
Does a New Simple Gaussian Weighting Approach
Perform Well in Text Categorization?

Giorgio Maria Di Nunzio Alessandro Micarelii
Dip. di Ingegneria dell'Informazione

Universita degli Studi di Padova
Via Gradenigo 6/b, 35131 Padova - Italia Via della Vasca Navale 79,00146 Roma - Italia

dinunzio@dei.unipd.it micarcl@dia.uniroma3.it

Dip. di Informatica e Automazione
Universita degli Studi "Roma Tre"

Abstract
A new approach to the Text Categorization prob­
lem is here presented. It is called Gaussian Weight­
ing and it is a supervised learning algorithm that,
during the training phase, estimates two very sim­
ple and easily computable statistics which are: the
Presence P, how much a term / is present in a cate­
gory c\ the Expressiveness E, how much / is present
outside c in the rest of the domain. Once the system
has learned this information, a Gaussian function is
shaped for each term of a category, in order to as­
sign the term a weight that estimates the level of its
importance for that particular category. We tested
our learning method on the task of single-label clas­
sification using the Reuters-21578 benchmark. The
outcome of the result was quite impressive: in dif­
ferent experimental setups, we reached a micro-
averaged Fl-measure of 0.89, with a peak of 0.899.
Moreover, a macro-averaged Recall and Precision
was calculated: the former reported a 0.72, the lat­
ter a 0.79. These results reach most of the state-
of-the-art techniques of machine learning applied
to Text Categorization, demonstrating that this new
weighting scheme does perform well on this partic­
ular task.

1 Introduction
Consider the problem of automated classification of text doc­
uments. This problem is of great importance as the accessible
textual information increases and the volume of online texts
available through the Internet expands rapidly. One solution
is to categorize documents according to their topics before­
hand or in real time.

A number of different Machine Learning methods have
been applied and to Text Categorization (TC), including prob­
abilistic classifiers, decision trees, regression methods, neu­
ral networks and support vector machines (see [Sebastiani,
2002]). Most of these methodologies share a common factor
of high level complexity, that, often, makes a classifier design
difficult to understand.

The question addressed in this paper is if it is possible to
find a simple learning algorithm that uses naive, human com­
prehensible parameters, in such a way as to act like a non-

LEARNING

expert human being in front of the problem of classifying new
unknown documents.

Starting from this idea of simplicity, we decided to design
a training algorithm that corresponds to the action of finding
two information parameters: given a set of categories C of
documents, for each term t of a category c C we calcu­
late its Presence P, that is, the percent of documents of the
category c in which the term / appears at least once; and its
Expressiveness E", that is, how much the term / is absent in
the other categories of the domain. Then, we model a Gaus­
sian Function with the two parameters above, whose value
in the abscissae equal to 1 is used as the weight of the term
/. We called this learning approach Gaussian Weighting. It
is important to stress the fact that we don't use any stemming
algorithm or Feature Selection function (see [Yang and Peder-
sen, 1997]). An eventual reduction of the number of features
per category is done using only two thresholds named ThresP
and ThresE, relative to the parameters P and E.

To make the evaluation of Gaussian Weighting comparable
to most of the published results on TC, we chose the Reuters-
215781 corpus as benchmark for the single-label classifica­
tion task. Three different tests have been performed with a
complete automated learning approach: the first run has been
done without the use of a Gaussian Function, but simply giv­
ing a weight proportional to P and E: the second and the third
test runs have been done with the Gaussian Weighting ap­
proach proposed here.

The outcome of the results was quite surprising: through­
out the different experimental setups, we repeatedly reached
a micro-averaged Fl -measure around the 0.89, with a peak of
0.899. Then, since the micro-average is known to be highly
influenced by frequent categories (see [Yang and Liu, 1999]),
we decided to compute the macro-averaged Recall and Pre­
cision. Again, the results reached a satisfactory macro-
Recall around 0.72 and a macro-Precision of 0.79. These
results reach most of the state-of-the-art techniques of ma-
chine learning applied to Text Categorization (see [Dumais
et al., 1998]), demonstrating that this new weighting scheme
does perform well on this particular task. Moreover, the low
computational cost of the algorithm we propose, makes this
approach particularly preferable when the computing power
is low.

www.daviddlewis.com/resources/testcollcction/reuters21578

581

2 The A lgor i thm
In this section we present our supervised algorithm. First, we
will analytically define the two parameters: Presence P and
Expressiveness E. Then, we wil l explain how the training al­
gorithm works and how the system classifies new documents
at run-time.

