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Abstract 

Intelligent agents often need to assess user utility 
functions in order to make decisions on their be-
half, or predict their behavior. When uncertainty 
exists over the precise nature of this utility function, 
one can model this uncertainty using a distribution 
over utility functions. This view lies at the core of 
games with incomplete information and, more re­
cently, several proposals for incremental preference 
elicitation. In such cases, decisions (or predicted 
behavior) are based on computing the expected ex­
pected utility (EEU) of decisions with respect to the 
distribution over utility functions. Unfortunately, 
decisions made under EEU are sensitive to the pre­
cise representation of the utility function. We ex­
amine the conditions under which EEU provides 
for sensible decisions by appeal to the foundational 
axioms of decision theory. We also discuss the im­
pact these conditions have on the enterprise of pref­
erence elicitation more broadly. 

1 Introduction 
Most work on the foundations of decision theory— 
specifically on the justification of expected utility—has fo­
cused on personal decision making, that is, settings where a 
decision is being made by the "holder" of the utility func­
tion. Of course the decision maker may not be fully aware 
of (or have fully articulated) her utility function. The pro­
cess of articulation is complex, and much work in decision 
analysis deals with preference elicitation and decision fram­
ing to help the decision maker formulate her decision problem 
[11]. However, this work is primarily concerned with elicit­
ing enough information about preference tradeoffs to allow 
an (approximately) optimal decision to be made. While an 
analyst can never be sure about the true nature of the deci­
sion maker's utility function, this uncertainty is not generally 
characterized explicitly, though its impact is often minimized 
though sensitivity analysis and related techniques. 

Recent emphasis has been placed on the development of 
automated decision tools, where a decision is being made 
on behalf of a user whose utility function is imprecisely 
known. As in goal programming or other forms of inter­
active optimization, a space of possible utility functions is 

usually maintained (often by imposing constraints on trade­
off weights). A decision can be made based on this set of 
feasible utility functions. For example, Parcto optimal deci­
sions can be identified [21; 18], or models based on mini-
max regret can be used to choose a specific decision [11; 2; 
20]. In each of these models, the uncertainty regarding the 
utility function is characterized by the feasible utility set. 

Somewhat less common is work in which the system's un­
certainty about a user's utility function is quantified proba­
bilistically. Some recent examples include [5; 6; 1]. In this 
work, a distribution over utility functions is assumed. The 
expected utility of a decision is determined not just by taking 
expectation over the outcomes of that decision, but also ex­
pectation over the space of possible utility functions. We use 
the term expected expected utility (EEU) to denote the value 
of a decision computed in this way. Elicitation strategies can 
be informed using the current distribution over utility func­
tions. For example, value of information can be used to de­
termine whether the improvement in decision quality given 
by a piece of information outweighs the cost of obtaining 
that information. Thus, characterizing one's uncertainty over 
possible utility functions in a probabilistic fashion, and using 
EEU to determine decision quality, has much to recommend 
it from the point of view of elicitation. 

Decision making using distributions over utility functions 
has been considered in other contexts. For example, Cyert 
and de Groot consider problems in sequential decision mak­
ing in which uncertainty in the underlying utility function is 
represented probabilistically [8; 9]. Fishbum [10] also ad­
dresses this problem (as we discuss below). Harsanyi's for­
mulation of games with incomplete information as Bayesian 
games [12; 13] relies critically on distributions over payoff 
functions, and virtually the entire literature on in this area 
adopts this perspective [7; 15].1 

In all of this work, the EEU concept is used to determine 
the value of decisions in the context of an uncertain utility 
function. Unfortunately, while EEU has an intuitive appeal, 
this scheme is sensitive to positive affine transformations of 

'in some sense, much work in collaborative filtering [3; 16] and 
related models [4] can be viewed as incorporating distributions over 
utility functions. However, these are used for purposes of classi­
fication (i.e., determining a unique utility function for a particular 
user) and generally uncertainty in utility is not accounted for when 
making decisions. 
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the utility functions in question. Implicit in such a scheme 
is a commensurability assumption that allows the quantities 
present in the different utility functions to be meaningfully 
compared and combined. This is not always the case. The 
aim of this paper is to describe certain conditions under which 
this commensurability assumption can be justified by appeal 
to the foundational axioms for decision theory as proposed by 
von Neumann and Morgenstern [19] and Savage [17]. 

The setting we consider is one in which an agent for a de­
cision maker or user is uncertain about the user's preferences, 
but wishes to recommend (or take) decisions on the user's be-
half. Fishburn [10] has considered the problems of the foun­
dations of expected expected utility from a somewhat differ­
ent perspective. He considers the problem in which a decision 
maker is uncertain about the set of consequences she might 
face and considers combining utility functions over different 
consequence sets. Unfortunately, his results cannot be ap­
plied (except in a trivial way) to the situation above.2 

We begin by defining the problem of decision making 
given uncertainty over utility functions and the FEU con­
cept. We then examine the sensitivity of EEU to the precise 
representation of the underlying utility functions, and pro­
pose an interpretation of utility uncertainty that allows one to 
prescribe "canonical" utility function representations under 
specific circumstances. We conclude with a brief discussion 
of the implications these considerations have for "practical" 
elicitation. 

