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Abstract 
A new approach to the Text Categorization prob­
lem is here presented. It is called Gaussian Weight­
ing and it is a supervised learning algorithm that, 
during the training phase, estimates two very sim­
ple and easily computable statistics which are: the 
Presence P, how much a term / is present in a cate­
gory c\ the Expressiveness E, how much / is present 
outside c in the rest of the domain. Once the system 
has learned this information, a Gaussian function is 
shaped for each term of a category, in order to as­
sign the term a weight that estimates the level of its 
importance for that particular category. We tested 
our learning method on the task of single-label clas­
sification using the Reuters-21578 benchmark. The 
outcome of the result was quite impressive: in dif­
ferent experimental setups, we reached a micro-
averaged Fl-measure of 0.89, with a peak of 0.899. 
Moreover, a macro-averaged Recall and Precision 
was calculated: the former reported a 0.72, the lat­
ter a 0.79. These results reach most of the state-
of-the-art techniques of machine learning applied 
to Text Categorization, demonstrating that this new 
weighting scheme does perform well on this partic­
ular task. 

1 Introduction 
Consider the problem of automated classification of text doc­
uments. This problem is of great importance as the accessible 
textual information increases and the volume of online texts 
available through the Internet expands rapidly. One solution 
is to categorize documents according to their topics before­
hand or in real time. 

A number of different Machine Learning methods have 
been applied and to Text Categorization (TC), including prob­
abilistic classifiers, decision trees, regression methods, neu­
ral networks and support vector machines (see [Sebastiani, 
2002]). Most of these methodologies share a common factor 
of high level complexity, that, often, makes a classifier design 
difficult to understand. 

The question addressed in this paper is if it is possible to 
find a simple learning algorithm that uses naive, human com­
prehensible parameters, in such a way as to act like a non-
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expert human being in front of the problem of classifying new 
unknown documents. 

Starting from this idea of simplicity, we decided to design 
a training algorithm that corresponds to the action of finding 
two information parameters: given a set of categories C of 
documents, for each term t of a category c C we calcu­
late its Presence P, that is, the percent of documents of the 
category c in which the term / appears at least once; and its 
Expressiveness E", that is, how much the term / is absent in 
the other categories of the domain. Then, we model a Gaus­
sian Function with the two parameters above, whose value 
in the abscissae equal to 1 is used as the weight of the term 
/. We called this learning approach Gaussian Weighting. It 
is important to stress the fact that we don't use any stemming 
algorithm or Feature Selection function (see [Yang and Peder-
sen, 1997]). An eventual reduction of the number of features 
per category is done using only two thresholds named ThresP 
and ThresE, relative to the parameters P and E. 

To make the evaluation of Gaussian Weighting comparable 
to most of the published results on TC, we chose the Reuters-
215781 corpus as benchmark for the single-label classifica­
tion task. Three different tests have been performed with a 
complete automated learning approach: the first run has been 
done without the use of a Gaussian Function, but simply giv­
ing a weight proportional to P and E: the second and the third 
test runs have been done with the Gaussian Weighting ap­
proach proposed here. 

The outcome of the results was quite surprising: through­
out the different experimental setups, we repeatedly reached 
a micro-averaged Fl -measure around the 0.89, with a peak of 
0.899. Then, since the micro-average is known to be highly 
influenced by frequent categories (see [Yang and Liu, 1999]), 
we decided to compute the macro-averaged Recall and Pre­
cision. Again, the results reached a satisfactory macro-
Recall around 0.72 and a macro-Precision of 0.79. These 
results reach most of the state-of-the-art techniques of ma-
chine learning applied to Text Categorization (see [Dumais 
et al., 1998]), demonstrating that this new weighting scheme 
does perform well on this particular task. Moreover, the low 
computational cost of the algorithm we propose, makes this 
approach particularly preferable when the computing power 
is low. 

www.daviddlewis.com/resources/testcollcction/reuters21578 
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2 The A lgor i thm 
In this section we present our supervised algorithm. First, we 
will analytically define the two parameters: Presence P and 
Expressiveness E. Then, we wil l explain how the training al­
gorithm works and how the system classifies new documents 
at run-time. 

