
Non-Binary Constraints and Optimal Dual-Graph Representations

Gianluigi Greco and Francesco Scarcello
DEIS - University of Calabria

1-87036, Rende, Italy
{ggreco,scarcello}@si.deis.unical.it

Abstract
We study the relationships among structural meth-
ods for identifying and solving tractable classes of
Constraint Satisfaction Problems (CSPs). In partic­
ular, we first answer a long-standing question about
the notion of biconnected components applied to
an "optimal" reduct of the dual constraint-graph,
by showing that this notion is in fact equivalent to
the hinge decomposition method. Then, we give a
precise characterization of the relationship between
the treewidth notion applied to the hidden-variable
encoding of a CSP and the same notion applied to
some optimal reduct of the dual constraint-graph.
Finally, we face the open problem of computing
such an optimal reduct. We provide an algorithm
that outputs an approximation of an optimal tree
decomposition, and give a qualitative explanation
of the difference between this graph-based method
and more general hypergraph-based methods.

1 Introduction and summary of results
Constraint satisfaction is a central issue of Al research
and has an impressive spectrum of applications (see, e.g.,
[Pearson and Jeavons, 1997]). A constraint con­
sists of a constraint scope Si,, i.e., a list of variables and
of an associated constraint relation containing the le­
gal combinations of values. A CSP consists of a set

of constraints whose vari­
ables may overlap. A solution to a CSP is an assignment
of values to all variables such that all constraints are simul­
taneously satisfied. By solving a CSP we mean determining
whether the problem has a solution at all (i.e., checking for
constraint satisfiability), and, if so, compute one solution.

Constraint satisfiability in its general form is well-known
to be NP-hard. Much effort has been spent to identify
tractable classes of CSPs, and deep and useful results have
been achieved. The various successful approaches to ob­
tain tractable CSP classes can be divided into two main
groups [Pearson and Jeavons, 1997]: the techniques that iden­
tify tractable classes of CSPs only on the base of the struc­
ture of the constraint scopes independently of
the actual constraint relations and the techniques
that identify tractable classes by exploiting particular proper­
ties of the constraint relations In this paper, we

will deal with this latter group of techniques, usually called
structural decomposition methods. There are several papers
proposing polynomially tractable classes of constraints based
on different structural properties of constraint-scopes inter­
actions (see, e.g., [Dechter, 1992; Dechter and Pearl, 1989;
Gyssens et al, 1994; Gottlob et al, 2000J). Such a structure
is best represented by the hypergraph
ated to any CSP instance
and and var(S) denotes
the set of variables in the scope S of the constraint C. We
often denote the set of vertices by N{H) and the set of hy-
peredges by

However, many interesting techniques for solving CSPs
or for identifying tractable classes of CSPs have been de­
signed for binary CSPs, i.e., CSP instances where each scope
contains two variables at most. Therefore, historically, the
first attempts to deal with general (i.e., non-binary) constraint
problems try to exploit the existent methods, by represent­
ing any CSP instance / by some graph, rather than by the
hypergraph H{I). A first idea is to use the primal graph of
H (I) , whose edges connect each pair of variables occurring
together in some constraint of /. Clearly, there is an evident
loss of information in using the primal graph instead of the
hypergraph. For instance, each constraint-scope of / induces
a clique in the primal graph, but if one looks at the graph
only, there is no way to understand whether such a clique
comes from a hyperedge of the hypergraph, or by some in­
tricate interactions among scopes. In fact, in [Gottlob et al,
2000], a deep comparison among various structural decompo­
sition methods showed that some technique designed for hy-
pergraphs is more powerful than all the (known) techniques
working on the primal graphs. In this paper, we focus on
the other two important graph-based representations of non-
binary constraints, described in the literature, only marginally
considered in that work:

Dual-graph Representation [Dechter, 1992]. Given a hy­
pergraph H, its dual graph, denoted by dual('H) = {N,E),
is the graph whose set of vertices iV is the set of hyper-
edges and whose edges connect each pair of vertices
(i.e., hyperedges) having some variable in common, that is

Hidden-variable Representation fSeidel, 1981; Chekuri
and Rajaraman, 2000]. Given a hypergraph H, we define
its incidence graph as the bipartite graph inc(H) = (AT, E),

CONSTRAINTS 227

only if a is a node of h. (E.g., Figure 2 shows a constraint
hypergraph (a) and its incidence graph (b)).

There is a great interest in comparing CSP solving tech­
niques based on these encodings of the structure [Bacchus et
al, 2002] and long standing questions about their relation­
ships with hypergraph-based techniques, described below.

