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Abstract 
Many different rules for decision making have been 
introduced in the literature. We show that a notion 
of generalized expected utility proposed in a com­
panion paper [Chu and Halpern, 2003] is a univer­
sal decision rule, in the sense that it can represent 
essentially all other decision rules. 

1 Introduction 
A great deal of effort has been devoted to studying decision 
making. A standard formalization decribes the choices a de­
cision maker (DM) faces as acts, where an act is a function 
from states to consequences. Many decision rules (that is, 
rules for choosing among acts, based on the tastes and beliefs 
of the DM) have been proposed in the literature. Some are 
meant to describe how "rational" agents should make deci­
sions, while others aim at modeling how real agents actually 
make decisions. Perhaps the best-known approach is that of 
maximizing expected utility (EU). Normative arguments due 
to Savage [1954] suggest that rational agents should behave 
as if their tastes are represented by a real-valued utility func­
tion on the consequences, their beliefs about the likelihood 
of events (i.e., sets of states) are represented by a probability 
measure, and they are maximizing the expected utility of acts 
with respect to this utility and probability. 

Despite these normative arguments, it is well known that 
EU often does not describe how people actually behave when 
they make decisions [Resnik, 1987]; thus EU is of limited 
utility if we want to model (and perhaps predict) how peo­
ple will behave. As a result, many alternatives to EU have 
been proposed in the literature (see, for example, [Gul, 1991; 
Gilboa and Schmeidler, 1989; Giang and Shenoy, 2001; 
Quiggin, 1993; Schmeidler, 1989; Yaari, 1987]). Some of 
these rules involve representations of beliefs by means other 
than a (single) probability measure; in some cases, beliefs 
and tastes are combined in ways other than the standard way 
which produces expected utility; yet other cases, such as 
Maximin and Minimax Regret [Resnik, 1987], do not require 
a representation of beliefs at all. 
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In a companion paper [Chu and Halpern, 2003], we pro­
pose a general framework in which to study and compare de­
cision rules. The idea is to define a generalized notion of 
expected utility (GEU), where a DM's beliefs are represented 
by plausibility measures [Friedman and Halpern, 1995] and 
the DM's tastes are represented by general (i.e., not necessar­
ily real-valued) utility functions. We show there that every 
preference relation on acts has a GEU representation. Here 
we show that GEU is universal in a much stronger sense: we 
show that essentially all decision rules have GEU representa­
tions. The notion of representing one decision rule using an­
other seems to be novel. Intuitively, decision rules are func­
tions from tastes (and beliefs) to preference relations, so a 
representation of a decision rule is a representation of a func­
tion, not a preference relation. 

Roughly speaking, given two decision rules R1 and R2, an 
R1 representation of 'R2 is a function T that maps inputs of 
R2 to inputs of R1 that contain the same representation of 
tastes (and beliefs) such that . Thus, T 
models, in a precise sense, a user of R2 as a user of R1, since 
r preserves tastes (and beliefs). We show that a large collec­
tion of decision rules have GEU representations and charac­
terize the collection. Essentially, a decision rule has a GEU 
representation iff it is uniform in a precise sense. It turns out 
that there are well-known decision rules, such as maximizing 
Choquet expected utility (CEU) [Schmeidler, 1989] (which 
essentially assumes that the DM is representing beliefs using 
a Dempster-Shafer belief function Bel, and then maximizing 
CEU with respect to Bel), that have no GEU representations. 
This is because r is not allowed to modify the representation 
of the tastes (and beliefs). We then define a notion of ordinal 
representation, in which r is allowed to modify the represen­
tation of the tastes (and beliefs), and is required to preserve 
only the ordinal aspect of the tastes (and beliefs). We show 
that almost all decision rules, including CEU, have ordinal 
GEU representations. 

There seems to be no prior work in the literature that con­
siders how one decision rule can represent another. Perhaps 
the closest results to our own are those of Lehmann [2001]. 
He proposes a "unified general theory of decision" that con­
tains both quantitative and qualitative decision theories. He 
considers a particular decision rule he calls Expected Quali-
tative Utility Maximization, which allows utilities to be non­
standard real numbers; he defines a certain preorder on the 
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Sometimes we use x to denote Cartesian product; the context 
will always make it clear whether this is the case. 

