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Abstract 
We identify a new and important global (or non-
binary) constraint which ensures that the values 
taken by two vectors of variables, when viewed 
as multisets, are ordered. This constraint is use­
ful for a number of different applications including 
breaking symmetry and fuzzy constraint satisfac­
tion. We propose and implement a linear time al­
gorithm for enforcing generalised arc-consistency 
on such a multiset ordering constraint. Experimen­
tal results show considerable promise. 

1 Introduction 
Global (or non-binary) constraints are one of the factors cen­
tral to the success of constraint programming [Regin, 1994; 
1996; Beldiceanu, 2000]. Global constraints specify patterns 
that occur in many problems, and call efficient and effective 
constraint propagation algorithms. In this paper, we identify 
a new and important global constraint. This constraint en­
sures that the values taken by two vectors of variables, when 
viewed as multisets, are ordered. Such a constraint is use­
ful in a number of domains. For example, in the progressive 
party problem (probO13 in csplib.org), we wish to assign a 
host for each guest and period. We can model this with a vec­
tor of variables for each period. Each variable is assigned the 
host for a particular guest. This model has unnecessary sym­
metry as the periods can be freely permuted. We can break 
this symmetry by considering the multiset of values associ­
ated with each vector and ordering these multisets.The aim of 
this paper is to study such multiset ordering constraints and to 
develop efficient and effective techniques for enforcing them. 

2 Formal Background 
A constraint satisfaction problem (CSP) consists of a set of 
variables, each with a finite domain of values, and a set of 
constraints that specify allowed values for subsets of vari­
ables. A solution is an assignment of values to the variables 
satisfying the constraints. To find such solutions, we explore 
partial assignments enforcing a local consistency like gener­
alized arc-consistency (GAC). A constraint is GAC iff, when 
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Vectors of variables are indexed from 0. The minimum 
element in the domain of x1 is , and the maximum 
is max(xl). The function floor(x) assigns all variables in f 
to their minimum values, whilst ceil(x) assigns all to their 
maximums. The vector is identical to x except v now 
has the domain . An occurrence vector occ(x) associ­
ated with x is indexed in decreasing order from the maximum 
max(x) to the minimum rnin(x) value from the domains in 
x. The ith element of occ(x) is the number of occurrences of 
max(x) - i in x. When comparing two occurrence vectors, 
we assume they start and end with the occurrence of the same 
value, adding leading/ trailing zeroes as necessary. Finally, 

iff x is lexicographically less than or equal to y. 

3 Motivating applications 
3.1 Matrix symmetry 
Many constraints programs contain matrices of decision vari­
ables (so called "matrix models"), and the rows and/or 
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columns of these matrices are symmetric and can be permuted 
[Flener et al,, 2002]. Such symmetries are very difficult to 
deal with as there are a super-exponential number of permu­
tations of the rows or columns to consider. There are several 
ways to break symmetry in a CSP, such as SBDS [Gent and 
Smith, 2000] or SBDD [Fahle et al, 2001]. One of the most 
effective, and the one which we wil l concentrate on as a major 
application for a multiset ordering constraint, is adding extra 
symmetry-breaking constraints to an initial model. Existing 
techniques for dealing with such symmetries typically elimi­
nate only some of the symmetry. Additional techniques, like 
those proposed here, are therefore of considerable value. 

The progressive party problem mentioned earlier has a 2d 
matrix of decision variables with matrix symmetry. The rows 
of the matrix are the guests, the columns are the periods. Each 
variable gives the host assigned to a given guest in a given pe­
riod. As periods are indistinguishable, the columns of the ma­
trix are symmetric. One way to break such column symmetry 
is to lex order the columns [Frisch et al., 2002]. Similarly, 
as guests can be indistinguishable, (some of) the rows may 
be symmetric and can be lex ordered. Alternatively, we can 
treat each row and/or column as a multiset and break such 
symmetry by multiset ordering the rows and/or columns. 

