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Abstract 
We study the relationships among structural meth-
ods for identifying and solving tractable classes of 
Constraint Satisfaction Problems (CSPs). In partic­
ular, we first answer a long-standing question about 
the notion of biconnected components applied to 
an "optimal" reduct of the dual constraint-graph, 
by showing that this notion is in fact equivalent to 
the hinge decomposition method. Then, we give a 
precise characterization of the relationship between 
the treewidth notion applied to the hidden-variable 
encoding of a CSP and the same notion applied to 
some optimal reduct of the dual constraint-graph. 
Finally, we face the open problem of computing 
such an optimal reduct. We provide an algorithm 
that outputs an approximation of an optimal tree 
decomposition, and give a qualitative explanation 
of the difference between this graph-based method 
and more general hypergraph-based methods. 

1 Introduction and summary of results 
Constraint satisfaction is a central issue of Al research 
and has an impressive spectrum of applications (see, e.g., 
[Pearson and Jeavons, 1997]). A constraint con­
sists of a constraint scope Si,, i.e., a list of variables and 
of an associated constraint relation containing the le­
gal combinations of values. A CSP consists of a set 

of constraints whose vari­
ables may overlap. A solution to a CSP is an assignment 
of values to all variables such that all constraints are simul­
taneously satisfied. By solving a CSP we mean determining 
whether the problem has a solution at all (i.e., checking for 
constraint satisfiability), and, if so, compute one solution. 

Constraint satisfiability in its general form is well-known 
to be NP-hard. Much effort has been spent to identify 
tractable classes of CSPs, and deep and useful results have 
been achieved. The various successful approaches to ob­
tain tractable CSP classes can be divided into two main 
groups [Pearson and Jeavons, 1997]: the techniques that iden­
tify tractable classes of CSPs only on the base of the struc­
ture of the constraint scopes independently of 
the actual constraint relations and the techniques 
that identify tractable classes by exploiting particular proper­
ties of the constraint relations In this paper, we 

will deal with this latter group of techniques, usually called 
structural decomposition methods. There are several papers 
proposing polynomially tractable classes of constraints based 
on different structural properties of constraint-scopes inter­
actions (see, e.g., [Dechter, 1992; Dechter and Pearl, 1989; 
Gyssens et al, 1994; Gottlob et al, 2000J). Such a structure 
is best represented by the hypergraph 
ated to any CSP instance 
and and var(S) denotes 
the set of variables in the scope S of the constraint C. We 
often denote the set of vertices by N{H) and the set of hy-
peredges by 

However, many interesting techniques for solving CSPs 
or for identifying tractable classes of CSPs have been de­
signed for binary CSPs, i.e., CSP instances where each scope 
contains two variables at most. Therefore, historically, the 
first attempts to deal with general (i.e., non-binary) constraint 
problems try to exploit the existent methods, by represent­
ing any CSP instance / by some graph, rather than by the 
hypergraph H{I). A first idea is to use the primal graph of 
H ( I ) , whose edges connect each pair of variables occurring 
together in some constraint of /. Clearly, there is an evident 
loss of information in using the primal graph instead of the 
hypergraph. For instance, each constraint-scope of / induces 
a clique in the primal graph, but if one looks at the graph 
only, there is no way to understand whether such a clique 
comes from a hyperedge of the hypergraph, or by some in­
tricate interactions among scopes. In fact, in [Gottlob et al, 
2000], a deep comparison among various structural decompo­
sition methods showed that some technique designed for hy-
pergraphs is more powerful than all the (known) techniques 
working on the primal graphs. In this paper, we focus on 
the other two important graph-based representations of non-
binary constraints, described in the literature, only marginally 
considered in that work: 

Dual-graph Representation [Dechter, 1992]. Given a hy­
pergraph H, its dual graph, denoted by dual('H) = {N,E), 
is the graph whose set of vertices iV is the set of hyper-
edges and whose edges connect each pair of vertices 
(i.e., hyperedges) having some variable in common, that is 

Hidden-variable Representation fSeidel, 1981; Chekuri 
and Rajaraman, 2000]. Given a hypergraph H, we define 
its incidence graph as the bipartite graph inc(H) = (AT, E), 
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only if a is a node of h. (E.g., Figure 2 shows a constraint 
hypergraph (a) and its incidence graph (b)). 