2 Expected Expected Utility 
We begin by establishing notation and basic background with 
a quick overview of expected utility and then define the notion 
of expected expected utility formally. 
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The optimal decision d* w.r.t. u is that with maximum ex­
pected utility (MEU). 

2 While our results are general, it is unclear how profitable it is to 
model a decision maker's uncertainty about her own utility function. 
It can be argued that such uncertainty should be viewed as "tradi­
tional" uncertainty about future outcomes, context, etc. Rather than 
take a stand on this issue, we simply emphasize that an agent can 
be genuinely uncertain about a user's utility function, and that our 
model and results apply (in a practical way) to such a setting. 

3 If u is represented using some more concise model, u is simply 
the vector of parameters required for that model. 

It is well known that utility functions are invariant under 
positive affine transformations. That is, the relative expected 
utility of any pair of decisions (in any decision scenario) wil l 
be unaltered by such a transformation of a utility function. 
This implies that the optimal decision in any decision sce­
nario is unaffected by such a transformation. 



This definition is precisely that used in [5; 6; 1] in the con­
text of ut i l i ty elicitation, and also that used in much other 
work involving uncertainty over ut i l i ty [12; 8; 9] . In such 
a state of uncertainty—or belief state—the optimal decision 
is that d* w i th maximum EEU EU(d*,P). We denote by 
EU(P) the value of being in bel ief state P, assuming one is 
forced to make a decision: 

We call this generic decision rule the MEEUdecision rule, by 
analogy wi th the classical M E U decision rule. 

EEU seems to be a fair ly natural concept given proba­
bil ist ically quantified uncertainty over utilities. The fact that 
it occurs in many different contexts certainly attests to this 
fact. Unfortunately, the proposed definit ion can induce cer­
tain anomalies, as we examine below. 

3 Justifying MEEU 
3.1 Loss of Invariance 
The results of von Neumann and Morgenstern suggest that 
the decisions one makes wi th respect to bel ief state P over 
U should be invariant to legitimate transformations of the el­
ements of U. Certainly, this would be a desirable feature of 
the M E E U decision rule. One might even claim that the de­
cision rule can only be considered useful if it satisfies this 
condition. In general, unfortunately, this is not the case. 

As a simple i l lustration, suppose we have a domain wi th 
two outcomes s1 and s2, and a distribution P that assigns 
probabil ity 0.5 to u1 = (1,3) and probabil i ty 0.5 to u2 = 
(2 ,1) . Suppose we use the M E E U decision rule in this con­
text, by computing 

and choosing the decision d* wi th maximum expected uti l i ty 
EU(d*, P). Then a decision that accords higher probability 
to s2 w i l l be preferred to one that gives lower probabil i ty to 
s2. However, if we transform u2 into ui2 = (20,10) , the 
relative utilities of these decisions w i l l be reversed. Thus, the 
M E E U decision rule is not insensitive to transformations of 
individual ut i l i ty functions wi th positive support. Note that 
we are not suggesting that agent's w i l l arbitrarily transform 
some uti l i ty functions and not others.4 Rather, the question 
is: which representation of a specific ut i l i ty function (e.g., u2 

in the example) should be adopted in the first place? 
One possible way to deal wi th this problem is to recognize 

that a ut i l i ty function is simply a convenient (and nonunique) 
way of expressing preferences over lotteries. Rather than 
work ing wi th ut i l i ty functions, we could work explicit ly w i th 
a density over preference functions ( in fact, we w i l l do this 
impl ic i t ly below). Unfortunately, the set of lotteries over 
which a preference ordering is defined is uncountable; there­
fore, some compact representation (o f the individual prefer­
ence functions) is needed. But this is precisely the role of 

4 I f the same transformation is applied to all functions with posi­
tive support, the MEEU decision is unchanged. 
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a uti l i ty funct ion—to serve as a concise representation of a 
preference function over lotteries. 

This gives rise to the question of how to choose a repre­
sentative ut i l i ty function f rom each equivalence class [> ] that 
allows formal justif ication of the M E E U decision rule, and 
under what circumstances such representatives exist. 

3.2 A Lottery Interpretation of MEU 
We give a formal justif ication for the M E E U rule under a spe­
cific condition: we assume the existence of a known best and 
worst outcome. That is, each ut i l i ty function wi th positive 
support has the same best outcome sT and worst outcome ,s±. 
We also insist that the user is not indifferent to these alterna­
tives, that is, that ST must be strictly preferred to . s . 5 We call 
such uti l i ty functions extremum equivalent. In many settings, 
such as those involving active preference elicitation, restrict­
ing attention to a set of extremum equivalent ut i l i ty functions 
is not problematic. One simply needs to ask the user to iden­
t i fy her most and least preferred outcomes (these need not be 
unique, but only one such representative need be identified). 



Here the first step refers to a compound lottery over an con­
tinuous set of component (simple) lotteries, while we assume 
in second step that a such a compound lottery can be reduced 
to a simple lottery in an analogous way to the reduction of a 
finite compounded lottery. 