One of the major difficulties in doing precise and formal
analysis of dual-graph based methods is due to an impor­
tant feature of this encoding: some edges of the dual graph
can be safely removed from this graph, making the evalua­
tion of CSPs easier. Indeed, even if dual (H) appears very
intricate, sometimes is possible to find suitable simplifica­
tions that make it much more useful. Such simplified graphs
are called reducts of dual (H). For instance, if H. is acyclic,
there is a polynomial time algorithm for making its dual graph
acyclic, and in fact a join tree of H. An example is shown in
Figure 2.c, where the acyclic graph obtained by removing the
dashed edges is a join tree of the given hypergraph. However,
different removal choices may lead to different performances
of evaluation algorithms. Thus, the efficiency of any tech­
nique based on the dual graph depends crucially on the avail-
ability of a good algorithm for simplifying the dual graph.
Note that finding the "best reduct" is a difficult task and is
currently not known whether it is feasible in polynomial time,
in general.

On the other hand, the fact that effective dual graph rep­
resentations are not unique made comparisons among dif­
ferent methods quite difficult. For instance, Gyssens et al.
[1994] compared the notion of Hinge decompositions (short:
HINGE) and the notion of Biconnected components of the
dual g r a p h I t turned out that HINGE i s a
generalization and thus the hinge decomposition
technique is not worse than the biconnected components tech­
nique. However, the precise relationship between these meth­
ods remained an open question, because biconnected compo­
nents can perform very bad unless "clever simplifications" of
the dual graph are chosen.

The first contribution of this paper is solving this question.
First we formally define, for each method D, the method
Doptd

y that is, the method D applied to the best possible
simplification of the dual graph with respect to D. Indeed,
in general, the notion of best simplification depends on the
method D used for decomposing the graph. This way, meth­
ods applied to dual graph encodings are well-defined and can
be compared with other methods.

We formally prove that BIC0MPoptd is equivalent to HINGE.
In fact, we show that any hinge decomposition corresponds to
the biconnected-components tree of some reduct of the dual
graph. It is worthwhile noting that, as a corollary of this
result, we obtain that, for the method, an opti­
mal reduction of the dual graph can be computed in polyno­
mial time, since any hinge decomposition can be computed
in polynomial time.

Then, we consider the powerful decomposition method for
dealing with graphs: the tree decomposition method [Robert­
son and Seymour, 1986], which is equivalent to the tree-
clustering method [Dechter and Pearl, 1989]. It is known that

any class of CSP instances such that the treewidth of their
incidence graph (respectively, of some reduct of their dual
graphs) is bounded by some constant k is tractable. That is,
all such instances may be evaluated in time where n
is the size of a CSP instance and c is a constant that depends
crucially on the bound A: on the decomposition width.

We perform a detailed comparison of the tree decom­
position method applied to the incidence graph of the hy­
pergraph (i.e., on the hidden-variable encoding), denoted
by TREEWIDTHin, and the tree decomposition method ap­
plied to some optimal reduct of the dual graph, denoted by
TREEWIDTH0ptd. It turns out that every CSP class that is
tractable according to TREEWIDTH*" is tractable according to
TREEWIDTHoptd, as well. Moreover, there are CSP classes
that are tractable according to but are not
tractable according to TREEWIDTH, i.e., their largest width
is not bounded by any fixed number. However, we show that
TREEWIDTHoptd does not strongly generalize TREEWIDTH"1.
Indeed, there are classes of CSPs whose incidence-graph
treewidth is bounded by a constant K, but the largest width
of some optimal reduct of the dual graph is much greater.
Thus, even if such classes are tractable, their evaluation can
be much more efficient by using the method. It
follows that either of these methods may be useful for some
kind of CSP instances, and hence there is no definitely better
choice between them.

Finally, we focus on further interesting open ques­
tions about Define the optimal treewidth
twoptd{H) of the dual graph of some hypergraph H as the
minimum treewidth over all reducts of dual{H). Kolaitis
and Vardi [2000] observed that is not trivial to find a "good"
reduct of the dual graph and defined the following prob­
lem k-OPT, for any fixed constant k > 0: Given a hyper­
graph H, decide whether the optimal treewidth of dual(H)
is at most K. The question is whether K-OPT is decidable
in polynomial time or not, that is whether there is an effi­
cient way for computing a reduct of the dual graph that have
the minimum treewidth. Moreover, even if it is known that
TREEWIDTHoptd is strongly generalized by the hypertree de­
composition method [Gottlob et al, 2000], it is not clear why
there is such a big difference between these methods. Indeed,
at a first glance the kind of tree labelling in these methods
seems rather similar.