There is a great interest in comparing CSP solving tech­
niques based on these encodings of the structure [Bacchus et 
al, 2002] and long standing questions about their relation­
ships with hypergraph-based techniques, described below. 

One of the major difficulties in doing precise and formal 
analysis of dual-graph based methods is due to an impor­
tant feature of this encoding: some edges of the dual graph 
can be safely removed from this graph, making the evalua­
tion of CSPs easier. Indeed, even if dual (H) appears very 
intricate, sometimes is possible to find suitable simplifica­
tions that make it much more useful. Such simplified graphs 
are called reducts of dual (H). For instance, if H. is acyclic, 
there is a polynomial time algorithm for making its dual graph 
acyclic, and in fact a join tree of H. An example is shown in 
Figure 2.c, where the acyclic graph obtained by removing the 
dashed edges is a join tree of the given hypergraph. However, 
different removal choices may lead to different performances 
of evaluation algorithms. Thus, the efficiency of any tech­
nique based on the dual graph depends crucially on the avail-
ability of a good algorithm for simplifying the dual graph. 
Note that finding the "best reduct" is a difficult task and is 
currently not known whether it is feasible in polynomial time, 
in general. 

On the other hand, the fact that effective dual graph rep­
resentations are not unique made comparisons among dif­
ferent methods quite difficult. For instance, Gyssens et al. 
[1994] compared the notion of Hinge decompositions (short: 
HINGE) and the notion of Biconnected components of the 
dual g r a p h I t turned out that HINGE i s a 
generalization and thus the hinge decomposition 
technique is not worse than the biconnected components tech­
nique. However, the precise relationship between these meth­
ods remained an open question, because biconnected compo­
nents can perform very bad unless "clever simplifications" of 
the dual graph are chosen. 

The first contribution of this paper is solving this question. 
First we formally define, for each method D, the method 
Doptd

y that is, the method D applied to the best possible 
simplification of the dual graph with respect to D. Indeed, 
in general, the notion of best simplification depends on the 
method D used for decomposing the graph. This way, meth­
ods applied to dual graph encodings are well-defined and can 
be compared with other methods. 

We formally prove that BIC0MPoptd is equivalent to HINGE. 
In fact, we show that any hinge decomposition corresponds to 
the biconnected-components tree of some reduct of the dual 
graph. It is worthwhile noting that, as a corollary of this 
result, we obtain that, for the method, an opti­
mal reduction of the dual graph can be computed in polyno­
mial time, since any hinge decomposition can be computed 
in polynomial time. 

Then, we consider the powerful decomposition method for 
dealing with graphs: the tree decomposition method [Robert­
son and Seymour, 1986], which is equivalent to the tree-
clustering method [Dechter and Pearl, 1989]. It is known that 

any class of CSP instances such that the treewidth of their 
incidence graph (respectively, of some reduct of their dual 
graphs) is bounded by some constant k is tractable. That is, 
all such instances may be evaluated in time where n 
is the size of a CSP instance and c is a constant that depends 
crucially on the bound A: on the decomposition width. 

We perform a detailed comparison of the tree decom­
position method applied to the incidence graph of the hy­
pergraph (i.e., on the hidden-variable encoding), denoted 
by TREEWIDTHin, and the tree decomposition method ap­
plied to some optimal reduct of the dual graph, denoted by 
TREEWIDTH0ptd. It turns out that every CSP class that is 
tractable according to TREEWIDTH*" is tractable according to 
TREEWIDTHoptd, as well. Moreover, there are CSP classes 
that are tractable according to but are not 
tractable according to TREEWIDTH, i.e., their largest width 
is not bounded by any fixed number. However, we show that 
TREEWIDTHoptd does not strongly generalize TREEWIDTH"1. 
Indeed, there are classes of CSPs whose incidence-graph 
treewidth is bounded by a constant K, but the largest width 
of some optimal reduct of the dual graph is much greater. 
Thus, even if such classes are tractable, their evaluation can 
be much more efficient by using the method. It 
follows that either of these methods may be useful for some 
kind of CSP instances, and hence there is no definitely better 
choice between them. 