Unlike lex ordering, multiset ordering the rows of a matrix 
may not eliminate all row symmetry. For example, consider 
the symmetric matrices: 

Both satisfy the constraint that the first row is multiset less 
than the second. It is therefore a little surprising to dis­
cover that multiset ordering (which does not break all row 
symmetry) is not dominated by lex ordering (which does) 
but is incomparable. For example, but 

When we have both row and column symmetry, we can 
multiset order both rows and columns. Like lex ordering both 
rows and columns, this may not eliminate all row and column 
symmetry. Consider the symmetric matrices: 

Both have multiset ordered rows and columns. Unsurpris­
ingly, multiset ordering rows and columns is incomparable 
to lex ordering rows and columns. Consider the symmetric 
matrices: 

The first has lex ordered rows and columns, but the columns 
are not multiset ordered. The second has rows and columns 
that are multiset ordered but the columns are not lex ordered. 

An alternative way to deal with row and column symmetry 
is to multiset order in one dimension and apply the symme­
try breaking method of our choice in the other dimension. 
This is one of the best features of using multiset ordering to 
break symmetry. It is compatible with any other method in 
the other dimension. For instance, we can multiset order the 
rows and lex order the columns. Preliminary results in [Kizil-
tan and Smith, 2002] suggest that such a combined method 
is very promising. This combined method does not eliminate 

all symmetry (but it is unlikely that any polynomial set of 
constraints does). Consider the symmetric matrices: 

Both have rows that are multiset ordered, and rows and 
columns that are lex ordered. Multiset ordering the rows and 
lex ordering the columns is again incomparable to lex order­
ing rows and columns. Consider the symmetric matrices: 

The first matrix has rows that are multiset ordered and 
columns that are lex ordered. However, its rows are not lex 
ordered. The second matrix has rows and columns that are 
lex ordered but does not have rows that are multiset ordered. 
Whilst the two orderings are theoretically incomparable, our 
experimental results (see later) show that multiset ordering 
the rows and lex ordering the columns is often the most ef­
fective symmetry breaking constraint currently known. 

3.2 Fuzzy constraints 
Another application for multiset ordering is to fuzzy CSPs. A 
fuzzy constraint associates a degree of satisfaction to an as­
signment tuple for the variables it constrains. To combine de­
grees of satisfaction, we can use a combination operator like 
the minimum function. Unfortunately, the minimum function 
may cause a drowning effect when one poorly satisfied con­
straint 'drowns' many highly satisfied constraints. One solu­
tion is to collect a vector of degrees of satisfaction, sort these 
values in ascending order and compare them lexicographi­
cally. This leximin combination operator identifies the as­
signment that violates the fewest constraints [Fargier, 1994]. 
This induces an ordering identical to the multiset ordering ex­
cept that the lower elements of the satisfaction scale are the 
more significant. It is simple to modify a multiset ordering 
constraint to consider the values in a reverse order. To solve 
such leximin fuzzy CSPs, we can then use branch and bound, 
adding an ordering constraint when we find a solution to en­
sure that future solutions are greater in the leximin ordering. 

4 GAC algorithm for multiset ordering 
The last section motivated why we want multiset ordering 
constraints. We need, however, to be able to propagate such 
constraints efficiently. We therefore developed an efficient 
GAC algorithm for such constraints. 

4.1 Background 
The algorithm exploits two theoretical results. The first re­
duces the problem to testing support for upper bounds of x 
and lower bounds of y on suitable ground vectors. The sec­
ond reduces these tests to lex ordering suitable occurrence 
vectors. Identical results hold for the strict multiset ordering 
constraint but for reasons of space we omit them here. 
Lemma 1 Given two disjoint and non-repeating vectors of 
variables, x and y, with non-empty domains, GAC(x <my) 
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Proof: (=>) As the constraint is GAC, all values have sup­
port. In particular, has support. The best 
support comes if all the other variables in x take their mini-
mums, and all the variables in y take their maximums. Hence, 

Similarly, for y1. 
(«=) The first constraint ensures that rnax(x1) is supported. 