Thus under the assumption that one can identify a best and 
worst outcome, the MEEU decision rule can be justified for 
use with normalized (extremum equivalent) utility functions 
by appeal to the foundational axioms of decision theory, and 
an interpretation of uncertainty over utility as a lottery over 
the lotteries defined by the component utility functions. 

We now formalize the legitimacy of EEU and MEE. 

Extremum equivalence is thus sufficient to ensure commen-
surability, as it puts all utility functions on a common scale. It 
is important to realize that the scale dictated by the best and 
worst outcomes cannot vary, since these are truly best and 
worst outcomes; we return to this point below. It appears to 
be much more difficult to apply this type of argument to den­
sities over utility functions that are not extremum equivalent. 

Fishburn [101 considers the problem of EEU when a deci­
sion maker is uncertain about the nature of the consequence 
sets she will face. He proposes foundational axioms that jus­
tify the use EEU to compare decisions. However, the setting 
is rather different: specifically, Fishburn requires that any 
consequences that two utility functions have in common be 
ranked identically. In our context, where each utility function 
lies over the same consequence set, the Fishburn axioms im­
pose overly stringent requirements. It is interesting to note 
that Fishburn requires something akin to extremum equiva­
lence, namely, that there exist two consequences common to 
the domains of each utility function such that one of the con­
sequences is preferred to the other in each function. 

4 Dealing with Small Worlds 
It is important to realize that the best and worst outcomes 
with which one calibrates must either be truly best and worst 
outcomes from the decision maker's standpoint, or they them­
selves must be calibrated. Using Savage's 117] terminology, 
we must be careful to distinguish "small worlds" reasoning 
from "grand worlds." Consider the case where the set of out­
comes is restricted to the subset of outcomes that are possible 
given the set of actions in a specific decision scenario. But 
assume there exist outcomes outside the domain of the re­
stricted scenario for which the user has concrete preferences. 
Let's refer to the set of restricted outcomes as local, while the 
space of all outcomes is global. 
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5 Consequences for Preference Elicitation 
The considerations above have implications for practical pref­
erence elicitation. From a foundational perspective, calibra­
tion of utilities relative to known best and worst outcomes is 
required if decisions are to be based on EEU. In the case of 
incremental elicitation, where EEU is used to determine value 
of information, we must first obtain a prior over a set of cx-
tremum equivalent utility functions before engaging in such 
deliberations. Fortunately, it often seems to make sense to 
determine best and worst outcomes beforehand, and engage 
in "serious" elicitation after this initial calibration. 

Another important question: how does one determine pri­
ors over utility functions? Utility function databases [4] could 
be used. This poses some problems regarding interpersonal 
utility comparison for which there are no especially com­
pelling solutions. When using EEU, things are a bit worse: 
we need to construct priors conditioned on the observed or 
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Unfortunately, this condition is not equivalent to the MEEU 
rule in the original small worlds domain. Specifically, this 
condition cannot generally be assessed without having some 
assessment of the global tradeoff probabilities p1, etc. In 
other words, to accurately compare two small world out­
comes given uncertainty about the local utility functions, we 
have to explicitly assess our uncertainty about the range of 
values the local extrema can take with respect to the global 
utility function. Thus while one can generally use small world 
reasoning in the classic decision-theoretic setting, its use is 
problematic in the EEU framework. 



elicited best and worst outcomes. Given a prior over arbitrary 
uti l i ty functions, as long as decisions using EEU are not made 
until the determination of best and worst outcomes is com­
pleted, this poses no difficulties. An alternative, in certain 
scenarios, is to suppose that certain outcomes are universally 
most and least preferred (e.g., in medical contexts, death can 
be used as the latter). This may be hard to just i fy formally, 
but from a practical point of view w i l l be quite useful and 
(one hopes) have litt le impact on actual decision quality. 

The issue of small worlds also poses certain problems. 
From the point of view of practical elicitation, the prospect 
of calibrating some small set of relevant outcomes using a 
user's "g loba l " ut i l i ty function is unappealing. Fortunately, 
as argued above, for a given individual, strength of prefer­
ence can be assumed fixed for the best and worst outcomes, 
which allows things to carry through. Strength of preference 
may prove to be important however when trading o f f the in­
crease in EEU wi th the effort associated wi th the elicitation 
process. Furthermore, this can have an important impact on 
the construction of priors f rom databases of ut i l i ty functions. 

6 Concluding Remarks 
Decision making when the underlying ut i l i ty function is un­
known is an important problem in game theory, interactive 
optimization, and preference elicitation. Quanti fying this un­
certainty using distributions over ut i l i ty functions has a num­
ber of appealing qualities, and quite naturally leads to the no­
tion of expected expected ut i l i ty, a concept that has been used 
in several different lines of research. 

The aim of this paper is to point out that expectations taken 
with respect to ut i l i ty function distributions require some 
care. More precisely, the operation of expected expected ut i l ­
ity only makes sense ( f rom a foundational standpoint) when 
the distribution is over extremal equivalent ut i l i ty functions. 
Whi le this has certain implications for practical ut i l i ty elic­
itation, we have argued that this requirement is not overly 
stringent f rom a practical perspective. 
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