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Abstract 

Often the most expensive and time-consuming task 
in building a pattern recognition system is col­
lecting and accurately labeling training and testing 
data. In this paper, we explore the use of inexpen­
sive noisy testing data for evaluating a classifier's 
performance. We assume 1) the (human) labeler 
provides category labels with a known mislabeling 
rate and 2) the trained classifier and the labeler are 
statistically independent. We then derive the num­
ber of "noisy" test samples that arc, on average, 
equivalent to a single perfectly labeled test sam­
ple for the task of evaluating the classifier's perfor­
mance. For practical and realistic error and misla­
beling rates, this number of equivalent test patterns 
can be surprisingly low. We also derive an upper 
and lower bound for the true error rate when the 
labeler and the classifier are not independent. 

1 Introduction 

The overall construction of a modern classification system 
can be divided into four broad tasks: (1) specifying the clas­
sifier type, (2) collecting data, (3) training the classifier (i.e., 
learning), and (4) evaluating the classifier (i.e., testing) [Duda 
et al, 2001]. The second stage, data collection, can further 
be divided into two tasks: gathering samples and labeling 
them. Recently, the machine learning community has real­
ized that in many practical cases the most expensive part of 
the whole design process is the labeling of such samples. 
For example, there is an enormous number of text docu­
ments on the internet that can be obtained at very low cost; 
however, relatively few of these have been labeled — e.g., 
according to content topic, language, or style — in a con­
sistent way that would facilitate training a classifier. Like­
wise, there are large databases of recorded speech, handwrit­
ten digits, and printed characters but these databases, too, 
are either not labeled accurately or not labeled at all [Stork, 
1999]. To reduce the labeling expense, many researchers have 
sought ways to modify training algorithms so as to utilize 
both labeled and unlabeled data [Blum and Mitchell, 1998; 
Nigam et al, 2000]. This approach has shown surprisingly 
encouraging results, in some cases reducing the number of 
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labeled samples by a few orders of magnitude [Nigam et al, 
2000]. 

In order to build up and extend this success in reducing the 
labeling cost, we turn to the problem of reducing the need for 
accurately labeled data in the classifier evaluation stage. In 
fact, most of the experiments for learning with labeled and 
unlabeled data use much more labels for testing than train­
ing [Nigam et al, 2000]. Thus we now need to address the 
labeling cost for classifier evaluation. 

As with many areas of commerce, the general economics 
of labeling is such that the higher the quality (accuracy) of la­
beling, the greater the associated cost. This greater cost may 
be due to greater expertise of the labeler, or the need for mul­
tiple passes of cross-checking, or both. There is thus an addi­
tional cost to "clean" or "truth" those data and labels. In some 
situations, such as marking a text corpus, the labeling task is 
complicated enough that even experts need several passes to 
reduce labeling errors [Eskin, 2000]. Furthermore, in some 
application domains, obtaining accurate labels is simply too 
cost prohibitive. For example, for some medical diagnostics, 
the true disease can only be known with expensive or inva­
sive techniques. Similarly, in remote sensing, one must send 
measuring instruments to the ground location to obtain the 
"ground truth," and the transportation cost can be astronom­
ical. (It is quite literal for remote sensing of other planets 
[Smyth, 1997].) For both situations in practice, one must rely 
on the imperfect judgements of experts [Smyth, 1997]. 

We propose to lower the labeling cost in classifier evalu­
ation by using cheaper, noisy labels. This paper examines 
methodologies of estimating the error rate and classifier con­
fusion matrix using test data with noisy labels. We shall see 
that even a slight labeling inaccuracy (say, 1%) can have a 
significant effect on the error rate estimate when the classi­
fier performs well. In addition, when data sets used to be 
small and expensive to collect, it made sense to spend each 
additional labeling effort to increase label accuracy on that 
small data set. However, when data sets are large and cheap 
to collect, it is no longer obvious how one should spend each 
additional labeling effort. Should one spend it labeling the 
unlabeled data, or should one spend it increasing the accuracy 
of already labeled data? We present a preliminary analysis to 
this question. 
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2 Preliminaries and notation 
Our formulation assumes an object x possessing a true label 
y € Ω, where is the set of possible states 
of nature (e.g., category membership) for the object. The ob­
ject is presented to a labeler, who marks it with a label 
as his guess of y. The situation that is call a labeling 
error (or a mislabeling). The classifier system, on the other 
hand, is presented with the feature vector x that represents 
certain aspects of the object, and the classifier outputs a la­
bel y(x) G as its guess of y. For notational convenience, 
we will call the classifier output y, and its dependence on the 
feature vector x is implicit. The situation that is call a 
classification error (or a misclassification). 

