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Abstract

Different qualitative models have been proposed
for decision under uncertainty in Artificial Intelli-
gence, but they generally fail to satisfy the princi-
ple of strict Pareto dominance or principle of "ef-
ficiency", in contrast to the classical numerical cri-
terion — expected utility. In [Dubois and Prade,
1995J qualitative criteria based on possibility the-
ory have been proposed, that are appealing but inef-
ficient in the above sense. The question is whether
it is possible to reconcile possibilistic criteria and
efficiency. The present paper shows that the an-
swer is yes, and that it leads to special kinds of
expected utilities. It is also shown that although nu-
merical, these expected utilities remain qualitative:
they lead to two different decision procedures based
on min, max and reverse operators only, generaliz-
ing the leximin and leximax orderings of vectors.

1 Introduction and motivation

A decision-making problem under uncertainly is a 4-tuple
(S, X, A, =), where S is a set of states of nature, X" & sel
of conscquences, A = X the set of possible acts (in deci-
sion under uncertainty, an act is a function f : §— X)and >
is a preference relation on A, usually complete and transitive
(i.c. is a complete preorder).

A numerical approach is classically advocated (see e.g.
[Savage, 1954]) for encoding both the information pertain-
ing to the states of nature and the preferences on A": uncer-
tainty is represented by a probability distribution p and pref-
erence is encoded by a utility function v : X — [0,1] .
The pair < p, u > will be called a probabilistic utility model,
PU-model for short. Acts are then ranked according to their
expected uttlity EUp, ., (written here in the finite setting):

f » U pu g A4 EUp.u(f} ..> EUP.U{Q)
where, Yh € A BU, y(h) = 37,5 p(5) - u(h(s)).

Information about preference and uncertalnty in decision
Iproblems cannot always be quantified in a simple way, but
lonly qualitative evaluations can sometimes be attained. As a

! Since expected utility is not sensitive to linear transformations
1of u, the choice of [0,1] as the range for u is made for convenience.
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consequence, the topic of qualitative decision theory is a nat-
ural one to consider [Pearl, 1993; Dubois and Prade, 1995;
Brafman and Tennenholtz, 1997; Dubois et al, 1998b; Doyle
and Thomason, 1999; Giang and Shenoy, 2000; Dubois et
al, 2000], Giving up the quantification of utility and uncer-
tainty has led to give up the expected utility (EU) criterion
as well: the principle of most theories of qualitative deci-
sion making is to model uncertainty by an ordinal plausi-
bility relation on events and preference by a complete pre-
ordering on consequences. In [Dubois and Prade, 1995;
Dubois et ai, 1998b] two qualitative criteria based on pos-
sibility theory, an optimistic and a pessimistic one, are pro-
posed and axiomatized whose definitions only require a finite
ordinal scale L = {0, < mw < 1} for evaluating both
utility and plausibility:

o frorrau g4 Uorraulf) 2 Uopra.,{g) where
Vh,Uoppau{h) = max,eg min(n(s), p(h{s)})

. f tPES,‘K,jI 4§ UPES,K,;J (f) > UPF.‘.‘:'.K,JJ.(U) where
Vi, Upgsr(h) = min,eg max(n(x(s)). p(h{s))),

where n ¢ L — L is the order reversing function of L.,
n : 8 — L is a normalized possibility distribution and
10 X — L is a utility function on X. In the following,
< 8, X, L, 7, p > will be called a qualitative possibisitic util-
ity model {QPU-model) and we will assume S, X and Ltobe
finite, as is generally the case in qualitative decision making.

The value Uppg . . (f) 1s high only if / gives good conse-
quences in every “rather plausible” state. This criterion gen-
cralizes the Wald criterion, which estimates the utility of an
act by that of its worst possible consequence. Upgsx,, 18
thus “pessimistic” or “cautious”, the pessimism being moder-
ated by taking relative possibilities of states into account. On
the other hand, Uy pr.x; is a mild version of the maximax
criterion which is "optimistic", or "adventurous".