E1 and E2 say that 0 is associative and commutative. £3 
says that T is the left-identity of ® and E4 ensures that the 
expectation domain respects the relation on utility values. 

The standard expectation domain, which we denote E, is 
(R, [0,1], R, +, x ) , where the ordering on each domain is the 
standard order on the reals. 

2.2 Decision Situations and Decision Problems 
A decision situation describes the objective part of the cir­
cumstance that the DM faces (i.e., the part that is independent 
of the tastes and beliefs of the DM). Formally, a decision sit­
uation is a tuple A — {A, 5, C), where 

• S is the set of states of the world, 

• C is the set of consequences, and 

• A is a set of acts (i.e., a set of functions from S to C). 

An act a is simple i f f its range is finite. That is, a is simple 
if it has only finitely many consequences. Many works in 
the literature focus on simple acts (e.g., [Fishburn, 1987]). 
We assume in this paper that A contains only simple acts; 
this means that we can define (generalized) expectation using 
finite sums, so we do not have to introduce infinite series or 
integration for arbitrary expectation domains. Note that all 
acts are guaranteed to be simple if either S or C is finite, 
although we do not assume that here. 

A decision problem is essentially a decision situation to­
gether with information about the tastes (and beliefs) of the 
DM; that is, a decision problem is a decision situation to­
gether with the subjective part of the circumstance that faces 
the DM. Formally, a nonplausibilistic decision problem is a 
tuple (A, U, u) , where 

• A = (A ,5 , C) is a decision situation, 

• U is a utility domain, and 

• u : C —> U is a utility function. 

A plausibilistic decision problem is a tuple (A, E, u, PI), 
where 

• A — (A, 5, C) is a decision situation, 

• E= (U,, P, V, ®, ®) is an expectation domain, 

• u : C —> U is a utility function, and 

• PI : 2s: —> P is a plausibility measure. 

We could have let a plausibilistic decision problem be simply 
a nonplausibilistic decision problem together with a plausi­
bility domain and a plausibility measure, without including 
the other components of expectation domains. However, this 
turns out to complicate the presentation (see below). 

We say that V is standard i f f its utility domain is R (and, 
if D is plausibilistic, its plausibility measure is a probability 
measure and its expectation domain is E). 

2.3 Expected Utility 
Let V be a decision problem with S as the set of states, U as 
the utility domain, and u as the utility function. Each act a of 
V induces a utility random variable ua : S —► U as follows: 
ua(s) = u(a(s)). If in addition V is plausibilistic with P 
as the plausibility domain and PI as the plausibility measure, 
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nonstandard reals and makes decisions based on maximiz­
ing expected utility (with respect to that preorder). That his 
framework has EU as a special case is immediate, since for 
the standard reals, his preorder reduces to the standard order 
on the reals. He argues informally that Maximin is a special 
case of his approach, so that his approach can capture aspects 
of more qualitative decision making as well. It is easy to see 
that Lehmann's approach is a special case of GEU; his rule is 
clearly not universal in our sense. 

2 Preliminaries 
To make this paper self-contained, much of the material in the 
first three subsections of this section is taken (almost verba­
tim) from [Chu and llalpern, 2003]. 

2.1 Plausibi l i ty, Ut i l i ty , and Expectat ion Domains 

Since one of the goals of this paper is to provide a general 
framework for all of decision theory, we want to represent 
the tastes and beliefs of the DMs in as general a framework as 
possible. To this end, we use plausibility measures to repre­
sent the beliefs of the DMs and (generalized) utility functions 
to represent their tastes. 



(non)plausibilistic decision problems, and whose range, de­
noted ran (R), is a collection of preference relations on acts. 
If doin(R) and a1 and a2 are acts in V, then we write 

Here are a few examples of decision rules: 
• GEU is a plausibilistic decision rule whose domain con­

sists of all plausibilistic decision problems. Given a decision 
p r o b l e m w e 
have for all 
acts _ of A. Note that GEU would not be a decision rule 
according to this definition if plausibilistic decision problems 
contained only a utility function and a plausibility measure, 
and did not include the other components of expectation do­
mains. 