The probability of the labeler making mistakes, 
is called the mislabeling rate. The probability of the classi­
fier's label being different from the labeler's label, 
is called the apparent error rate. Our goal is to estimate 
Pr[y =y]. , which is called the true error rate. Note that it 
is possible to have a high apparent error rate even with a per­
fect classifier (with a true error rate of zero) simply because 
of a high mislabeling rate. That is, the classifier can classify 
all test data perfectly, but wil l often disagree with the test la­
bels because those labels are incorrect. On the other hand, it 
is also possible to have a zero apparent error rate even with a 
high true error rate if the classifier and the labeler make the 
same kind of mistakes. 

The confusion matrix for the human labeler is defined as 

For many two-class cases where one class has a much 
higher prior probability, the actual error rate is not a good 
measure of classifer usefulness. For example, in detecting 
email spams or network intrusions, the undesirable events 
are so rare that one can easily get an error rate less than 
1% by classifying all events as "desirable." In those situa­
tions, then, one may want to compute the entire confusion 
matrix or metrics such as precision and recall [Frakes and 
Baeza-Yates, 1992]. We denote as the "rare" class (e.g., 
spams or network intrusions). For the classifier, precision 
is defined as and recall is defined as 

, and analogously for the labeler. Note 
that precision and recall can be derived from the confusion 
matrix and the class prior probabilities. 

3 Obtaining the true error rate 
In examining the relationship between true and apparent error 
rates, we make the constraint that we have a two-class prob­
lem, that is, 

The above derivation assumed that iv vt t other­
wise the noisy labels are meaningless. In practice, 
is always much less than 1/2. More important is the inde­
pendence assumption that the labeler and the classifier make 
errors independently, or stated succintly, 

. That is, knowing that the labeler had 
made an error on a pattern does not change the probability 
that the classifier would also make an error, and vice versa. 
Section 6 wil l deal with some situations in which the indepen­
dence assumption does not hold. In the meantime, we argue 
for this idealization and simplification based on the fact that 
human and computer generally classify samples using differ­
ent methodologies, and thus they may not make similar kinds 
of mistakes. 

3.1 Example: Apparent er ror rate for various t rue 
er ror rates and mislabeling rates 

Equation 2 gives us a way to account for noisy labels when 
calculating the true error rate. A natural question, then, is 
how important is it to correct for the influence of noisy la­
bels? Let's consider some classification systems with error 
rates between 2% and 10%! and testing data sets with 1% to 
5% incorrect labels. Table 1 shows the apparent error rate for 
classifiers of different accuracy and testing data of different 
mislabeling rates. The percentage increase over the true error 
rate is also shown. For example, even when only 1% of the 
testing labels are wrong, a classifier with true error rate of 6% 
wil l have an apparent error rate 15% higher (at 6.88%). The 
percentage increase is even more dramatic with noisier labels 
or more accurate classifiers. A quick rule of thumb is that, 
when the labels have relatively few errors, the denominator 
in Eq. 2 is approximately 1.0 and can be ignored. The mis­
labeling rate of the testing labels is then just an 
additive component to the true error rate. Continuing the pre­
vious example, a 1% mislabeling rate for a classifier with true 
error rate of 6% makes the apparent error rate approximately 
7%, when the actual is 6.88%. 

4 Noisy labels for estimating true error rate 
Above we assumed knowledge of the apparent error rate, 

but in practice, we must estimate this rate us­
ing test data. In this section, we analyze the effects of 

1 Wc note that many classifi ers on the UCI datasets have accuracy 
within this range [Kaynak and Alpaydin, 2000]. 
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Table 1: The left sub-columns of the table show the apparent error rates for different true error rates 
and different mislabeling rates based on Eq. 2. It is assumed that the labeler and the classifier make errors 
independently. The right sub-columns of the table, with up-arrow signs, show the percentage increase of the apparent error 
rate over the true error rate (i.e., 

Figure 1: The figure shows the number of noisy labels needed 
to achieve the same variance in the true error rate estimate as 
a single perfect label (see Eq. 3). The four plots represent dif­
ferent true error rates. As the mislabeling rate increases, more 
noisy labels arj needed to achieve the same confidence. Note 
that, in the ranges shown in the figure, when the mislabeling 
rate is smaller than the true error rate, a single perfect label is 
equivalent to less than four noisy labels. 