Although appealing from a qualitative point of view, pos-
sibilistic utilities suffer from a lack of decisiveness called
the "drowning effect": when two acts give an identical and
extreme (either good or bad) consequence in some plausi-
ble state, they may be undistinguished by these criteria, al-
though they may give significantly different consequences
in the other states. As a conscquence the principle of
Parcto dominance is not satisfied. That is it may be the
case that Vs, u(f(s)} > u{y(s)) and that Is*, w(s*) >
0 and u(f(s*)) > p{g(s*)) but g = .
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Examplel Let § = {s1,8} L = {0,1,2,3,4,5}. Let
f and g be two acts whose utilities in states s, and s, are
listed below, as well as the possibility degrees of the states.
One can check that Ugprn o(f} = Uopre.(g) = 3 and
Urgsxulf) = Urgsx.(9) = 3 although f strictly dom-
inates g (p{f(s1)) = ul{g(s1)) and f has a better conse-
quence in s3).

st | 82
TR
g | 3] 1!
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Most of the qualitative approaches [Pearl, 1993; Dubois
and Prade, 1995; Brafman and Tennenholtz, 1997; Giang and
Shenoy, 2000], fail to satisfy Pareto dominance. But this is
not the case within expected utility theory, since this model
obeys the following Sure-Thing Principle (STP) that insures
that identical consequences do not influence the relative pref-
erence between two acts:

STPVf, g, hh', fAh = gAh & [AR = gAl,

where f Al denotes the act identical to fon A C 8§ and to
hon S\ A. When ~ is complete and transitive, the principle
of Pareto dominance is a direct consequence of the STP. So, is
it possible to benefit from the STP in the possibilistic frame-
wortk in order to satisfy the Pareto principle ? Unfortunately,
it can been shown that this is generally not possible:

Proposition 1 Let < 5, X, L, 7, s > be a QPU model.
7 OrTxu (OF = pES 2 0) Satisfies the STP
< ANs* :w(s*) =1, and Vs £ 5%, m(s) = 0.

This means that possibilistic decision criteria cannot obey
the STP, except in a very particular case: when the actual state
of the world is known, i.e. when there is no uncertainty at all!
So, we cannot stay in the pure QPU framework and escape the
drowning effect altogether. The idea is then to cope with the
difficulty by proposing refinements of the possibilistic criteria
that obey the Sure Thing Principle %

This paper shows (Section 2) that any possibilistic model
can be refined by an expected utility. The kind of expected
utility that is at work, and the very special probability mea-
sure that underlies it, are studied in Section 3 under the light
of related work. It is also shown (Section 4) that although
numerical, these expected utility criteria remain qualitative,
since they lead to a decision procedure based solely on min,
max and reverse operators — these new procedures general-
ize well known leximin and leximax decision procedures .

2 Expected utility refinements of qualitative
possibilistic utilities

Recali that a refinement >’ of a relation > is a relation per-

fectly compatible with > (it agrees with > when - provides

a strict preference), but can break ties by setting f »' g for

some f, g that are indifferent w.r.t. =, Formally:

*The idea of refining QPU first appeared in [Dubois et al., 2000]:
the principle was to break ties thougth an extra criterion (e.g. refin-
ing the pessimistic QPU by the optimitic QPU or by another max-
tnorm aggregation). The use of a max operator kept the approach in
an ordinal framework, but forbade the full satisfaction of the STP

304

Definition 1 (Refinement)
' refines =NV geEA frg=>f*g

Since we are looking for complete and transitive relations
it is natural to think of refinements based on expected utility.
Savage [1954] has indeed shown that, as soon as a complete
preorder is desired that satisfies the STP and some very nat-
ural axioms, the EU criterion is almost unavoidable. So, the
question is: are there any expected ultility criteria that refine
the possibilistic criteria ?