We face both the above questions. Let k > 0 be
a fixed constant and H be a constraint hypergraph. We
present a polynomial time algorithm k-TREE-APPROX that,
if the optimal treewidth of dual(H) is at most k, out­
puts a tree decomposition of width at most 2k of some
reduct of dual (H). Thus, k-TREE-APPROX provides a
2-approximation of Note that the ques­
tion whether K-OPT is decidable in polynomial time remains
open, because k-TREE-APPROX can compute a tree decom­
position of width at most 2k even if the optimal treewidth k'
of dual (H) is greater than

Moreover, our algorithm is also able to compute a new kind
of structural decomposition that allows us to shed some light
on the striking difference between TREEWIDTHoptd and the
more general hypergraph-based notions of query decomposi­
tion and hypertree decomposition.

228 CONSTRAINTS

2 Preliminaries
It is well known that CSPs with acyclic constraint hyper-
graphs are polynomially solvable [Dechter, 1992]. The
known structural properties that lead to tractable CSP classes
are all (explicitly or implicitly) based on some generaliza­
tion of acyclicity. In particular, each method D defines some
concept of width which can be interpreted as a measure of
cyclicity of the underlying constraint (hyper)graph such that,
for each fixed width k, all CSPs of width bounded by A: are
solvable in polynomial time. This (possibly infinite) set of
CSPs is called the tractability class of D w.r.t. k, and is de­
noted by C(D, k). Any pair of decomposition methods D\
and D2 can be compared according to their ability to iden­
tify tractable classes of CSPs. Formally, Gottlob et al. [2000]
defined the following criteria:

Thus, seems a good candidate for solving
non-binary CSP, as it strongly generalizes all the other graph-
based methods. However, we recall that all the known al­
gorithms for computing a k-bounded tree decomposition of
a graph are exponential in k (even if they are polynomial
for any fixed constant k), while computing the biconnected
components of a graph is a linear task, independently of their
width. This latter technique can be therefore very useful if the
size of the structure and the bound k are large and the pow-
erfun methods like TREEWIDTH are too expensive. In the next
section, we face the problem of computing optimal reducts of
the dual graph w.r.t. the BICOMP method.

3 Hinges VS Biconnected Components
In [Gyssens et al, 19941, it has been shown that the HINGE
method generalizes BICOMP applied to any reduct of the dual
graph. Anyhow, in the same paper, Gyssens et al. observed
that a fine comparison between the two methods is quite dif­
ficult, as there is no obvious way to find a suitable reduct of
the dual graph to keep the biconnected width small. Here we
complete the picture by showing that, in fact, hinge decom­
positions correspond to such clever simplifications of the dual
graph.

CONSTRAINTS 229

230 CONSTRAINTS

4 Hidden-Variables VS Dual Graph
It is well known that both the dual graph and the hidden-
variable (incidence-graph) representations may be used for
identifying tractable classes of non-binary CSPs according
to the tree decomposition method (see, e.g., [Kolaitis and
Vardi, 2000]). However, it was not clear whether either of
these methods generalizes the other one or beats the other
one on some classes of CSPs. In this section, we precisely
characterize the relationship between TREEWIDTH0ptd and
TREEWIDTHm. First, we observe that there is a CSP class
where TREEWIDTH0ptd is definitely better than TREEWIDTHin.

It is worthwhile noting that, given any hinge decomposition
of a hypergraph H, the proof of Lemma 3.1 provides in fact an
algorithm for computing an optimal reduct of dual(H) with
respect to the BICOMP method. For instance, Figure 1 shows
a hypergraph H' a hinge decomposition H' and the opti­
mal reduct of the dual graph obtained by applying the above
construction, where dotted edges represent the edges of the
dual graph removed in this simplification. Note that the bi-
connected components of this graph correspond to the hinges
of the given decomposition. Since biconnected components
can be computed in linear time, it follows that a BIC0MPOptd

which is the best known upper bound
for computing a hinge decomposition.

Observe that the above result, together with Theorem 2.2,
gives us a new insight of the power of In­
deed, while the tree decomposition method applied to the pri­
mal graph is incomparable with HINGE [Gottlob et al. , 2000],
its application to an optimal reduct of the dual graph strongly
generalizes HINGE.

Combining the above lemma and the results in [Gyssens
et al., 19941, it follows that these two methods identifies the
same classes of tractable CSPs.