such estimates. Assume we have / objects in the test set, 
each with a feature vector x, , true but unknown label yi, 
noisy label y,, and classification in. Assume further that 
t u p l e s a r e independent 
and identically distributed as The apparent er­
ror rate estimate is in which 

is the indicator function (i.e., I[evcnt] = 1 if event is 
true and 0 otherwise). An estimate of the true error rate is 

It is straightforward to verify that 
and , thus the estimates are 

unbiased. Intuitively we know that we have less confidence 
when the error estimates are based on test data with noisy 
labels. To formalize this intuition, we examine the variance 
of the true error rate estimate, 

The variance of the error estimate given perfectly labeled data 
is Thus, to get the same vari­
ance, the ratio of noisy labels to perfect labels is 

(3) 

This ratio will help us understand the economic trade-offs be­
tween using perfect and noisy labels. Collecting perfect la­
bels (or collecting noisy labels first and cleaning them) is of­
ten much more expensive than just collecting noisy labels it-
self. Therefore it may be economically justified to used noisy 
labels, as long as one does not need too many more of them. 

Unfortunately, applying Eq. 3 requires us to know the true 
error rate of the classifier, which is exactly what one is trying 
to estimate. However, we often already have a good idea of a 
reasonable range for the true error rate. In any case, we exam­
ine the ratio for a wide range of true error rate and mislabeling 
rate, and we found the ratio to fall within a relatively narrow 
range, as shown in Fig. 1. Even for relatively noisy testing 
data with 10% incorrect labels, unless the classifier is much 
more accurate (with true error rate of less than 5%), cleaning 
the testing data to be perfectly labeled increases its value by 
less than a factor of four. In other words, one needs much less 
than four such noisy labels to achieve the same effect as one 
perfect label. Imagine that perfect labels need to be collected 
from a domain expert, whereas noisy labels can be collected 
from a non-expert, the high cost of a domain expert can often 
justify the use of noisy labels. 

4.1 Example: Evaluat ing w i t h many noisy labels 
or few reliable labels 

In many labeling tasks, experts must make multiple passes 
through samples to ensure accurate labeling [Eskin, 2000]. 
We now question the wisdom of that policy when the samples 
are free but labeling cost is a constraint. 

Consider a hypothetical labeling situation with two label-
ers, each paid to look at / samples, and both labelers have an 
error rate of E. There are two choices in how to use these two 
labelers. One is to have them look at completely different 
samples, thus in the end we have a testing set of size 2/ and 
mislabeling rate E. Another choice is to have them look at the 
exact same samples. Assuming that they make independent 
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Figure 2: The figure shows which one of the two labeling 
policies is optimal for a range of mislabeling rate e and true 
classifier error rate, based on Eq. 4. The problem is posed 
such that two labelers both have mislabeling rate c and are 
paid to label / samples. One policy is that they label different 
samples, creating a test set of "21 labels on 2/ samples," with 
e portion mislabeled. The other policy is that they both label 
the same samples, creating a testing set of "21 labels on / sam­
ples," with portion mislabeled (after various assumptions). 

labeling errors, and optimistically assume that a sample has 
a wrong label only if both labelers err, then we have a test­
ing set of size / and mislabeling rate Which is the better 
policy? 

Based on the previous discussion, we can have an unbi­
ased estimate of the true error rate from either testing set. We 
then should prefer one that gives us a lower variance estimate. 
That is, we go with the "2/ labels on 2/ samples" policy if its 
variance is lower than the "21 labels on / samples" policy, 

Which, after a little algebra, becomes 

• (4) 
An interesting observation is that in the realistic range of e 

the left hand side of Eq. 4 is negative for 
which means that one should always choose the 

"2/ labels on / samples" policy for such inaccurate labelers, 
and such high mislabeling rate does occur in practice [Smyth, 
1997]. For other cases, we have plotted the policy boundary 

in Fig. 2. 
For fairly accurate labelers Fig. 2 shows 

that one should prefer the "2/ labels on 21 samples" policy 
unless the classifier error rate is very low. The hint for practi­
tioners is that time spent cleaning labels is often not as effec­
tive as time spent labeling extra samples. 

5 Obtaining True Confusion Matrix 
In evaluating classification systems, we often need to know 
more than just the error rate. When the cost of different mis-

Table 2: Apparent precision recall breakeven points (i.e., 
for different actual classifier preci­

sion/recall and labeler precision/recall. The prior probabili­
ties for wI and w2 are 90% and 10% respectively. 

classifications (e.g., false positives and false negatives) are 
not equal, we may want to know the full confusion matrix. In 
addition, in some domains, such as classifying text or spam, 
the distribution of classes is highly skewed, and the error rate 
can be misleadingly low. In those situations, we are more 
interested in precision and recall statistics, which can be esti­
mated from the confusion matrix. 