Let < 8, X, L, 7, i > be a QPU model. When considering
the optimistic (resp. pessimistic) criterion, we are looking
for a probability distribution P and a utility function u such
that = g/« Tefines =opy x4 (€SP = pessp). The idea
is to build the EU criteria by means of a transformation x
L —> [0,1] that maps 7 to a probability distribution:

Definition 2 (Probabilistic transformation of a scale)

Let << 8, X,L, %, 1t > bea @GPU model. A probabilistic trans-
formation of L w.r.t. n is a mapping X ; L —> [0,1] such that
x(0z) =0 andp= x owis a probability distribution.

Notice the presence of the condition x{{lx} = 0 that ex-
presses the fact that the impossibility of an event (represented
by a degree of O, in possibility theory) is expressed by a null
probability. But the most plausible events (possibility degrees
of 1., obviously do not receive a probability degree of 1,
since they may be mutually exclusive. Notice also that we
are looking for a unique function X for transforming L —
both p and u will be built upon this transformation. This is
due to the fact that we assume that preference and uncertainty
levels arc commensurate and belong to the same scale : it is
thus natural to transform the degrees regardless whether they
model uncertainty or preference.

Moreover, m and g originally represent all the information
available to the user, both in terms of uncertainty of the actual
state of the world and preference over possible consequences.
So, no undesirable arbitrary information should be introduced
in the refined decision model and p and u must be as close
as possible to the original information: we are looking for
"unbiased" transformations of L. Formally:

Definition 3 (Unbiased transformation of a scale)
Let < S, X, L,m,pu > be a QPU model and x a
prohabilistic transformation of L.  x is unbiuased iff
Vo, € Lia < o’ & x{o) < x(a')

As a consequence, using an unbiased y ensures that « and
p = x o (resp. 1 and u = y o ;) are ordinally equivalent:
SV, 5" € 8,p(s) 2 p(s') & () > n(s"),
-Vz,y € X, ulz) = uly) & plx) = ply).

2.1 Expected utility refinements of optimistic QPU
Let us first provide a tractable sufficient condition for a prob-
abilistic transformation to generate an expected utility that
retines »oprn u:

Proposition 2 Let < S, X, L, 7, i > be a QPU model and x
be a probabilistic transformation of L w.rt. w. Also let H be
the condition ;

HVe,o'.feLst B> o> a,

x(e}- x(8) > x(a') - x(8) + (IS — 1) - x(1.) - x{e).
Then ¥ gu,yon.xop Fefines o pr » . whenever x satisfies H.

DECISION THEORY



H is a sufficient condition to generate an EU-refinement
of the optimistic QPU (it is also a necessary one when every
degree in L is attained by both 7 and u). Impertantly, there
always exists a probabilistic transformation of L satisfying H.
Letn, = |[{s € §,7(s) = a;}|and N =| § | +1.

Proposition 3
The function x : L = {ay < ... < ax} — [0,1] such that

x{xo) = 0 and x(o) = =, i = Lk satisfies B Yo > 0.

x e @ is a probability distribution iff v = (Z‘.__l‘k Fv—;';.':,r)‘l.

In the sequel, x* will denote the function x*{a,) = F‘&-
obtained with v = (3=, , =)'

Example 2 Let us take the QPU model of Example I, where
N = 2 L = {01,2,3,4,5} X"(L} is the series

k1 v _ "

{0, Wios e Wes oo ) Wherev = (% + i) Se
] 2
EU() = x*(8) x"(@) + x*(4) - x*(2) = 4 + .

EU(g) = x*(5) 2*3) +2* (@) x'(1) = 1 + m.
£ is thus preferred to g.

x" is in fact sufficient to generate every unbiased EU-
refinement of > pr x ., Since all such refinements are cquiv-
alent.

