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Abstract 

Predictive accuracy has been used as the main and 
often only evaluation criterion for the predictive 
performance of classification learning algorithms. 
In recent years, the area under the ROC (Receiver 
Operating Characteristics) curve, or simply AUC, 
has been proposed as an alternative single-number 
measure for evaluating learning algorithms. In this 
paper, we prove that AUC is a better measure than 
accuracy. More specifically, we present rigourous 
definitions on consistency and discriminancy in 
comparing two evaluation measures for learning al­
gorithms. We then present empirical evaluations 
and a formal proof to establish that AUC is indeed 
statistically consistent and more discriminating than 
accuracy. Our result is quite significant since we 
formally prove that, for the first time, AUC is a bet­
ter measure than accuracy in the evaluation of learn­
ing algorithms. 

1 Introduction 
The predictive ability of the classification algorithm is typi­
cally measured by its predictive accuracy (or error rate, which 
is 1 minus the accuracy) on the testing examples. However, 
most classifiers (including C4.5 and Naive Bayes) can also 
produce probability estimations or "confidence" of the class 
prediction. Unfortunately, this information is completely ig­
nored in accuracy. This is often taken for granted since the 
true probability is unknown for the testing examples anyway. 

In many applications, however, accuracy is not enough. For 
example, in direct marketing, we often need to promote the 
top X% of customers during gradual roll-out, or we often de­
ploy different promotion strategies to customers with differ­
ent likelihood of buying some products. To accomplish these 
tasks, we need more than a mere classification of buyers and 
non-buyers. We need (at least) a ranking of customers in terms 
of their likelihoods of buying. If we want to achieve a more 
accurate ranking from a classifier, one might naturally expect 
that we must need the true ranking in the training examples 
[Cohen et a/., 1999]. In most scenarios, however, that is not 
possible. Instead, what we are given is a dataset of examples 
with class labels only. Thus, given only classification labels 
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in training and testing sets, are there better methods than ac­
curacy to evaluate classifiers that also produce rankings? 

The ROC (Receiver Operating Characteristics) curve has 
been recently introduced to evaluate machine learning algo­
rithms [Provost and Fawcett, 1997; Provost et al, 1998]. It 
compares the classifiers' performance across the entire range 
of class distributions and error costs. However, often there is 
no clear dominating relation between two ROC curves in the 
entire range; in those situations, the area under the ROC curve, 
or simply AUC, provides a single-number "summary" for the 
performance of the learning algorithms. Bradley [Bradley, 
1997] has compared popular machine learning algorithms us­
ing AUC, and found that AUC exhibits several desirable prop­
erties compared to accuracy. For example, AUC has increased 
sensitivity in Analysis of Variance (ANOVA) tests, is inde­
pendent to the decision threshold, and is invariant to a pri­
ori class probability distributions [Bradley, 1997]. However, 
no formal arguments or criteria have been established. How 
can we compare two evaluation measures for learning algo­
rithms? How can we establish that one measure is better than 
another? In this paper, we give formal definitions on the con­
sistency and discriminancy for comparing two measures. We 
show, empirically and formally, that AUC is indeed a statisti­
cally consistent and more discriminating measure than accu­
racy. 

One might ask why we need to care about anything more 
than accuracy, since by definition, classifiers only classify ex­
amples (and do not care about ranking and probability). We 
answer this question from two aspects. First, as we discussed 
earlier, even with labelled training and testing examples, most 
classifiers do produce probability estimations that can rank 
training/testing examples. Ranking is very important in most 
real-world applications. As we establish that AUC is a better 
measure than accuracy, we can choose classifiers with better 
AUC, thus producing better ranking. Second, and more im­
portantly, if we build classifiers that optimize AUC (instead 
of accuracy), it has been shown [Ling and Zhang, 2002] that 
such classifiers produce not only better AUC (a natural con­
sequence), but also better accuracy (a surprising result), com­
pared to classifiers that optimize the accuracy. To make an 
analogy, when we train workers on a more complex task, they 
wil l do better on a simple task than workers who are trained 
only on the simple task. 