2.1 Presence P and Expressiveness E 
A central key of this naive approach is the computation of two 
easy human understandable parameters that we call: Pres­
ence P, and Expressiveness E. The former captures how much 
a term t appears at least once in the documents belonging 
to a category c, the latter estimates how much the same 
term t does not appear in the documents of the other cat­
egories. Given a set of categories  

, each category having a number of documents m, (e.g. 
we give the following 

definitions: 
The number of documents Di of the i-th category is: 

(1) 

the number of documents of category / in which the term 
/ is present: 

(2) 

Note that we use the symbol *|" to denote the presence of 
a term inside a category or a document. This is not to be 
confused with the same symbol when used for the conditional 
probability (P(x|y)). 

Then, the Presence P of a term t in the i-th category is, 
using (1) and (2): 

while, the Expressiveness E of term t in the i-th category is 
calculated using 1, 2): 

It is important to stress that the same term in different cat­
egories has different values of expressiveness. This fact is 
better explained in Table 1. A term t is present in all the three 
categories with presence shown in the first row. The sec­
ond row is the expressiveness of the same term for each 
category. Note how / of category c1 has a greater expressive­
ness given the relatively smaller presence of the term in the 
rest of the domain. 

Table 1: A numerical example of Presence and Expressive­
ness. 
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Locality of Presence and Expressiveness 
The approach uses a weighting method for terms per each 
class, which is in a sense a local type of weighting/modeling 
scheme of classes. This idea is similar to the Local LSI rep­
resentation [Hull, 1994] where, in order to characterize the 
term space, the singular value decomposition is applied to a 
matrix consisting only of the known relevant documents (in 
our case the documents belonging to a class). 

There are substantial differences with the weight-
ing scheme. counts the number of occurrences of a term / 
in a document, while P counts the documents in which / ap-
pears at least once. computes the number of documents 
in which t appears over the whole collection, meanwhile E 
calculates, according to which class we are computing the 
weights, the partial averaged Presence of/ in the domain. 

2.2 Learning the Gaussian Weights (GW) 
In this paragraph we explain how we shape a Gaussian func­
tion using the values P and E. Starting from the definition of 
a generic Gaussian function: 

we estimate the parameters and as follows: 

(5) 

(6) 

(7) 
Then, the Gaussian Weighting GW for a term t of a cate­

gory i is defined, substituting (6) and (7) in (5), as: 

(8) 

The GW calculated for x = 1, returns a real value belonging to 
the (0,1] interval. In particular, the maximum weight can be 
reached only when the Presence of a term is equal to 1, that 
is to say, when it appears in each document of the category 
of interest. Figure 1 shows an example of a GW with P = 0.5 
and E = 0.5 (continuous), and another one with P = 0.5 and E 
= 0.9 (dashed); when two terms have the same Presence, the 
one with a higher Expressiveness has a higher weight too. 

Computing the parameter P 
The algorithm to compute P is the following: 

1. 
2. 
3. 
4. 

5. 
6. 
7. 

8. 
9. 

10. 
11. 

For each category 

For each document 

For each unique term t in 
if t is in 
then 
else Add 

end For 
end For 

For each term in 
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Figure 1: Example of a GW. The continuous line is a GW 
with P = 0.5 and £ = 0.5. The dashed line is a GW with P = 
0.5 and E = 0.9. For the same P, the higher expressiveness a 
term possesses, the bigger the output GW gives. 

12. 

13. 

14. 
end For 

end For 
If we assume we can use a HashMap HM to store the results 
of such that any update or search in the HM has a con­
stant cost K, in the worst case the algorithm to compute the 
parameter P has a computational cost of  

Computing the parameter E 
The algorithm to compute E is the following: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

For each category 
s u m - 0 

For each term t in 
For each category where i =£ j 

i f t i n  
then sum =• sum + 

end For 

end For 
end For 

Again, if we assume that is a HashMap with a constant 
cost k of access and search, the computational cost of this 
second algorithm is , which is quadratic cost 
with respect to the number of categories C. 