Finally, we focus on further interesting open ques­
tions about Define the optimal treewidth 
twoptd{H) of the dual graph of some hypergraph H as the 
minimum treewidth over all reducts of dual{H). Kolaitis 
and Vardi [2000] observed that is not trivial to find a "good" 
reduct of the dual graph and defined the following prob­
lem k-OPT, for any fixed constant k > 0: Given a hyper­
graph H, decide whether the optimal treewidth of dual(H) 
is at most K. The question is whether K-OPT is decidable 
in polynomial time or not, that is whether there is an effi­
cient way for computing a reduct of the dual graph that have 
the minimum treewidth. Moreover, even if it is known that 
TREEWIDTHoptd is strongly generalized by the hypertree de­
composition method [Gottlob et al, 2000], it is not clear why 
there is such a big difference between these methods. Indeed, 
at a first glance the kind of tree labelling in these methods 
seems rather similar. 

We face both the above questions. Let k > 0 be 
a fixed constant and H be a constraint hypergraph. We 
present a polynomial time algorithm k-TREE-APPROX that, 
if the optimal treewidth of dual(H) is at most k, out­
puts a tree decomposition of width at most 2k of some 
reduct of dual (H). Thus, k-TREE-APPROX provides a 
2-approximation of Note that the ques­
tion whether K-OPT is decidable in polynomial time remains 
open, because k-TREE-APPROX can compute a tree decom­
position of width at most 2k even if the optimal treewidth k' 
of dual (H) is greater than 

Moreover, our algorithm is also able to compute a new kind 
of structural decomposition that allows us to shed some light 
on the striking difference between TREEWIDTHoptd and the 
more general hypergraph-based notions of query decomposi­
tion and hypertree decomposition. 
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2 Preliminaries 
It is well known that CSPs with acyclic constraint hyper-
graphs are polynomially solvable [Dechter, 1992]. The 
known structural properties that lead to tractable CSP classes 
are all (explicitly or implicitly) based on some generaliza­
tion of acyclicity. In particular, each method D defines some 
concept of width which can be interpreted as a measure of 
cyclicity of the underlying constraint (hyper)graph such that, 
for each fixed width k, all CSPs of width bounded by A: are 
solvable in polynomial time. This (possibly infinite) set of 
CSPs is called the tractability class of D w.r.t. k, and is de­
noted by C(D, k). Any pair of decomposition methods D\ 
and D2 can be compared according to their ability to iden­
tify tractable classes of CSPs. Formally, Gottlob et al. [2000] 
defined the following criteria: 

Thus, seems a good candidate for solving 
non-binary CSP, as it strongly generalizes all the other graph-
based methods. However, we recall that all the known al­
gorithms for computing a k-bounded tree decomposition of 
a graph are exponential in k (even if they are polynomial 
for any fixed constant k), while computing the biconnected 
components of a graph is a linear task, independently of their 
width. This latter technique can be therefore very useful if the 
size of the structure and the bound k are large and the pow-
erfun methods like TREEWIDTH are too expensive. In the next 
section, we face the problem of computing optimal reducts of 
the dual graph w.r.t. the BICOMP method. 

