimus, have been approved by the Food and 
Drug Administration[186], Previous studies reported 
the importance of completely inhibiting mTORC1 
effectors (RPS6 and eIF4E) in hepatocarcino-
genesis[187]. In addition to treating HCC, mTOR 
inhibitors have also been found to be effective in 
reducing HCC recurrence after liver 
transplantation[188]. Moreover, the study of mTOR 
and its impact on the life cycle of HBV is valuable for 
the development of safe and effective therapies 
against viral effects. Although there have been many 
studies on mTOR signaling pathway in 
carcinogenesis, the unique characteristics of liver cells 
and the particularity of the HBV life cycle make the 
exploration of mTOR in HBV-related HCC both 
meaningful and worthy of further investigation.  
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