2.1 Presence P and Expressiveness E
A central key of this naive approach is the computation of two
easy human understandable parameters that we call: Pres­
ence P, and Expressiveness E. The former captures how much
a term t appears at least once in the documents belonging
to a category c, the latter estimates how much the same
term t does not appear in the documents of the other cat­
egories. Given a set of categories

, each category having a number of documents m, (e.g.
we give the following

definitions:
The number of documents Di of the i-th category is:

(1)

the number of documents of category / in which the term
/ is present:

(2)

Note that we use the symbol *|" to denote the presence of
a term inside a category or a document. This is not to be
confused with the same symbol when used for the conditional
probability (P(x|y)).

Then, the Presence P of a term t in the i-th category is,
using (1) and (2):

while, the Expressiveness E of term t in the i-th category is
calculated using 1, 2):

It is important to stress that the same term in different cat­
egories has different values of expressiveness. This fact is
better explained in Table 1. A term t is present in all the three
categories with presence shown in the first row. The sec­
ond row is the expressiveness of the same term for each
category. Note how / of category c1 has a greater expressive­
ness given the relatively smaller presence of the term in the
rest of the domain.

Table 1: A numerical example of Presence and Expressive­
ness.

582

Locality of Presence and Expressiveness
The approach uses a weighting method for terms per each
class, which is in a sense a local type of weighting/modeling
scheme of classes. This idea is similar to the Local LSI rep­
resentation [Hull, 1994] where, in order to characterize the
term space, the singular value decomposition is applied to a
matrix consisting only of the known relevant documents (in
our case the documents belonging to a class).

There are substantial differences with the weight-
ing scheme. counts the number of occurrences of a term /
in a document, while P counts the documents in which / ap-
pears at least once. computes the number of documents
in which t appears over the whole collection, meanwhile E
calculates, according to which class we are computing the
weights, the partial averaged Presence of/ in the domain.

2.2 Learning the Gaussian Weights (GW)
In this paragraph we explain how we shape a Gaussian func­
tion using the values P and E. Starting from the definition of
a generic Gaussian function:

we estimate the parameters and as follows:

(5)

(6)

(7)
Then, the Gaussian Weighting GW for a term t of a cate­

gory i is defined, substituting (6) and (7) in (5), as:

(8)

The GW calculated for x = 1, returns a real value belonging to
the (0,1] interval. In particular, the maximum weight can be
reached only when the Presence of a term is equal to 1, that
is to say, when it appears in each document of the category
of interest. Figure 1 shows an example of a GW with P = 0.5
and E = 0.5 (continuous), and another one with P = 0.5 and E
= 0.9 (dashed); when two terms have the same Presence, the
one with a higher Expressiveness has a higher weight too.

Computing the parameter P
The algorithm to compute P is the following:

1.
2.
3.
4.

5.
6.
7.

8.
9.

10.
11.

For each category

For each document

For each unique term t in
if t is in
then
else Add

end For
end For

For each term in

LEARNING

Figure 1: Example of a GW. The continuous line is a GW
with P = 0.5 and £ = 0.5. The dashed line is a GW with P =
0.5 and E = 0.9. For the same P, the higher expressiveness a
term possesses, the bigger the output GW gives.

12.

13.

14.
end For

end For
If we assume we can use a HashMap HM to store the results
of such that any update or search in the HM has a con­
stant cost K, in the worst case the algorithm to compute the
parameter P has a computational cost of

Computing the parameter E
The algorithm to compute E is the following:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

For each category
s u m - 0

For each term t in
For each category where i =£ j

i f t i n
then sum =• sum +

end For

end For
end For

Again, if we assume that is a HashMap with a constant
cost k of access and search, the computational cost of this
second algorithm is , which is quadratic cost
with respect to the number of categories C.