Definition 4 Two relations = and >' ure said 1o be equiva-
lent (= = Xy iffvfigce A frgefry

Propositiond Let < S, X, L,w, p > be a QPU model, x).
Az two unbiased probabilistic transformations of L wrt. w.
tf'.'f},\;a:r,xloﬂ and tEU,ngﬂ‘lgoﬂ. both rqim’ :OPT.‘.IT,].I
= tElI.\;on,Muu = tk‘(f.umr.ucu

Notice that Proposition 4 does not mean that the numbers
attached to the states by py = x1omand P, — X, ° , nor
the ones attached to the consequences by u; — \\ o and
Uy = \2 o are the same - it only means that the two models
are ordinally equivalent, that they make the same decisions
and order the events and the consequences in the same way.
It also implies that the refinements that docs not belong to this
class (they may exist, e.g. those which introduce a total order
in S or in X) cannot be unbiased : they must either introduce
a strict preference between equivalent consequences or order
equi-plausiblc states.

So, we get the following result for optimistic QPU models:

Theorem 1 For any QPUmodel < 8, X, L, 7,0 >:

o There exists an unbiased probabilistic transformation x*
of L wrt. 7 such that = gy 5 »on x~op TEfiNES ®OPT x ut-

o If y and X' are two unbiased transformations of L s.1.
Both = gu yor you N E Uy on.x'op FEfINE ZOPT 5 40
then tHU,xGﬂ,ny = tEU,x’mr.x’o;:-

We have hence obtained what we were looking for: for
any QPU model we are able to propose an EU model that re-
fines =oprau- As a refinement, it is perfectly compatible
with but more decisive than the optimistic utility. Moreover,
it does not use other information than the original one - it is
unbiased. Since based on expected utility, it obviously satis-
fies the Sure Thing Principle as well as Pareto Dominance.

DECISION THEORY

2.2 EU refinements of pessimistic QPU

‘When considering the pessimistic qualitative model, the same
kind of result can be obtained, noticing that * pr5 x ,, and
*opT,a .. are dual relations:

Proposition 8 Let < S, X, L7, > be a QPU model
Then: Vf|9 € A‘f >_"PE.5',1r,p gy toPT,W.ﬂ.Op f

Proposition 6 Ler < S, X, L, w, u > be a QPU model und x
be a probabilistic transformation of L wrt. m. Letp = o,
u=youu = x{lr)— x on o it holds that:

tEU.p,u refmes tOPT.ﬂ,p ‘_ﬁ tEU,p.u' mjf"es tPES,vr,,u-

Consequently, it is always possible to build a probabilistic
transformation y* using Theorem 1, a probability p=x o
and a utility function «' = y*(1,) — x¥* o n o u that define
an unbiased EU-refincment of > ppg x,,.. This provides the
following pessimistic counterpart of Theorem 1:

Theorem 2 For any QPU model < S, X, L, 7,4 >:

o There exist at least one unbiased transformation x* of
L wrt 7, a probability distribution p = x* o © and
@ utility fumction ' = x*(11) — x™ o n o y such that
> EUpw refines mpEs x .

o Let  uand )’ be twu unbiased probabilistic trans-
Jormations of L. If both = i yomx(11)-xonop @hd
™ El,x'om,x' (1)~ x"onop TEANC = PES x, then they are
equivalent.

At this point in the paper we have proved an important re-
sult for bridging qualitative possibilistic decision theory and
expected utility theory: we have shown than any optimistic
or pessimistic QPU model can be refined by a EU model.
Thus, we may conclude that (i) possibilistic decision criteria
are compatible with the classical expected utility criterion and
(ii) choosing a EU model is advantageous, since it leads to a
EU-refinement of the original rule (thus overcomes the lack
of decisiveness of the possibilisitic criteria), it satisfies the
STP and the principle of Pareto. But this does not mean that
qualitativeness and ordinality are given up. In Section 4, we
will show that, although probabilistic and based on additive
manipulations of numbers, these criteria remain ordinal. This
is very natural: since we start with an ordinal model and do
not accept any bias, we produce another (probabilistic but)
ordinal model, in which the numbers only encode orders of
magnitude — this is the topic of the next Section.