3 Hinges VS Biconnected Components 
In [Gyssens et al, 19941, it has been shown that the HINGE 
method generalizes BICOMP applied to any reduct of the dual 
graph. Anyhow, in the same paper, Gyssens et al. observed 
that a fine comparison between the two methods is quite dif­
ficult, as there is no obvious way to find a suitable reduct of 
the dual graph to keep the biconnected width small. Here we 
complete the picture by showing that, in fact, hinge decom­
positions correspond to such clever simplifications of the dual 
graph. 
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4 Hidden-Variables VS Dual Graph 
It is well known that both the dual graph and the hidden-
variable (incidence-graph) representations may be used for 
identifying tractable classes of non-binary CSPs according 
to the tree decomposition method (see, e.g., [Kolaitis and 
Vardi, 2000]). However, it was not clear whether either of 
these methods generalizes the other one or beats the other 
one on some classes of CSPs. In this section, we precisely 
characterize the relationship between TREEWIDTH0ptd and 
TREEWIDTHm. First, we observe that there is a CSP class 
where TREEWIDTH0ptd is definitely better than TREEWIDTHin. 

It is worthwhile noting that, given any hinge decomposition 
of a hypergraph H, the proof of Lemma 3.1 provides in fact an 
algorithm for computing an optimal reduct of dual(H) with 
respect to the BICOMP method. For instance, Figure 1 shows 
a hypergraph H' a hinge decomposition H' and the opti­
mal reduct of the dual graph obtained by applying the above 
construction, where dotted edges represent the edges of the 
dual graph removed in this simplification. Note that the bi-
connected components of this graph correspond to the hinges 
of the given decomposition. Since biconnected components 
can be computed in linear time, it follows that a BIC0MPOptd 

which is the best known upper bound 
for computing a hinge decomposition. 

Observe that the above result, together with Theorem 2.2, 
gives us a new insight of the power of In­
deed, while the tree decomposition method applied to the pri­
mal graph is incomparable with HINGE [Gottlob et al. , 2000], 
its application to an optimal reduct of the dual graph strongly 
generalizes HINGE. 

Combining the above lemma and the results in [Gyssens 
et al., 19941, it follows that these two methods identifies the 
same classes of tractable CSPs. 
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elements from A' and one the m subsets of m - 1 elements 
from Y These subsets may be identified by means of two 
integers, say a and b, ranging from 0 to m — 1. Similarly, the 
edge contains a subset of variables from Z identified by an 
integer c and functionally determined by a and b as follows: 
c — (a + b)mod m. Thus, each edge e is simply denoted as a 
triple (a, b,c). 

Note that the incidence treewidth of Subset(k) is k. For 
instance, Figure 3 shows a tree decomposition of the inci­
dence graph of Subset(9), where in — 3. Moreover, it can 
be proved that the dual graph dual(Subset(k)) cannot be re­
duced and contains a clique of size m2 — (k/3)2. It follows 
that its treewidth is (k/3)2. D 

To give a complete picture of the relationship between 
TREEWIDTHptd and TREEWIDTHin, we next show that any 
decomposition of the incidence graph with width k can be 
modified to be a decomposition of a reduct of the dual graph 
having width at most 2k Thus, TREEWIDTH"1 does not beat 
TREEWIDTH0ptd. 

In this section, we face the problem of computing an optimal 
reduct of a dual graph in order to get the minimum possi-
ble treewidth. We recall that it is not known whether this 
problem is feasible in polynomial time or not [Kolaitis and 
Vardi, 2000]. Moreover, we provide a qualitative explana­
tion of the remarkable difference between TREEWIDTH0ptd 



Remark. The results in this section shed some light 
on the difference between the "decomposition power" of 
TREEWIDTHoptd and the strictly more general methods of 
query and hypertree decompositions. Note that the crucial 
condition to be maintained in all these tree-structured decom­
positions is the connectedness condition for the constraint 
variables, and looking at Condition 3 and Condition 3' above 
we can make the following observation: while in the weak 
query decompositions (and similarly in TREEWIDTHoptd each 
hypcredge in the labelling of a tree node plays an indepen­
dent role, in query decompositions (and hypertree decompo­
sitions) all such edges contribute together to maintain the con­
nectedness condition. That is, these hypergraph based notions 
exploit the union of the hyperedges labelling any tree-node, 
while the TREEWIDTH'optd and the weak query width methods 
exploit the power of each hyperedge separately. 
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Figure 5: Algorithm k-TRLE-APPROX 