Our work is quite significant for several reasons. First, 
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we establish rigourously, for the first time, that even given 
only labelled examples, AUC is a better measure (defined in 
Section 2.2) than accuracy. Second, our result suggests that 
AUC should replace accuracy in comparing learning algo­
rithms in the future. Third, our results prompt and allow us 
to re-evaluate well-established results in machine learning. 
For example, extensive experiments have been conducted and 
published on comparing, in terms of accuracy, decision tree 
classifiers to Naive Bayes classifiers. A well-established and 
accepted conclusion in the machine learning community is 
that those learning algorithms are very similar as measured 
by accuracy [Kononenko, 1990;Langley et al, 1992;Domin-
gos and Pazzani, 1996]. Since we have established that AUC 
is a better measure, are those learning algorithms still very 
similar as measured by AUC? We have shown [Ling et a/., 
2003] that, surprisingly, this is not true: Naive Bayes is sig­
nificantly better than decision tree in terms of AUC. These 
kinds of new conclusions are very useful to the machine learn­
ing community, as well as to machine learning applications 
(e.g., data mining). Fourth, as a new measure (such as AUC) 
is discovered and proved to be better than a previous mea­
sure (such as accuracy), we can re-design most learning al­
gorithms to optimize the new measure [Ferri et al, 2002; 
Ling and Zhang, 2002]. This would produce classifiers that 
not only perform well in the new measure, but also in the pre­
vious measure, compared to the classifiers that optimize the 
previous measure, as shown in [Ling and Zhang, 2002]. This 
would further improve the performance of our learning algo­
rithms. 

2 Criteria for Comparing Evaluation 
Measures for Classifiers 

We start with some intuitions in comparing AUC and accu­
racy, and then we present formal definitions in comparing 
evaluation measures for learning algorithms. 

2.1 A U C vs Accuracy 
Hand and Til l [Hand and Ti l l , 2001] present a simple ap­
proach to calculating the AUC of a classifier G below. 

(1) 

where n0 and n1 are the numbers of positive and negative ex­
amples respectively, and where is the rank 
of ith positive example in the ranked list. Table 1 shows an 
example of how to calculate AUC from a ranked list with 5 
positive examples and 5 negative examples. The AUC of the 
ranked list in Table 1 is which is 24/25. 
It is clear that AUC obtained by Equation 1 is a measure for the 
quality of ranking, as the more positive examples are ranked 
higher (to the right of the list), the larger the term . AUC 
is shown to be equivalent to the Wilcoxon statistic rank test 
[Bradley, 1997]. 

Intuitively, we can see why AUC is a better measure than 
accuracy from the following example. Let us consider two 
classifiers, Classifier 1 and Classifier 2, both producing prob­
ability estimates for a set of 10 testing examples. Assume that 
both classifiers classify 5 of the 10 examples as positive, and 

Table 1: An example for calculating AUC with rz 

Table 2: An Example in which two classifiers have the same 
classification accuracy, but different AUC values 

the other 5 as negative. If we rank the testing examples ac­
cording to increasing probability of being + (positive), we get 
the two ranked lists as in Table 2. 

Clearly, both classifiers produce an error rate of 20% (one 
false positive and one false negative), and thus the two classi­
fiers are equivalent in terms of error rate. However, intuition 
tells us that Classifier 1 is better than Classifier 2, since overall 
positive examples are ranked higher in Classifier 1 than 2. If 
we calculate AUC according to Equation 1, we obtain that the 
AUC of Classifier 1 is (as seen in Table 1), and the AUC 
of Classifier 2 is . Clearly, AUC does tell us that Classifier 
1 is indeed better than Classifier 2. 