3 EU refinements and big-stepped
probabilities : related work

Both EU refinements of Section 2 are based on the same
transformation of the possibility 7 into a probability distri-
bution p = x o 7 *. The corresponding measure P is actually
a "big-stepped probability” that is, it satisfies:

3But the optimisite utility u = x o u is not equal to the pes-
simisitic utility v’ = x(1.) — y o 0 g u puts the emphasis on the
best consequences, while the pessimistic ' provides a high utility
when low consequences are avoided. 1t is actually hopeless to look
for a common refinement of > G pr 2., 80d » pEg 0, SinCE it may
happen that [ =opra,, gand g > pes,» ;. [ altogether.
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Definition 5§ A probability measure P s said o be big
.ttr_pped f_ﬁ” Vs € S, P({s}) > P{{sst P{{s}) <
P({sh}

In other terms, for any 5, p(s) > 3°. st pesry<p(s) PL8)-
Such measures are often encountered in the Al literature.
First, they have much in common with [Spohn, 1990]'s k, —
functions: these disbelief degrees can indeed be interpreted
as the order of magnitude of a e probability [Pearl, 1993;
Giang and Shenoy, 1999], which is obviously a big stepped
probability. Moreover, big stepped probabilities also form
a special class of lexicographic probabilities in the sense
of [Blume et al, 1991; Lehmann, 1998] — we add the re-
striction that here all the states within a single cluster arc
equiprobable. Indeed each cluster corresponds to a class of
equipossible states and since we are looking for unbiased
transformations, equipossibility leads to equiprobability. Fi-
nally, Definition 5 generalizes the notion of big-stepped prob-
ability of [Snow, 1999; Benferhat ef al. , 1999] — which is
recovered when each cluster is a singleton. Big stepped prob-
abilities have also been proposed by [Dubois et a/., 1998a] as
a way to refine any possibility/necessity measure *.

This reasoning on the order of magnitude also applies to
utility: in a discrete setting, big-stepped utilities can be de-
fined in the same way:

Deﬁnition 6 A wtility measure u is said to be big stepped iff:
Vr,r' € X, w{z) > u{z’) = ulz) > (IS] - 1) - u(r)

The utility functions y* o p and *(1,) — x*ocnepu
are big stepped utilities. It is also the case of the c utilities
that underly k-utility functions [Pearl, 1993; Wilson, 1995;
Bonet and Geffner, 1996; Giang and Shenoy, 2000]. These
works have advocated an approach to decision under uncer-
tainty based on k-functions, but without taking the STP into
account (decision is made on the order of magnitude only,
with a criterion comparable to optimistic utility). The present
work makes a step further: in order to satisfy Pareto optimal-
ly, we go back to the underlying E utilities and probabilities,
using double exponents for epsilons instead of simple ones
— we remain "big stepped" on the join scale. The other con-
tribution of our approach is that it can be followed to encode
pessimistic utilities as well.

[La Valle and Fishburn, 1992; Hammond, 1998; Lehmann,
1998] have studied decision models of lexicographic prob-
abilities or lexicographic utilities, but in these models, the
lexicographic characteristic is used only on one of the two
dimensions (either the likelihood level, or the utility level).
We operate on both dimensions simultaneously using a join
transformation.

4 QPU refinements are qualitative

Although probabilistic and based on additive manipulations
of utilities, our EU criteria remain ordinal, as paradoxical as
it may seem at first sight. To establish this claim, this Section
relates the previous EU criteria to the ordinal comparison of

“The “probabilistic likelihood relation” p = y o is a refincment
of both the necessity (N) and possibility (IT) relations based on .
Reciprocally, it is easy to show that, for any big stepped probability
P, there exists a 7 such that £ refings both [ and V.
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vectors. When S is finite, the comparison of acts can indeed
be seen as a comparison of vectors of pairs of elements of L:

Definition 7 The representative vector of any act f € A is
the vector [ = ((F1, i)y (T, )y - (M, i) where
; stands for w(s,} and p, for g:(f(sl)).