2.3 Categorizing a new document 
Once the system has been trained and the parameters P and E 
have been found for each term of the domain, it is possible to 
feed the system with an unknown document and, according 
to the value of a couple of optional thresholds ThresP and 
ThresE, classify it with the following algorithm: 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

For each  

output  

For each term in  

if t is in test 
And  

then output 
Nterm = Nterm + 1 

end For 

end For 

Assign the document to the with the highest output  

For each category, the algorithm calculates, the mean of the 
activated Gaussian functions of the terms whose and 
are greater than two fixed thresholds, respectively ThresP and 
ThresE. The computational cost of this algorithm is  

3 Experimental Setup 

3.1 Test Collection 
To make the evaluation of GW comparable to most of the 
published results on TC, we chose the Reuters-21578 corpus 
as benchmark. During the last few years this corpus has been 
used as a standard benchmark on which many TC methods 
have been evaluated, although the results are sometimes dif­
ficult to compare as slightly different version have been used. 
For this paper we used the ModApte split of Reuters-21578 
in which 75% of the stories (9603) are used as training doc­
uments to build the classifier and the remaining 25% (3299) 
to test the accuracy of our single-label classifier. Now, the 
Reuters-21578 is known to be quite unbalanced on the distri­
bution of stories per category. Therefore, of the 135 poten­
tial topics categories only the 10 most frequent are here used; 
these 10 categories account for almost the 75% of the training 
instances, while the remainder is distributed among the other 
115. Table 2 shows the number of training and test samples 
for each category. 

Table 2: Number of Training and Test documents for the ten 
most frequent categories of Reuters-21578 ModApte split 
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We performed three different test runs on our system: 
1. The 'what if?' test run: what if we didn't use a Gaus­

sian function? we tried to run our system with the most 
simple function we could use:  

2. The GW test run: uses the GW function defined in equa­
tion (8) 

3. The simple GW test run: we simplified the Gaussian 
function with a variance equal to  

All the tests maintained ThresE equal to 0.6, that is to say, a 
term in a category should have an Expressivity value greater 
than 0.6. This value permitted to achieve the highest perfor­
mance during the test phase. ThresP has been varied in the 
range between 0.0 (all the terms of the categories were used) 
and 0.5 (only the terms present in the 50% of the training 
documents were used). 

The number of terms per category according to the value P 
is reported in Table 3. 

Table 3: The table shows the number of terms per category 
according to the threshold of Presence P. The last row reports 
the average of features per category. 

A stoplist of 331 terms has been used to remove the most 
frequent words of the English Language, but no stemming or 
Feature Selection have been performed. 

In order to evaluate the accuracy of the classifier we have 
computed the standard 1R measures, such as Recall and Pre­
cision, and the following averaging measures: micro-Recall 

micro-Precision and micro-averaged Fl mea­
sure (micro-Fl): 

In particular we have reported the values of the Fl-measure 
in order to directly compare our results with the ones in the 
literature. But, since the micro-averaged measure is known 
to be highly influenced by the most frequent category (see 

Figure 2: The 'What if?' test run. The x-axis represents the 
values of Presence P. 

In this particular test we did nOt expect so remarkable a 
performance. Considering the weight of a term proportional 
to the parameters P and E seems to be another possible solu­
tion to investigate. The performance of the system seems not 
to be influenced significantly when the threshold ThresP is 
set either to 0.0 or 0.1. It is worth stressing that this test per­
formed better when all the terms (except those belonging to 
the stoplist) were used. 

4.2 The GW test r u n 
The results of this run are shown in Figure 3, while numerical 
values are reported in Table 5. 

This test has been performed using equation (8) to calcu­
late the weight of each term of the category. The best results 
have been obtained with Thres Macro-Recall and 
macro-Precision are quite high, and they indicate that the sys­
tem works well for every category. The performance of the 
system starts to decrease sensibly when Thres  
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3.2 Parameters Setting [Yang and Pedersen, 1997]), we have decided to calculate 
the Macro-Recall (MRe) and the Macro-Precision (MPr)), as 
well: 

4 Results 
4.1 The 'What if?' test run 
In this test, the weight of each term / of a category i is com­
puted as: 

The 'What if?' test run results are shown in Figure 2. 