CONSTRAINTS 231

elements from A' and one the m subsets of m - 1 elements
from Y These subsets may be identified by means of two
integers, say a and b, ranging from 0 to m — 1. Similarly, the
edge contains a subset of variables from Z identified by an
integer c and functionally determined by a and b as follows:
c — (a + b)mod m. Thus, each edge e is simply denoted as a
triple (a, b,c).

Note that the incidence treewidth of Subset(k) is k. For
instance, Figure 3 shows a tree decomposition of the inci­
dence graph of Subset(9), where in — 3. Moreover, it can
be proved that the dual graph dual(Subset(k)) cannot be re­
duced and contains a clique of size m2 — (k/3)2. It follows
that its treewidth is (k/3)2. D

To give a complete picture of the relationship between
TREEWIDTHptd and TREEWIDTHin, we next show that any
decomposition of the incidence graph with width k can be
modified to be a decomposition of a reduct of the dual graph
having width at most 2k Thus, TREEWIDTH"1 does not beat
TREEWIDTH0ptd.

In this section, we face the problem of computing an optimal
reduct of a dual graph in order to get the minimum possi-
ble treewidth. We recall that it is not known whether this
problem is feasible in polynomial time or not [Kolaitis and
Vardi, 2000]. Moreover, we provide a qualitative explana­
tion of the remarkable difference between TREEWIDTH0ptd

Remark. The results in this section shed some light
on the difference between the "decomposition power" of
TREEWIDTHoptd and the strictly more general methods of
query and hypertree decompositions. Note that the crucial
condition to be maintained in all these tree-structured decom­
positions is the connectedness condition for the constraint
variables, and looking at Condition 3 and Condition 3' above
we can make the following observation: while in the weak
query decompositions (and similarly in TREEWIDTHoptd each
hypcredge in the labelling of a tree node plays an indepen­
dent role, in query decompositions (and hypertree decompo­
sitions) all such edges contribute together to maintain the con­
nectedness condition. That is, these hypergraph based notions
exploit the union of the hyperedges labelling any tree-node,
while the TREEWIDTH'optd and the weak query width methods
exploit the power of each hyperedge separately.

References
[Bacchus et al., 2002] F. Bacchus, X. Chen, P. van Beck, and

T. Walsh. Binary vs Non-Binary Constraints. Artificial In­
telligence, 140: (1-2), 1-37, 2002.

[Chekuri and Rajaraman, 2000] Ch. Chekuri and A. Rajara-
man. Conjunctive Query Containment Revisited. Theoret­
ical Computer Science, 239(2):211-229, 2000.

[Dechter, 1992] R. Dechter. Constraint Networks. In Ency­
clopedia of Artificial Intelligence, second edition, Wiley
and Sons, pp. 276-285, 1992.

[Dechter and Pearl, 1988] R. Dechter and J. Pearl. Network
based heuristics for constraint satisfaction problems. Arti­
ficial Intelligence, 34(1): 1-38, 1988.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree
clustering for constraint networks. Artificial Intelligence,
38:353-366,1989.

[Freuder, 1985] E.C. Freuder. A sufficient condition
for backtrack-bounded search. Journal of the ACM,
32(4):755-761,1985.

[Gottlob et al, 2000] G. Gottlob, N. Leone, and F. Scarcello.
A Comparison of Structural CSP Decomposition Methods.
Artificial Intelligence, 124(2): 243-282,2000.

[Gottlob et al, 2002] G. Gottlob, N. Leone, and F. Scarcello.
Hypertree decompositions and tractable queries. Journal
of Computer and System Sciences, 64(3): 579-627, 2002.

[Gyssens et al., 1994] M. Gyssens, P.G. Jeavons, and D.A.
Cohen. Decomposing constraint satisfaction problems us­
ing database techniques. Artificial Intelligence, 66:57-89,
1994.

[Kolaitis and Vardi, 2000] Ph. G. Kolaitis and M. Y. Vardi.
Conjunctive-Query Containment and Constraint Satisfac­
tion. Journal of Computer and System Sciences, 61(2):
302-332,2000.

[Pearson and Jeavons, 1997] J. Pearson and P.G. Jeavons.
A Survey of Tractable Constraint Satisfaction Problems,
CSD-TR-97-15, Royal Holloway, Univ. of London, 1997.

[Robertson and Seymour, 1986] N. Robertson and P.D. Sey­
mour. Graph Minors I I . Algorithmic aspects of tree width.
Journal of Algorithms, 7:309-322, 1986.

[Seidel, 1981] R. Seidel. A new method for solving con­
straint satisfaction problems. In Proc. of IJCAI'81, 1981.

232 CONSTRAINTS

Figure 5: Algorithm k-TRLE-APPROX