Comparing acts thus amounts to comparing elements of
(L?}¥. For instance, > py.n,. is @ restriction to the case
M = 2 of the general = psqrrmin relation on (L)Y

Definition 8 (Maxmin relation) Let it,7 € (LM)N. Then
U > Marnun U & mm}&r JEIEII‘}J Uy 2 mm&}{_uui{ LI
where w, ; is the j** element of the i'" vector of 5 € (LM N

If i and ¥ are representative of some acts, M = 2and itis
ohvious that f »opT.a.u § © f % Mugmun §. In this Section
we will propose a refinement of - a1 qrmin. based only on the
ordinal comparison of degrees and we will show the equiv-
alence between this purely syntactical decision rule and the
above EU models.

4.1 Case oftotal ignorance

Let us first consider the degenerate case of total ignorance,

where ¥s € 5,7{s) = 1. In this case, the wmpamon of
acts comes down to the compamcn of utility degrees: [ =

((JL‘P":) (lfn “N)) becomes f (#1; . HU'N) SO

S >-0PT11 w01 pree Gand £ = prgmy 94T £ > ain
g. In decision making, the comparison of vectors by the max
and min operators is well known, as it is known that it suffers
from a lack of decisive power. That is why refinements of
= pan and >, have been proposed [Moulin, 1988]:

Definition 9 (Leximax, Leximin) Let &, 7 € L™. Then

® U Ximar T & (Vi = vgyor NV < duy =

5y and gy > vgy)

® U Xtman U & (Y, () = vy 0r V] > 4,05 = v

and Uy > 'L'(,])
where, for any @ € LN, Wy is the k-th biggest element of &
(t'.e. Wiy > ... 2 'lU(N)).

In practice, the leximin (resp. leximax) comparison con-
sists in ordering both vectors in increasing (resp. decreasing)
order and then lexicographically comparing them.
Example3 Let i = (3,2,4) and ¥ = (2,2,4); @ >tas T
since gy = vy = 4 and uey = 3> v =24 > U
sinceugy = vy =~ 2andupy = 3 > vg) = 2

1t is obvious that e refines =,qz and >im., refines
> min. Moreover, both relations escape the drowning effect

and are very efficient: the only pairs of ties are vectors that
are identical up to a permutation of their elements.

4.2 General Case

Since the leximax and leximin comparisons are good candi-
dates in a particular case, we have imagined an extension of
these AProcedures to the case of 2 dimensions ( (L )" instead
of L™). The only thing that we need is to use any complete
preorder > on vectors of L instead of the classical relation
> on L. It is then possible to order the sub-vectors of any w
according to [> and to apply any of the previous procedures:

DECISION THEORY



Definition 10 (Leximax(C-), Leximin(t>)) Let > be a com-
plete preorder on LY | = the associated equivalence relation
and t> is the strict part of . Let &, 7 € {(LMYN, Then
o i timaz([z) (= (Vj, Ui ) = Y=, 5) OF Jise Vi «
LU, = Ve 5) and w0 & V).
® i tf'rl'u‘!l(t_") U< (VJ, i i) = Uit> 53 OF Fowr V5 >
be,) = Ue,) and e o) > Ye,)
where, for any @ € (LMYN, wp ) is the it
vector of Ui according to t,

biggest sub-

The leximax procedure can in particular be applied to the
preorder &> =~,...... In practice, this comparison consists in
first ordering the clements of each sub-vector in increasing
order w.r.t >, then in ordering the sub-vectors in decreasing
order (w.ri. >pu.n). It is then enough to lexicographically
compare the two new vectors of vectors.

Proposition 7 (flmaz(f_hmu} order)
i) F iz tmin) 15 @ complete preorder;
ii) 7 mar(> tmin) refines Fiamran’
iif) if N =1, then P tmer(s tmen) = Sy
i) If AL = 1, then =z (e bnan) =S tmar-

80, = imr(=tmn) 1 the refinement of >0, we desire.
Let us now compare representative vectors of acts using this
relation (letting M = 2) — we get a refinement of =g p7 0
Proposition 8 The relation > ppor(rimin) defined by

f t.‘nm:r(?:!miu) §< f t!maz(thmn) ﬁf'é?ﬁﬂﬂ tOPT,«.n»
Example 4 The representative vectors of [ and g in Example
Lare: = ((5,3),(2.4), § = ({5,3), (2, 1)). (5,3) Ztpmun
(E's 3)- (42) > lnin (2; 1))- 30 f *."mn:(thruﬂ) E