The values which support max(xi) also support all smaller 
values. Hence, all the values in the domain of Xi are sup­
ported. By an analogous argument, all the values in the do­
main of yi are supported. Hence the constraint is GAC. QED. 

The next lemma reduces these tests for support to lex or­
dering suitable occurrence vectors. 
Lemma 2 Given two multisets of values, M and N, M <m 

Proof: See [Kiziltan and Walsh, 2002]. 

4.2 A worked example 
Based on these lemmas, we have designed an efficient algo­
rithm for enforcing GAC on a multiset ordering constraint. 
The algorithm goes through the xt and yj checking for sup­
port in the appropriate occurrence vectors. Incremental com­
putation of the lex ordering test avoids repetition of work. 
Consider the multiset ordering constraint where: 

We construct occurrence vectors for floor(x) and ceil(y), in­
dexed from 5 to 0: 

Recall that i n d e x d e n o t e s the number o f 
occurrences of the For example, index 4 is 
2 as the value 4 occurs twice. 

We first check if If so, we 
can fail immediately because no value for any variable can 
have support. Here, . In fact, 
we record (in a pointer, ά) that the two occurrence vectors 
are lex ordered by index 4 of occ(floor{x)), which is strictly 
smaller than index 4 of occ(ceil(y)). This means that we wil l 
fail to find support in the yj if any of the xi is assigned a new 
value greater than 4. We now go through the xi checking for 
support for their maximum values, and then the yi checking 
for support for their minimum values. 

Consider X0. AS it has a singleton domain, and 
its only value must 

have support so we skip it. Now consider x\. Do 
its values have support? Changing occ(floor{x)) to 

decreases the 
number of occurrences o f m m ( i i ) = 4 by 1, and increases 
the number of occurrences of by 1. As 

this upsets the lex ordering of the two oc­
currence vectors. We therefore prune all values in the domain 
of x1 larger than ά. This leaves a single supported value, 4. 

Now consider x2. Changing to 
decreases 

the number of occurrences of min (x2) = 3 by 1, and 
increases the number of occurrences of 
by 1. As with x1 any value of x2 larger than 
upsets the lex ordering. We therefore prune 5 from the 

domain of x2 • Now consider x3. Changing to 
decreases 

the number of occurrences of by 1, and 
increases the number of occurrences of max(x3) = 4 by 1. 
The occurrence vectors beneath a would now be lex ordered 
the wrong way. We therefore also prune the value = 4, 
leaving a single supported value 2 in the domain of x3. As 
x4 and x5 have singleton domains, their values have support. 

Similarly, we check the minimums of the for support. 
However, rather than prune values above (and in some cases 
equal to) , there is now a dual pointer . and we prune values 
in the domains of up to (and in some cases equal to) The 
pointer is the largest index such that the occurrence vectors 
beneath it are lex ordered the wrong way. Any value less than 

cannot hope to change the lex ordering 
will still order the vectors the wrong way. Such values can 
therefore be pruned. Once we have considered each of the yj, 
we have the following generalized arc-consistent vectors: 

4.3 A lgo r i t hm details 
The algorithm uses two pointers and and two flags 
and S to avoid traversing the occurrence vectors each time we 
look for support. The pointer is set to to the most significant 
index above which all occurrences are pair-wise equal and at 
ά they are strictly ordered. If the vectors are equal then ά is 
set to - The pointer is set to the most significant index 
below ά such that the occurrence vectors are lex ordered the 
wrong way. If no such index exists, we set to — 00. The 
flag is set to true if all the indices between ά and (3 are 
pair-wise equal and the flag is set to true if the sub-vectors 
below are lex ordered the wrong way. For example, given 
the occurrence vectors in section 4.2, ά is set to 4, to 2, and 
the flags and are set to true. 

We summarise the major steps the algorithm performs: 
A. 
B. according to their definitions 
C. For each xi If its maximum disturbs the lex ordering 

on the occurrence vectors, tighten its upper-bound to ά 
when the occurrence vectors are lex ordered below ά, 
otherwise to 

D. For each yi If its minimum disturbs the lex ordering on 
the occurrence vectors, then tighten its lower-bound to 

when the occurrence vectors are lex ordered below a, 
otherwise to + 1. 