Unfortunately, "counter examples" do exist, as shown in 
Table 3 on two other classifiers: Classifier 3 and Classifier 4. 
It is easy to obtain that the AUC of Classifier 3 is , and the 
AUC of Classifier 4 is . However, the error rate of Classi­
fier 3 is 40%, while the error rate of Classifier 4 is only 20% 
(again we assume that the threshold for accuracy is set at the 
middle so that 5 examples are predicted as positive and 5 as 
negative). Therefore, a larger AUC does not always imply a 
lower error rate. 

Table 3: A counter example in which one classifier has higher 
AUC but lower classification accuracy 

Another intuitive argument for why AUC is better than ac­
curacy is that AUC is more discriminating than accuracy since 
it has more possible values. More specifically, given a dataset 
with n examples, there is a total of only n + 1 different clas­
sification accuracies . On the other hand, 
assuming there are no positive examples and n1 negative ex-

different AUC val-
, generally more than 

n + 1. However, counterexamples also exist in this regard. 
Table 4 illustrates that classifiers with the same AUC can have 
different accuracies. Here, we see that Classifier 5 and Clas­
sifier 6 have the same but different accuracies (60% 
and 40% respectively). In general, a measure with more val­
ues is not necessarily more discriminating. For example, the 
weight of a person (having infinitely many possible values) 
has nothing to do with the number of siblings (having only a 
small number of integer values) he or she has. 
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Table 4: A counter example in which two classifiers have 
same A U C but different classification accuracies 

How do we compare different evaluation measures for 
learning algorithms? Some general criteria must be estab­
lished. 

2.2 (Strict) Consistency and Discriminaney of Two 
Measures 

Intui t ively speaking, when we discuss two different measures 
/ and g on evaluating two learning algorithms A and B, we 
want at least that / and g be consistent wi th each other. That 
is, when / stipulates that algorithm A is (strictly) better than 
B, then g w i l l not say B is better than A. Further, i f / is more 
discriminating than g, we would expect to see cases where / 
can tell the difference between algorithms A and B but g can­
not. 

This intui t ive meaning of consistency and discriminaney 
can be made precise as the fo l lowing definitions. 

Def in i t ion 1 (Consistency) For two measures f, g on do­
main , /, g are (strictly) consistent if there exist no a, b 
such that f (a) > f(b) and g(a) < g(b). 

Def in i t ion 2 (Discr iminaney) For two measures f, g on do­
main , f is (strictly) more discriminating than g if there exist 
a, b such that f (a) > f(b) and g(a) - g(b), and there 
exist no a, b such that g(a) > g(b) and f(a) — f(b). 

As an example, let us think about numerical marks and let­
ter marks that evaluate university students. A numerical mark 
gives 100, 99, 98 1, or 0 to students, whi le a letter mark-
gives A, B, C, D, or F to students. Obviously, we regard A > 
B > C > D > F. Clearly, numerical marks are consistent wi th 
letter marks (and vice versa). In addit ion, numerical marks 
are more discriminating than letter marks, since two students 
who receive 91 and 93 respectively receive different numer­
ical marks but the same letter mark, but it is not possible to 
have students w i th different letter marks (such as A and B) but 
w i th the same numerical marks. This ideal example of a mea­
sure / (numerical marks) being strictly consistent and more 
discriminating than another g (letter marks) can be shown in 
the figure 1(a). 

2.3 Statistical Consistency and Discriminaney of 
Two Measures 

As we have already seen in Section 2 .1 , counter examples on 
consistency and discriminaney do exist for A U C and accu­
racy. Therefore, it is impossible to prove the consistency and 
discriminaney on A U C and accuracy based on Definit ions 1 
and 2. Figure 1(b) illustrates a situation where one measure 
/ is not completely consistent w i th g, and is not strictly more 
discriminating than g. In this case, we must consider the prob­
abi l i ty of being consistent and degree of being more discr imi­
nating. What we w i l l define and prove is the probabilistic ver­
sion of the two definitions on strict consistency and discrim­
inaney. That is, we extend the previous definitions to degree 
of consistency and degree of discriminaney, as fo l lows: 