• Of course, standard EU is a decision rule (whose domain 
consists of all standard plausibilistic decision problems). 

• Maximin is a nonplausibilistic decision rule that orders 
acts according to their worst-case consequence. It is a con­
servative rule; the "best" act according to Maximin is the one 
with the best worst-case consequence. Intuitively, Maximin 
views Nature as an adversary that always pick a state that 
realizes the worst-case consequence, no matter what act the 
DM chooses. The domain of (standard) Maximin consists 
of nonplausibilistic decision problems with real-valued util-

• Minimax Regret (REG) is based on a different philoso­
phy. It tries to hedge a DM's bets, by doing reasonably well 
no matter what the actual state is. It is also a nonplausibilistic 
rule. As a first step to defining it, given a nonplausibilistic de­
cision problem for each state 
let that is, is the least upper bound 
of the utilities in state s. The regret of a in state .s, denoted 

note that no act can do better than a by 
more than r(a, s) in state s. Let For 
example, suppose that and the DM picks a. Sup­
pose that the DM then learns that the true state is so and is 
offered a chance to change her mind. No matter what act she 
picks, the utility of the new act cannot be more than 2 higher 
then . REG orders acts by their regret and thus takes 
the "best" act to be the one that minimizes Intuitively, 
this rule tries to minimize the regret that a DM would feel if 
she discovered what the situation actually was: the "I wish 1 
had done a2 instead of a1" feeling. Thus, 
iff Like Maximin, Nature is viewed as an 
adversary that would pick a state that maximizes regret, no 
matter what act the DM chooses. It is well known that, in 
general, Maximin, REG, and EU give different recommenda­
tions [Resnik, 1987]. 

• The Maxmin Expected Utility rule (MMEU) [Gilboa and 
Schmeidler, 1989] assumes that a DM's beliefs are repre­
sented by a set V of probability measures. Act a1 is pre­
ferred to a2 if the worst-case expected utility of a1 (taken 
over all the probability measures in V) is at least as large as 
the worst-case expected utility of a2. Thus MMEU is, in a 
sense, a hybrid of EU and Maximin. To view MMEU as a 
function on decision problems, we must first show how to 
represent a set of probability measures as a single plausibil­
ity measure. We do this using an approach due to Halpern 
[2001]. Let the plausibility domain that is, all 
functions from V to [0,1], ordered pointwise; in other words, 

Thus, in this 
domain, is the constant function 0 and T is the constant 
function 1. For each let be the function 
that evaluates each probability measure in V at A"; that is, 

for all Let it 
is easy to verify that PIp is a plausibility measure. We view 
PIp as a representation of the set V of probability measures; 
clearly V can be recovered from The domain of MMEU 
consists of all plausibilistic decision problems of the form 

where V is 
a set of probability measures on MMEU(D) A2 

. Note that this 

• (Dempster-Shafer) belief functions [Dempster, 1967] are 
a representation of uncertainty that generalize probability. 
That is, every probability measure is a belief function, but 
the converse is not necessarily true.2 Given a belief func­
tion Bel, it is well-known that there exists a set PBcl of 
probability measures such that for all . Bel(Ar) = 

[Dempster, 1967]. A notion of expected 

2Due to lack of space, we assume that the reader is familiar with 
belief functions. 
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2.4 Decision Rules 
Intuitively, a decision rule tells the DM what to do when 
facing a decision problem in order to get a preference rela­
tion on acts—e.g., compare the expected utility of acts. Just 
as we have nonplausibilistic decision problems and plausi­
bilistic decision problems, we have nonplausibilistic deci­
sion rules and plausibilistic decision rules. As the name 
suggests, (non)plausibilistic decision rules are defined on 
(non)plausibilistic decision problems. 

We do not require decision rules to be defined on all deci­
sion problems. For example, (standard) EU is defined only 
on standard plausibilistic decision problems. More formally, 
a (non)plausibilistic decision rule R is a function whose do­
main, denoted dom(R.), is a subcollection of the collection of 



Although it can represent many decision rules, GEU cannot 
represent CEU. We can in fact characterize the conditions 
under which a decision rule is representable by GEU. 