2.3 Categorizing a new document
Once the system has been trained and the parameters P and E
have been found for each term of the domain, it is possible to
feed the system with an unknown document and, according
to the value of a couple of optional thresholds ThresP and
ThresE, classify it with the following algorithm:

LEARNING

1.

2.

3.

4.

5.

6.

7.

8.

9.

For each

output

For each term in

if t is in test
And

then output
Nterm = Nterm + 1

end For

end For

Assign the document to the with the highest output

For each category, the algorithm calculates, the mean of the
activated Gaussian functions of the terms whose and
are greater than two fixed thresholds, respectively ThresP and
ThresE. The computational cost of this algorithm is

3 Experimental Setup

3.1 Test Collection
To make the evaluation of GW comparable to most of the
published results on TC, we chose the Reuters-21578 corpus
as benchmark. During the last few years this corpus has been
used as a standard benchmark on which many TC methods
have been evaluated, although the results are sometimes dif­
ficult to compare as slightly different version have been used.
For this paper we used the ModApte split of Reuters-21578
in which 75% of the stories (9603) are used as training doc­
uments to build the classifier and the remaining 25% (3299)
to test the accuracy of our single-label classifier. Now, the
Reuters-21578 is known to be quite unbalanced on the distri­
bution of stories per category. Therefore, of the 135 poten­
tial topics categories only the 10 most frequent are here used;
these 10 categories account for almost the 75% of the training
instances, while the remainder is distributed among the other
115. Table 2 shows the number of training and test samples
for each category.

Table 2: Number of Training and Test documents for the ten
most frequent categories of Reuters-21578 ModApte split

583

We performed three different test runs on our system:
1. The 'what if?' test run: what if we didn't use a Gaus­

sian function? we tried to run our system with the most
simple function we could use:

2. The GW test run: uses the GW function defined in equa­
tion (8)

3. The simple GW test run: we simplified the Gaussian
function with a variance equal to

All the tests maintained ThresE equal to 0.6, that is to say, a
term in a category should have an Expressivity value greater
than 0.6. This value permitted to achieve the highest perfor­
mance during the test phase. ThresP has been varied in the
range between 0.0 (all the terms of the categories were used)
and 0.5 (only the terms present in the 50% of the training
documents were used).

The number of terms per category according to the value P
is reported in Table 3.

Table 3: The table shows the number of terms per category
according to the threshold of Presence P. The last row reports
the average of features per category.

A stoplist of 331 terms has been used to remove the most
frequent words of the English Language, but no stemming or
Feature Selection have been performed.

In order to evaluate the accuracy of the classifier we have
computed the standard 1R measures, such as Recall and Pre­
cision, and the following averaging measures: micro-Recall

micro-Precision and micro-averaged Fl mea­
sure (micro-Fl):

In particular we have reported the values of the Fl-measure
in order to directly compare our results with the ones in the
literature. But, since the micro-averaged measure is known
to be highly influenced by the most frequent category (see

Figure 2: The 'What if?' test run. The x-axis represents the
values of Presence P.

In this particular test we did nOt expect so remarkable a
performance. Considering the weight of a term proportional
to the parameters P and E seems to be another possible solu­
tion to investigate. The performance of the system seems not
to be influenced significantly when the threshold ThresP is
set either to 0.0 or 0.1. It is worth stressing that this test per­
formed better when all the terms (except those belonging to
the stoplist) were used.

4.2 The GW test r u n
The results of this run are shown in Figure 3, while numerical
values are reported in Table 5.

This test has been performed using equation (8) to calcu­
late the weight of each term of the category. The best results
have been obtained with Thres Macro-Recall and
macro-Precision are quite high, and they indicate that the sys­
tem works well for every category. The performance of the
system starts to decrease sensibly when Thres

584 LEARNING

3.2 Parameters Setting [Yang and Pedersen, 1997]), we have decided to calculate
the Macro-Recall (MRe) and the Macro-Precision (MPr)), as
well:

4 Results
4.1 The 'What if?' test run
In this test, the weight of each term / of a category i is com­
puted as:

The 'What if?' test run results are shown in Figure 2.

Table 4: The 'What if?' test run.