The same kind of reasoning can be followed to re-
fine =pgs . The pessimistic utility of act f is
minge 5 max{n(ws)), 2{f(s))). We nced to refine a mini-
max procedure, and this can be done usIng 1. (xtmar)-
Since operator maz does not apply to (w(s), u( f{s))) but to
(ru{m(s)), p{f(s})), we use the m-reverse vectors of acts:

Definition 11 The w-reverse vector of an act f € A is
n(f) = ((n{w{s1)), w{f (1)), - - (n{a(sn 1) (S (500))):

Proposition 9 7he relation = inun(=tmarn) defined by

f E.'tmm(ttmur.u) g« '”'(f) thum(t[mar) "‘{g)
refines T PES -

So, the lexi-refinement of >pgs ., applies the lex-
imin{leximax) comparison to the m-reverse vectors, while the
refinement of > opy.n, applies the feximax(leximin) com-
parison directly to the representative vectors. Both proce-
dures are purely ordinal: the degrees in L are only compared
using min, max and reverse operators — only their relative
orders matter. Our final result is that these refinements are
equivalent to the EU-refinemcnts identified in Section 2.
Theorem 3 Let < S, X, L, 7, ;s > be a QPU model and x «
probubilistic transformation of L wrt, m, p = yowm u =
xomu' =x(lp)—xonou:

i) tEU,p.u !’Qﬁﬂ&? >_"OPT,1r.;1<=:’tEU.p.uEt!muw(thmﬂ)'
I.D tEU.p,u’ reﬁnes .>_-PES.-«,p<=>tEU.p,n'Ettmtﬂ(klmar,ﬂ]-

DECISION THEORY

So, the probabilistic rcfinements of possibilistic utili-
ties are equivalent to purely comparative proccdures: eifi-
cient QPU refinements are probabilistic but remain qualita-
tive. Reciprocally, we can prove that the " linaa (=tran) and
> tman(>lmaz.n) Preference relations over vectors of vectors
always admit a representation by a sum {on N) of products
{on M), provided that L is discrete - but this is beyond the
scope of this paper, that focuses on decision under uncertainty
{where M=2),

5 Conclusion

The topic of Qualitative Decision Theory has received much
attention in the past few years and several approaches, includ-
ing QPU, have been proposed. This latter model forms a con-
venient framework for a qualitative expression of problems
of decision under uncertainty. However, it suffers from a lack
of decisiveness. We have proposed EU-based refinements
of QPU which proved to be perfectly compatible with the
original qualitative expression of knowledge and preferences:
the only difference is that lexicographic (leximax(leximni)
or lexiinin (leximax)) comparisons are used instead of
rnaxmin or minmax. The axiomatization of these decision
procedures is out of the scope of this paper. It actually con-
sists in the 5 basic Savagean axioms, together with "mild"
versions of the pessimism or optimism axioms of possibilis-
tic utilities (see [Fargier and Sabbadin, 2003]).

s-utility functions have also received much attention in Al
but they too suffer from a lack of decisive power. Indeed, due
to the min operator in U, (f) = min.eg{r(s) + p{f(s)}.
they cannot satisfy Savage’s STP. We claim that > , can be
EU-refined, in the same way as we did for QPU, and that
the EU-refinement can be expressed syntactically by replac-
ing the min operator by a /eximin one. The proof of this
conjecture, which would follow the same line as the one pre-
sented here, is left for futurc research.