We define the joint distribution matrix between labeler and 
classifier as 

which can be estimated from data. Note that unlike our anal­
ysis of the error rates, it is not necessary to assume two-class 
problems. 

Our goal is to recover the classifer's confusion matrix given 
the labeler's confusion matrix and the joint distribution matrix 
between labeler and classifier. If we make the independence 
assumption t h a t t h e n w e have 
the decomposition We 
can rewrite the decomposition in matrix form and solve for 
the classifier's confusion matrix. 

(5) 

in which is defined to be the column vector of prior prob­
abilities, 

When py is not given, it can be derived. To see this, define 
the probability vector 
I t i s the case t h a t i s a column vec­
tor of c 1 's. It is also the case that Combining 
those two equations we have 

(6) 

5.1 Example: Precision/recall breakeven points 
As mentioned earlier, one benefit of being able to recover 
the confusion matrix is that one can then work with preci­
sion and recall measures. We analyze the following system to 
see some effects of noisy labels on those measures. To reduce 
the number of variables examined, we only look at precision 
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recall breakeven points, defined as the points where precision 
and recall are equal. They wil l simply be denoted as preci­
sion/recall. For a given py, and precision/recall, the confusion 
matrix is uniquely determined. Table 2 shows the apparent 
precision/recall (i.e., 

for different actual classifier precision/recall and labeler 
precision/recall. Table 2 a s s u m e s a l t h o u g h the 
values are almost exactly the same for both and 

6 Bounds on true error rate when the 
classifier and labeler are not independent 

In deriving the true error rate (Eq. 2), we have made the as­
sumption that the labeler and the classifier make errors in­
dependently. We argue for this assumption because human 
and computer use different methodologies to classify sam­
ples. Even for algorithms inspired by human reasoning (e.g., 
neural networks), they still do not learn human intuition but 
they do avoid psychological biases. It is even harder to imag­
ine algorithms based on more abstract models (e.g., support 
vector machine) to err in similar ways as humans. Further­
more, in many application domains (e.g., speech recognition), 
humans label the samples based on a full presentation of the 
object, whereas the feature vector x used for classification 
are mathematical notions (e.g., linear vector coefficients) that 
have little neurological basis. In many other application do­
mains (e.g., statistical text classification), assumptions that 
blatantly violate how human reasons are often made (e.g., as­
sume words in a text are independently generated, rather than 
in a grammatical way). Lastly, to make a stronger argument, 
we can require the training data to be labeled independently 
from the testing data (or better yet, be perfectly labeled), thus 
avoiding the possibility that the computer would learn biases 
and other "bad habits" from the training data that would cor­
relate with labeling errors in the testing data. 

However, even with the above reasoning for the indepen­
dence assumption, it is still conceivable for one to be more 
conservative and assume some non-negative dependency, 

That is, the probability of a classifier misclassifying a sample 
is higher if the labeler has also mislabeled that sample , and 
vice versa. This can happen, for example, if the training data 
have been mislabeled in the same way as the testing data, and 
the classifier has learned to imitate those mislabelings. We 
have deliberately ignored the case of negative dependency, 

, as we are hard-
pressed to find a justification for it in practice. 

The non-negative dependency assumption is easily incor­
porated into Eq. 1 by changing the equal sign to a less-than-
or-equal-to sign. Propagating that change through the deriva­
tion, we have a lower bound on the true error rate, 

The second inequality can be tight if the mislabeling rate is 
small, as the denominator of the first inequality becomes ap­
proximately one. 

Separately we derive an upper bound for the true error rate. 

Note that no assumption is used in deriving the upper bound 
(not even limiting to two-class problems). One can easily 
verify that the bound is exact when the mislabeling rate is zero 
. The bound is also exact when the apparent error rate is zero, 
such that the true error rate is equal to the mislabeling rate. 
Thus with the looser assumption of non-negative dependency, 
the true error rate is in the range of Pr[ynot=y] ± Pi[y not= y]. 

6.1 Example: Simulat ion of non-negative 
dependency between classifier and labeler 

In the above derivation, the lower bound is achieved ex­
actly when the mislabeling rate is small and the indepen­
dence assumption is true. We examine how tight the upper 
bound is by simulation. We have taken pairs of classes from 
UCl's Opt-Digit dataset, which is a handwritten digit recog­
nition dataset, and trained both a naive Bayes classifier and a 
nearest-neighbor classifier [Duda et ai, 2001] on the training 
set of each pair. The nearest-neighbor classifier is then used 
to simulate a labeler and labeled the testing set. The naive 
Bayes classifier is the classifier under evaluation. Since we 
have the actual labels for the testing set, both the mislabel­
ing rate (of the nearest-neighbor "labeler") and the true error 
rate (of the naive Bayes classifier) can be determined. The 
output of the naive Bayes classifier and the nearest-neighbor 
"labeler"are compared to determine the apparent error rate. 