Figure 3: The GW test run. In this test the function 8 is used
to weight each term.

1 0.0 0.10 0.20 [0.30 0.40 0.50
1 micro F1 0.892 0.893 0.876 0.856 0.832 0.748
(macro Re 0.726 0.725 0.692 0.666 0.613 0.532
1 macro Pr 0.794 0.797 0.789 0.810 0.809 0.804

Table 5: The GW test run. Each column reports the values of
micro F1, macro Recall and macro Precision for each ThresP.

4.3 The Simple GW test run
The results of this second run are shown in Figure 4. Numer­
ical values are reported in Table 6.

Figure 4: The simple GW test run. In this test the variance of
the GW is equal to

This test has been performed using a simplified version of
equation (8) to calculate the weight of each term of the cat­
egory. The variance of the Gaussian function is set to

The best results have been obtained with Thresp=
there does not seem to be any particular difference with

the GW test run, except in cases when ThresP equals 0.2,
where the macro Precision is sensibly lower.

4.4 Discussion
The results reported above are satisfactory. In many situa­
tions the system reached an accuracy comparable to the ones
in the state-of-the-art systems. Some aspects need to be dis­
cussed here: the performance of the system in all the test
runs decades when ThresP exceeds the 0.2, that is to say,
looking back to Table (3), when the number of features per

LEARNING

Table 6: The simple GW test run.

category decreases from almost 90 to almost 20. This sharp
decay influences the macro-averaged performance of the sys­
tem. In fact, while the macro-Recall retains the same values,
the macro-Precision is cut-off by almost 10%. This fact in­
dicates that the system is incorrectly assigning the stories to
all the categories of the domain rather that to the biggest ones
only. As the ThresP gets bigger, the performance of the sys­
tem shows the classic behavior in which the Recall tends to 0
and the Precision to 1.

For the 'what if?' test run we didn't expect such good re­
sults. The simple proportional weight assignment performed
as well as the other approaches, nevertheless the performance
decays slightly more rapidly. This test was very important for
us to confirm the idea of using a simplified learning approach
to solve the problem of TC.

The second and the third test runs show almost the same
values. The one-per-thousand differences are not to be con­
sidered relevant. At the moment, we cannot draw any con­
clusion about which of the three learning approaches will
perform better in general. We plan to investigate this mat­
ter testing on the complete Reuters-21578 and on other test
collections.

Comparative Results
Dumais et al. tested a number of inductive learning algo­
rithms on the same Reuters-21578 ModApte split we used
([Dumais et ai, 1998]). These results arc briefly summi-
rized in Table 7 for the 10 most frequent categories. The

Table 7: Microavcraged Fl-measure of the 10 most frequent
categories of Reuters-21578, reported by Dumais

FindSim method is a variant of Rocchio's method for rele­
vance feedback([Rocchio, 1971]). The Naive Bayes classifier
is constructed by using the training data to estimate the prob­
ability of each category given the document feature values of
a new instance. A discussion of the indipendence assump­
tion of naive bayes classifier can be found in ([Lewis, 1998]).
BayesNets is a bayesian network, that uses 2-dependence
Bayesian (see [Sahami, 1996] for another example of Bayes
nets for classification). Tree is a Decision Tree approach de­
scribed in ([Chickering et al, 1997]). Meanwhile, Linear
SVM is a linear hyperplane that separates a set of positive
examples from a set of negative ones ([Joachims, 1998]).

Both SVMs and Decision Trees produce very high overall
classification accuracy. As the results of Table 7 are directly
comparable with ours, our Gaussian Weighting approach is
placed just behind the SVMs, which are known to be the best
machine learning method in the field of text classification,
with a micro-averaged Fl-measure of 0.893 of the first two
test runs. This result is important for two reasons: it demon­
strates that this new learning method does perform well on
this particular task, and encourage us to further investigate
other fields of application, in which GW's simplicity could
perform as well as other state-of-the-art machine learning
methods.