Figure 1: Il lustrations of two measures / and g. A l ink be­
tween two points indicates that the function values are the 
same on domain . In (a), / is strictly consistent and more 
discriminating than g. In (b), / is not strictly consistent or 
more discriminating than g. Counter examples on consistency 
(denoted by X in the figure) and discriminaney (denoted by Y) 
exist here 

There are clear and important implications of these defini­
tions of measures / and g in evaluating two machine learning 
algorithms, say A and B. If / and g are consistent to degree C, 
then when / stipulates that A is better than B, there is a prob­
abil i ty C that g w i l l agree (stipulating A is better than B). If 
/ is D times more discriminating than g, then it is D times 
more l ikely that / can tell the difference between A and B but 
g cannot than that g can tell the difference between A and B 
but / cannot. Clearly, we require that C > 0.5 and D > 1 if 
we want to conclude a measure / is "better" than a measure 
g. This leads to the fo l low ing definit ion: 

Def in i t ion 5 The measure f is statistically consistent and 
more discriminating than g if and only if C > 0.5 and D > 1. 
In this case, we say, intuitively, that f is a better measure than 
9> 

The statistical consistency and discriminaney is a special 
case of the strict consistency and more discriminaney. For the 
example of numerical and letter marks in the student evalua­
tion discussed in Section 2.2, we can obtain that C = 1.0 and 
D — oc, as the former is strictly consistent and more discrim­
inating than the latter. 

' i t is easy to prove that this definition is symmetric; that is, the 
degree of consistency o f / and g is same as the degree of consistency 
of g and / . 
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To prove AUC is statistically consistent and more discrim­
inating than accuracy, we substitute / by AUC and g by accu­
racy in the definition above. To simplify our notation, we will 
use AUC to represent AUC values, and ace for accuracy. The 
domain Ω is the ranked lists of testing examples (with n0 pos­
itive and n1 negative examples). Since we require C > 0.5 
and D > 1 we will essentially need to prove: 

3 Empirical Verification on AUC and 
Accuracy 

Before we present a formal proof that AUC is statistically con­
sistent and more discriminating than accuracy, we first present 
an empirical verification. To simplify our notation, we wil l 
use AUC to represent AUC values, and ace for accuracy. 

We conduct experiments with (artificial) testing sets to 
verify the statistical consistency and discriminancy between 
AUC and accuracy. The datasets are balanced with equal 
numbers of positive and negative examples. We test datasets 
with 4, 6, 8, 10, 12, 14, and 16 testing examples. For each 
number of examples, we enumerate all possible ranked lists 
of positive and negative examples. For the dataset with 2n ex­
amples, there are (2n) such ranked lists. 

We exhaustively compare all pairs of ranked lists to see how 
they satisfy the consistency and discriminating propositions 
probabilistically. To obtain degree of consistency, we count 
the number of pairs which satisfy "AUC (a) > AUC(b) 
and acc(a) > acc(b) and the number of pairs which sat­
isfy "AUC(a) > AUC(b) and ace(a) < acc(b)". We then 
calculate the percentage of those cases; that is, the degree of 
consistency. To obtain degree of discriminancy, we count the 
number of pairs which satisfy "AUC(a) > AUC(b) and 
acc(a) = acc(by\ and the number of pairs which satisfy 
"AUC(a) = AUC(b) and aec{a) > orc(6)". 