The other extension of our work is to refine monotonic
utifities [Dubois et al, 1998¢] a family of decision crite-
ria that generalizes QPU and are based on the Sugeno in-
tegral. Monotonic Utilities admit a maxmin expression
mar.cq(min{o(F), u(f{£))), where o : 25 — Lisa
monotonic measure and ¥, = {s € Sstpu(f{s')) >
U(/(-*))}- Again, we conjecture that replacing min and max
with their lexicographical versions allows an efficient refine-
ment and lead to Choquet-EU criteria [Gilboa, 1987].

Appendix

Most of the proofs are omitted for sake of brevity

and can be found in [Fargier and Sabbadin,
2003] or at the following address http://www-

bia.inra.fr/T/sabbadinAVEB/FargierSabbadin03Rap.html.
We provide here the skecthes of the most interesting ones.
Proof of Proposition 1 <= is trivial to show.
= Foranyz,y € X, 4 C 5, let us denote 2 Ay the act such thut
rAy(s) = z it s € A, 2 Ay(s) = y otherwise, Let r0 and rl be
two conseguences such that p{z0) = 0 and p{r1) = 1.

Suppose there exist 51,52, 81 # 52, #{;) = 7w(s2) > Og
Then, we have xl{s2}z0 > OPT m r08z1 and
z1{sy, s2}20 Zopr.a., *1{a;}al), which violates the STP. So, if
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=0PTx satisfies the STP then there exists at most oene 5* such
that wr(s*) > 0j,. Since # is normalized, 8* exists and w{s*) = 1.
In the pessimistic case, just notice that 1 >prg x,. z0{sz}zl
whercas 20{s1, 52 }] * pgs.ry 20{s }xl. a

Skectch of the proof of Proposition 4, Let us denote L, = {a, €
L3r e X,p(z) =} --letusrank L, = (g < -~ € tr, €
- < og)and Ly = {f, € L,3s € 8,7x(s) = B,} —let us rank
Ly = (fo <+ < i < v < Bir). 1 can be assumed (without
loss of generality) that L, C L, = L.

Consider any o, € L and 4, = min{f, € L., 4, > a.}. There
exists 4 pair (s, x) where {s) = §,, p(x) = e. Let us also denote
20 (resp. 21) a consequence of utility O {resp. 1.).

The proof of Proposition 4 is based on the observation that act
[ [(s) = z, f(5") = 0 is always strictly preferred by =0 p7,xu
toact g : gls') = r1 when n{s’) < o, and ¢(s") = @,
whenn(s') > a..

From this, it can be shown that (i) the sub products, in the expres-
sion of the expected utility, are ranked in the same way by any x and
that (ii) the act with the biggest j-product is surely strictly preferred
to the other act (whatever the values of the remaining terms).

Lemma 1 Let x1 and x2 two unbiased transformation of L re-
fining moprau. I holds that: Ya,of ¢ Ly, ¥B8,5° € La:
xi{e) - xa(B) > xale) . xi(8) <= xz2(a) . x2(8) >
x2{e’) . x2(17')
Lemma 2 f >gujonon § 4
V<G XTar () - X{Has () = X(Tou(y) - X{(#au(ry) and
X(Marin)  W(or () > X(Fas(n) - X(tteu(n )

Lemmas 1 and 2 together are enough to prove the equivalence of
" EU jon, g op AN 7 EU, yq0w,xgou, Whatever x: and x2: Indeed,
f = EUxongou § ¢ (from Lemma 2) 33/Vi < 5, x1{Fa100) -
Xt{ttary) = X1 (Taey) - X1(pau(ny) and

X1(Tar(y) - Xilpar(y) > X1{7outp) - Xa{khos(y)). But, from
Lemma |, the comparison of products are the same if we change

X1 into xz, so we get: IV < o xa{marg)  x2(Bary) =
X2(Faue)) X2 {Bon () a0 X2 (7, p 3 ) d2{pr () > X2(Fonii)
¥2({taug, ), which implies (Lemma 2) that > g,y gom, xgop-

The same reasoning, simply swapping x; and xz implies
> EU.xgoragop=> = Ellxj0n,3 04, [fom which we get the equiva-
tenice of > £17,5 , om,a10p 80A 2 EL5 gom,xp0u- a
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