We have chosen the Opt-Digit dataset and the nearest-
neighbor algorithm because we know that this combination 
can give very low error rate [Kaynak and Alpaydin, 2000], 
thus closely matching the accuracy of many human labelers. 
In fact, for most pairs of classes, the nearest-neighbor algo­
rithm has zero error. The Opt-Digit dataset is also interesting 
because the handwritten digit recognition task is a classical 
example in which much human labeling effort has been ap­
plied. The naive Bayes classifier is chosen because it is a 
popular classifier and is sufficiently different from nearest-
neighbor to give interesting results. 

Table 3 shows the results for some pairs of classes where 
the nearest-neighbor "labeler" has non-zero error. Note that 
an insignificant positive dependence between the naive Bayes 
classifier and the nearest-neighbor "labeler" should be ex­
pected since they both are trained from the same dataset, use 
the same features, and assume independence of those features 
(explicitly in naive Bayes and implicitly in nearest-neighbor 
through its distance metric), even though they are different in 
other aspects (e.g., naive Bayes is generative while nearest-
neighbor classifier is discriminative). The naive Bayes classi­
fier's true error rate is almost exactly the upper bound for the 
pairs (1,2) and (4,5), but it is much closer to the apparent error 
rate for the pairs (7,8) and (8,9). The simulation thus shows 
the upper bound to be tight in some non-trivial situations. 

7 Discussion and Future Work 
When designing classification systems there are frequently 
parameters that are not learned automatically from the train-
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Table 3: Error rates on pairs of digits from the UCI Opt-Digit dataset. The classifier under evaluation is a Naive Bayes classifier 
(NB), and a nearest-neighbor classifier (NN) is used to simulate the (human) labeler. The error rate of the NB and NN classifiers 
are considered to be the true error rate and mislabeling rate, respectively. The fraction of time the two classifiers disagree is the 
apparent error rate. The upper and lower bounds are derived in Sec. 6, which are simply the apparent error rate plus or minus 
the mislabeling rate. The true error rate does come very close to the upper bound in some cases ( 1 - 2 and 4 - 5). 

ing data. Some examples are the number of hidden units in 
a feedforward neural network, the number K: in a K-nearest-
neighbor classifier, and the window width in a Parzen window 
classifier [Duda et al, 2001]. Validation is one technique to 
estimate those parameters. In validation, one conceptually 
creates several classifiers with different values of the param­
eter and train them with the same training set. The trained 
classifiers are evaluated on the validation data set, and the 
best classifier is chosen. Our results for testing with noisy la­
bels is directly applicable to validation. In fact, validation is 
not concerned with the actual value of the true error rates, 
but just their ordering. Therefore the apparent error rate 

can work just as well, as long as the mislabeling 
rate is less than 0.5. 

In a world where (unlabeled) data is cheap, noisy labels arc 
easily obtained (e.g., the Open Mind Initiative [Stork, 1999; 
Stork and Lam, 2000]), but perfect labels are expensive, the 
findings in this paper allow one to confidently use noisy labels 
for testing and validating. An obvious area for future work is 
to use noisy labels for training as well. Although some works 
do allow for training with noisy labels, this has not been an 
active research area [Szummer and Jaakkola, 2000]. 

So far in our derivations we have assume either knowledge 
of the mislabeling rate or the labeler's confusion 
matrix In practice those information must be estimated 
and be treated as random. The effects of such estimates and 
the cost/benefit analysis of obtaining more accurate estimates 
are unknown. We hope to investigate them in the future. 

8 Conclusion 
Traditionally test data have been assumed to be perfectly la­
beled. Increasingly this assumption is becoming a burden. 
We advocate the use of noisy labels as a cheaper alternative. 
We have shown that, under the assumption in which the la­
beler and the classifier make mistakes independently, the true 
error rate and true confusion matrix can be derived exactly. 
We have also examined the number of noisy labels to achieve 
the equivalent estimation confidence as one perfect label, and 
we found that number to be less than four in many practi­
cal situations. Furthermore, if we loosen the independence 
assumption to the non-negative dependence assumption, the 
true error rate can be bounded to be between the apparent er­
ror rate plus or minus the mislabeling rate. 
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