Tables 5 and 6 show the experiment results for the balanced 
dataset. For consistency, we can see (Table 5) that for vari­
ous numbers of balanced testing examples, given AUC (a) > 
AUC(b), the number (and percentage) of cases that satisfy 
aee(a) > ace(b) is much greater than those that satisfy 
ace(a) < aee(b). When n increases, the degree of consis­
tency (C) seems to approach 0.94, much larger than the re­
quired 0.5. For discriminancy, we can see clearly from Table 6 
that the number of cases that satisfy. and 
acc(a) = acc(b) is much more (from 15.5 to 18.9 times more) 
than the number of cases that satisfy ace(a) > acc(b) and 
AUC(a) = AUC(b). When n increases, the degree of dis­
criminancy (D) seems to approach 19, much larger than the 
required threshold 1. 

These empirical experiments verify empirically that AUC 
is indeed a statistically consistent and more discriminating 

Table 5: Experimental results for verifying statistical consis­
tency between AUC and accuracy for the balanced dataset 

Table 6: Experimental results for verifying AUC is statis­
tically more discriminating than accuracy for the balanced 
dataset 

measure than accuracy for the balanced datasets, as a measure 
for learning algorithms. 

4 Formal Proof 

In our following discussion, we assume that the domain ^ is 
the set of all the ranked lists with no positive and n1 nega­
tive examples. In this paper, we only study the cases where 
a ranked list contains an equal number of positive and nega­
tive examples, and we assume that the cutoff for classification 
is at the exact middle of the ranked list (each classifier classi­
fies exactly half examples into the positive class and the other 
half into the negative class). That is, n0 = n1, and we use n 
instead of n0 and n1. 

Lemma 1 gives the maximum and minimum AUC values 
for a ranked list with a fixed accuracy rate. 

Proof: Assume that there are np positive examples correctly 
classified. Then there are n—np positive examples in negative 
section. According to Equation 1, AUC value is determined 
by 5o, which is the sum of indexes of all positive examples. 
So when all n—np positive examples are put on the highest po­
sitions in negative section (their indexes are n, n - 1 , • • •, np + 
1), and np positive examples are put on the highest positions in 
positive section (their indexes are 
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AUC reaches the maximum value. So 

Similarly when all positive examples are put on the lowest po­
sitions in both positive and negative sections, AUC reaches 
the minimum value. Thus 

Proof: (a) It is straightforward to prove it from Lemma 1. 
(b) For any ranked list r £ R1 we can convert it to another 
unique ranked list v' G R2 by exchanging the positions of 
examples. In the negative section, for any positive example 
whose position is r7, we exchange it with the example in the 
position of n + 1 — ri In the positive section, for any posi­
tive example in position rt, we exchange it with the example 
in the position of n — (r, — n) + 1 + n. It's easy to obtain that 
AUC(r') = AUCm a x + AUCmin. Sor' E R2. Thus, we 
have that \Ri\ < |R2|. Similarly, we can prove \r2\ < lR1l-
Therefore 1R1| = |R2|- ° 
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Now let us explore the discri mi nancy of AUC and accuracy. 
Lemma 4 to Lemma 5 are proposed as a basis to prove Theo­
rem 2. In the following lemmas, stands for the number of 
examples in ranked list r, and stands for the number of 
positive examples in r. 

Proof: For any ranked list r E R1, we switch the examples 
on position i and n — i, to obtain another unique ranked list 
s. Next we replace all positive examples in .s by negative ex­
amples and all negative examples in s by positive examples to 
obtain ranked list s'. It is obvious that. 
S i n c e . T h u s , . Similarly 
we can prove Therefore . □ 



Therefore, f rom inequality 2 and equation 3, we w i l l get that A U C is a better measure than accuracy in evaluating and 
comparing classification learning algorithms. This conclusion 
has many important implications in evaluating, comparing, 
and designing learning algorithms. In our future research, we 
w i l l extend the results in this paper to cases wi th unbalanced 
class distr ibution and mult ip le classes. 
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5 Conclusions 
In this paper, we give formal definitions of discriminancy and 
consistency in comparing evaluation measures for learning al­
gorithms. We prove that A U C is statistically consistent and 
more discriminating than accuracy. Our result is quite signif­
icant since we have established rigourously, for the first t ime, 