When we prune a value, we do not need to check re­
cursively for previous support. Pruning changes neither the 
lower bounds of x nor the upper bounds of y. These values 
continue to provide support. The exception is when a domain 
is a singleton, and pruning causes a domain wipe-out. 

We now give pseudo-code for an algorithm that maintains 
GAC on a multiset ordering constraint between vectors x and 
y which are of length n and m respectively. As the algorithm 
reasons about occurrences vectors, the original vectors need 
not be identical in length (though they often are). 

The algorithm is called whenever lower bounds of x1 or 
upper bounds of yj change. Lines Al to A3 build the oc­
currence vectors ox and dy. Line Bl calls the procedure to 
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is equivalent to GAC on the original multiset ordering con­
straint. However, such an arithmetic constraint is only feasi­
ble for small n. Further, most existing solvers will not enforce 
BC on such an arithmetic constraint, but wil l delay it until all 
but one of the variables are instantiated. 

5.2 Decomposition 
Multiset ordering is equivalent to the lex ordering the asso­
ciated occurrence vectors. As we have efficient algorithms 
for constructing occurrence vectors (via the global cardinal­
ity constraint [Regin, 1996]) and for lex ordering [Frisch et 
al., 2002], this might be an alternative approach. However, 
as the following theorem shows, such a decomposition hin­
ders constraint propagation. Also, the two global cardinality 
constraints in such a decomposition are more expensive to en­
force than the algorithm presented here. We write gcc(x, ox) 
for the global cardinality constraint that channels from a vec­
tor of variables x to the associated occurrence vector ox. 

Another approach is to use the sorted constraint in the 
Eclipse solver. This ensures that the values taken by one vec­
tor of variables are identical but in sorted order to the values 
taken by a second vector of variables. To post a multiset or­
dering constraint on two vectors, we can channel each into a 
sorted vector and lex order these. The above example demon­
strates that such a decomposition again hinders propagation. 
The sorting constraint is also more expensive to enforce. 

6 Experimental results 
We designed some experiments to test three goals. First, is 
multiset ordering an effective method for dealing with row 
and/or column symmetry? Second, how does multiset order­
ing compare to lex ordering? Which one breaks more sym­
metry? Is a combined method, which multiset orders one di­
mension and lex orders the other one of the matrix, superior? 
Third, does our GAC algorithm do more inference in prac­
tice than the decomposition? Similarly, is the algorithm more 
efficient in practice than its decomposition? 

The symmetry breaking constraints we used are strict lex 
ordering on the columns on the rows mul­
tiset ordering on the rows , (strict) multiset ordering 
on the columns and combinations of these 
constraints. Such constraints are posted between adjacent 
rows/columns. The results of the experiments are shown in 
tables where a "-" means no result is obtained in 1 hour (3600 
secs). The experiments are done using 1LOG Solver 5.2 on a 
1000MHz pentium I I I with 256 Mb RAM using Windows XP. 

6.1 Progressive Party Problem 
There are a set of host boats, each with a capacity, and a set of 
guest boats, each with a crew size. We wish to assign a host 

Table 1: 5-13-29 progressive party problem using row-by-
row labelling. 

for each guest and period, such that a guest crew never visits 
the same host twice, no two guest crews meet more than once, 
and the spare capacity of each host boat, after accommodating 
its own crew, i s not exceeded (probO13 i n c s p l i b . o r g ) . 

A matrix model of this problem [Smith et al., 1995] is a 
2-d matrix of guests x periods where each variable is as­
signed a host representing that a host is accommodating a 
particular guest in a given time period. The rows are the 
guests, the columns are the periods. This model has col­
umn and partial row symmetry: any two periods, and any 
two guests with the same crew size are indistinguishable. We 
consider the 13-hosts and 29 guests problem with 5 and 6 
time periods, referred as 5-13-29 and 6-13-29. These prob­
lems have ;P!14!2!4!5!7! row and column symmetries where 
p is the number of time periods. The actual data can be 
found in csplib.org. Due to the problem constraints, no pair 
of rows/columns can be equal, hence we can safely pose strict 
lex ordering. However, any two distinct rows/columns might 
be equal when viewed as multisets. 