5 Future Work
Two are the most compelling issues that we are going to com­
plete in the future work are two:

• Incorporate a wrapper phase [Kohavi and John, 1997]
to run systematically varying experiments with (i) using
Expressiveness or not, (ii) varying values of ThresP and
ThresE, (iii) varying values of GW variance, and (iv)
using a Gaussian function or not;

• Test the full Reuters benchmark data rather than restrict­
ing ourselves to only the 10 most frequent categories,
and on other collections like 20 Newsgroups2 or Med-
Line3 .

6 Conclusions
In this paper we addressed the problem of finding a simple
learning algorithm that uses naive, human comprehensible
parameters. A very accurate text classifier can be learned au­
tomatically by using only two information parameters: pres­
ence P and expressivity E. The algorithm proposed here has,
in the worst case, a quadratic computational cost, with respect
to the number of categories of documents. We tested GW
on the Reuters-21578 benchmark and calculated the micro-
averaged Fl-measure to directly compare our results with
the ones of the literature, and the macro-Recall and macro-
Precision. The results achieved are satisfactory and can be
compared to most state-of-the-art machine learning methods
applied to TC.

Acknowledgments
We are grateful to the anonymous reviewers for their insight­
ful and helpful comments. The authors would also like to
thank Prof. Maristella Agosti for her valuable comments and
suggestions to improve the paper.

References
[Chickering et al, 1997] D. Chickering, D. Heckerman, and

C. Meek. A bayesian approach for learning bayesian net­
works with local structure. In Proceedings of Thirteenth
Conference on Uncertainty in Artificial Intelligence, pages
307-315. Springer Verlag, Heidelberg, DE, 1997.

2www.ai.mit.edu/jrennie/20Newsgroups/
3 www.nlm.nih.gov

[Dumais etal, 1998] S. Dumais, J. Piatt, D. Heckerman, and
M. Sahami. Inductive learning algorithms and representa­
tions for text categorization. In Proceedings of the Seventh
International Conference on Information and Knowledge
Management, pages 148-155. ACM Press, 1998.

[Hull, 1994] D.A. Hull. Information Retrieval Using Statis-
tical Classification. PhD thesis, University of Stanford,
1994.

[Joachims, 1998] T. Joachims. Text categorization with sup­
port vector machines: learning with many relevant fea­
tures. In C. Nedellec and C. Rouveirol, editors, Proceed-
ings of ECML-98, 10th European Conference on Machine
Learning, number 1398, pages 137-142, Chemnitz, DE,
1998. Springer Verlag, Heidelberg, DE.

[Kohavi and John, 1997] R. Kohavi and G. H. John. Wrap­
pers for feature subset selection. Artificial Intelligence,
97(l-2):273-324, 1997.

[Lewis, 1998] D. D. Lewis. Naive (Bayes) at forty: The
independence assumption in information retrieval. In
C. Nedellec and C. Rouveirol, editors, Proceedings of
ECML-98, 10th European Conference on Machine Learn-
ing, number 1398, pages 4-15, Chemnitz, DE, 1998.
Springer Verlag, Heidelberg, DE.

[Rocchio, 1971] J.J. Rocchio. Relevance feedback in infor­
mation retrieval. In The SMART Retrieval System: Exper-
iments in Automatic Document PRocessing, pages 313-
323. G.Salton editor, 1971.

[Sahami, 1996] M. Sahami. Learning limited dependence
Bayesian classifiers. In Second International Conference
on Knowledge Discovery in Databases, 1996.

[Sebastiani, 2002] F. Sebastiani. Machine learning in auto­
mated text categorization. ACM Computing Surveys, Vol.
34, No. 1, pp. 1-47, 2002.

[Yang and Liu, 1999] Y. Yang and X. Liu. A re-examination
of text categorization methods. In 22nd Annual Interna­
tional S1GIR, pages 42-49, Berkley, 1999.

[Yang and Pedersen, 1997] Y. Yang and J. O. Pedersen. A
comparative study on feature selection in text categoriza­
tion. In Douglas H. Fisher, editor, Proceedings of lCML-
97, Nth International Conference on Machine Learning,
pages 412-420, Nashville, US, 1997. Morgan Kaufmann
Publishers, San Francisco, US.

586 LEARNING

http://www.ai.mit.edu/jrennie/20Newsgroups/
http://www.nlm.nih.gov