There is a trivial condition that a decision rule must satisfy 
in order for it to have a GEU representation. Intuitively, a de­
cision rule R respects utility if R relates acts of constant util­
ity according to the relation between utility values. Formally, 
a decision rule 7v respects utility i ff for all dom(R.) with 
A as the set of acts, S as the set of states, U as the utility 
domain, and u as the utility function, for all a1 ,a2 A, if 

for all states then 

(3.5) 
We say that R weakly respects utility i f f (3.5) holds for all 
constant acts (but not necessarily for all acts of constant util­
ity). It is easy to see that GEU respects utility, since 
for all is a substructure of . Thus 
if R does not respect utility, it has no GEU representation. 
While respecting utility is a necessary condition for a deci­
sion rule to have a GEU representation, it is not sufficient. It 
is also necessary for the decision rule to treat acts that behave 
in similar ways similarly. 

Two acts a1, a2 in a decision problem V are indistinguish-
able, denoted i f f either 
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Intuitively, we can think of utility random variables and utility 
lotteries as descriptions of what an act a does in terms of the 
tastes (and beliefs) of the DM. If 7v is uniform, we can view 
7v as relating the acts indirectly by relating their descriptions. 

As the following theorem shows, all uniform decision rules 
have GEU representations. 

Theorem 3.4: For all decision rules R,1Z has a GEU repre­
sentation iff R, is uniform and R respects utility. 
Proof: The " i f direction is somewhat similar in spirit to the 
proof of Theorem 3.6, given below; due to the lack of space, 
we omit this direction. 

The key reason that GEU cannot represent nonuniform de­
cision rules is because they do not respect the indistinguisha-
bility relations imposed by the utility function (and the plau­
sibility measure). Recall that we require that r{D) ~ "D be­
cause we want a user of one decision rules to appear as if she 
were using another, without pretending that she has different 
tastes (and beliefs). So we want r to preserve the tastes (and 
beliefs) of its input. 

There is a long-standing debate in the decision-theory liter­
ature as to whether preferences should be regarded as ordinal 
or cardinal. If they are ordinal, then all that matters is their 
order. If they are cardinal, then it should be meaningful to 
talk about the differences between preferences, that is, how 
much more a DM prefers one consequence to another. Simi­
larly, if representations of likelihood are taken to be ordinal, 
then all that matters is whether one event is more likely than 
another. As we show below, if we require only that r{V) and 
V describe the same ordinal tastes (and beliefs), then we can 
in fact express almost all decision rules, including CEU, in 
terms of GEU. 
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The reader may have noticed an incongruity here. Ex­
ample 3.3 shows that MMEU has a GEU representation; 
moreover, as shown earlier, MMEU produces essentially the 
same order on acts as CEU. However, CEU has no GEU 
representation. There is no contradiction to Theorem 3.4 

We want to show next that almost all decision rules have 
an ordinal GEU representation. Doing so involves one more 
subtlety. Up to now, we have assumed that plausibility do­
mains are partially ordered. This implies that two plausibil­
ity measures that represent the same ordinal beliefs necessar­
ily induce the same indistinguishability relation (because of 
antisymmetry). Thus, in order to distinguish sets that have 
equivalent plausibilities when computing expected utility us­
ing and , we need to allow plausibility domains to be 
partially preordered. So, for this result, we assume that is 
a reflexive and transitive relation that is not necessarily anti­
symmetric (i.e., we could have that 
but 



Theorem 3.6 shows that GEU can emulate essentially all 
decision rules. Thus, there is a sense in which GEU can be 
viewed as a universal decision rule. (We remark that although 
we have focused here on alternatives that are acts, in the sense 
of Savage, that is, functions from states to consequences, it is 
not hard to show—and we do in the full paper—that the same 
results hold if alternatives are taken to be horse lotteries, in 
the sense of Anscombe and Aumann [1963].) 
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Theorem 3,6: A decision rule R has an ordinal GEU repre­
sentation iff R weakly respects utility. 
Proof: There are two cases, plausibilistic and nonplausibilis-
tic. They are almost identical; we just do the plausibilistic 
case here. (Also, the "only i f " direction is quite similar to the 
one in the oroof of Theorem 3.4. so we omit it here.') 