As in [Smith et al., 1995], the guest boats are ordered in 
descending order of their size. We order the host boats in 
descending order of spare capacity to choose a value in a 
succeed-first manner. Results obtained by row-by-row, and 
column-by-column labelling strategies are given in Tables 1 
and 2. With row-by-row labelling, we cannot solve 6-13-29 
with or without symmetry breaking. For the 5-13-29 problem, 
<ieXK breaks a lot more row symmetry t h a n H o w e v e r , 
the reverse is true for the columns. Here, ' does not 
break any symmetry but does. Multiset ordering one 
dimension of a matrix therefore does not necessarily break 
less symmetry than lex ordering the same dimension. Such 
phenomena occur through interactions with the search strat­
egy: a search strategy might already lex order, so multiset 
ordering constraints break additional symmetry. The smallest 
search tree and also the least solving time is obtained by 
<lexR. This supports our conjecture that lex ordering one di­
mension combined with multiset ordering the other can break 
more symmetry than lex/multiset ordering both dimensions. 

With column-by-column labelling, we are able to solve the 
6-13-29 problem. Neither of break 
any symmetry. The smallest search tree is obtained by 
This supports our conjecture that multiset ordering one di­
mension can break more symmetry than lex ordering the same 
or both dimensions. If the search strategy already orders both 
dimensions lexicographically, imposing a constraint like mul­
tiset ordering in one dimension breaks additional symmetry. 
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Table 2: 6-13-29 progressive party problem using column-
by-column labelling. 

6.2 Sports Scheduling w i th Odd Teams 

This is a modified version of prob026 in csplib.org. We have 
n teams (n is odd), playing over n weeks. Each week is 
divided into (n — l ) / 2 periods, and each period is divided 
into 2 slots, home and away. We wish to find a schedule 
so that every team plays at most once a week, every team 
plays twice in the same period over the tournament and every 
team plays every other team. We slightly modify the model 
in [Van Hentenryck et al., 1999], where teams is a 3-d matrix 
of periods x weeks x slots. Each element of teams is the 
team playing in a given period, week and slot. We treat this 
matrix as 2-d where the rows are the periods and columns are 
the weeks, and each entry is a list of variables giving the slots. 

As the periods and the weeks are indistinguishable, this 
problem has row and column symmetries. We 
pose strict ordering constraints on the rows and columns of 
teams as the periods and weeks cannot be equal. Due to the 
constraints on the periods, posing multiset ordering on the 
rows is not effective. 

Results obtained by column-by-column labelling of the 
teams are given in Table 3. For one column, we first label 
the first slots; for the other, we first label the second slots. 
With this strategy, does not break any symmetry, so 
we omit it in the table. Posing multiset ordering by our algo­
rithm is much more effective and efficient than by gec and lex 
ordering constraints. This holds for many other search strate­
gies. In Table 3, we note that gives a smaller search tree 
than However, for other search strategies the reverse 
is true. This supports the theoretical result that lex ordering 
and multiset ordering are incomparable. 

7 Conclusions 
We have identified a new and important global (non-binary) 
constraint. This constraint ensures that the values taken by 
two vectors of variables, when viewed as multisets, are or­
dered. We have developed an efficient linear time algorithm 
for enforcing generalised arc-consistency on such a multiset 
ordering constraint. We have proposed a number of appli­
cations for this new constraint including breaking symmetry 
in matrix models, and fuzzy constraint satisfaction. We have 
shown that alternative methods for posting a multiset ordering 
constraint like an arithmetic constraint or decomposition are 
inferior. Finally, we have implemented this generalized arc-
consistency algorithm in ILOG Solver. Experimental results 
on a number of problem domains show considerable promise. 

Table 3: Sports scheduling problem. 
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