Table 4: The 'What if?' test run. 



Figure 3: The GW test run. In this test the function 8 is used 
to weight each term. 

1 0.0 0.10 0.20 [ 0.30 0.40 0.50 
1 micro F1 0.892 0.893 0.876 0.856 0.832 0.748 
( macro Re 0.726 0.725 0.692 0.666 0.613 0.532 
1 macro Pr 0.794 0.797 0.789 0.810 0.809 0.804 

Table 5: The GW test run. Each column reports the values of 
micro F1, macro Recall and macro Precision for each ThresP. 

4.3 The Simple GW test run 
The results of this second run are shown in Figure 4. Numer­
ical values are reported in Table 6. 

Figure 4: The simple GW test run. In this test the variance of 
the GW is equal to  

This test has been performed using a simplified version of 
equation (8) to calculate the weight of each term of the cat­
egory. The variance of the Gaussian function is set to  

The best results have been obtained with Thresp= 
there does not seem to be any particular difference with 

the GW test run, except in cases when ThresP equals 0.2, 
where the macro Precision is sensibly lower. 

4.4 Discussion 
The results reported above are satisfactory. In many situa­
tions the system reached an accuracy comparable to the ones 
in the state-of-the-art systems. Some aspects need to be dis­
cussed here: the performance of the system in all the test 
runs decades when ThresP exceeds the 0.2, that is to say, 
looking back to Table (3), when the number of features per 
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Table 6: The simple GW test run. 

category decreases from almost 90 to almost 20. This sharp 
decay influences the macro-averaged performance of the sys­
tem. In fact, while the macro-Recall retains the same values, 
the macro-Precision is cut-off by almost 10%. This fact in­
dicates that the system is incorrectly assigning the stories to 
all the categories of the domain rather that to the biggest ones 
only. As the ThresP gets bigger, the performance of the sys­
tem shows the classic behavior in which the Recall tends to 0 
and the Precision to 1. 

For the 'what if?' test run we didn't expect such good re­
sults. The simple proportional weight assignment performed 
as well as the other approaches, nevertheless the performance 
decays slightly more rapidly. This test was very important for 
us to confirm the idea of using a simplified learning approach 
to solve the problem of TC. 

The second and the third test runs show almost the same 
values. The one-per-thousand differences are not to be con­
sidered relevant. At the moment, we cannot draw any con­
clusion about which of the three learning approaches will 
perform better in general. We plan to investigate this mat­
ter testing on the complete Reuters-21578 and on other test 
collections. 

Comparative Results 
Dumais et al. tested a number of inductive learning algo­
rithms on the same Reuters-21578 ModApte split we used 
([Dumais et ai, 1998]). These results arc briefly summi-
rized in Table 7 for the 10 most frequent categories. The 

Table 7: Microavcraged Fl-measure of the 10 most frequent 
categories of Reuters-21578, reported by Dumais 

FindSim method is a variant of Rocchio's method for rele­
vance feedback([Rocchio, 1971]). The Naive Bayes classifier 
is constructed by using the training data to estimate the prob­
ability of each category given the document feature values of 
a new instance. A discussion of the indipendence assump­
tion of naive bayes classifier can be found in ([Lewis, 1998]). 
BayesNets is a bayesian network, that uses 2-dependence 
Bayesian (see [Sahami, 1996] for another example of Bayes 
nets for classification). Tree is a Decision Tree approach de­
scribed in ([Chickering et al, 1997]). Meanwhile, Linear 
SVM is a linear hyperplane that separates a set of positive 
examples from a set of negative ones ([Joachims, 1998]). 



Both SVMs and Decision Trees produce very high overall 
classification accuracy. As the results of Table 7 are directly 
comparable with ours, our Gaussian Weighting approach is 
placed just behind the SVMs, which are known to be the best 
machine learning method in the field of text classification, 
with a micro-averaged Fl-measure of 0.893 of the first two 
test runs. This result is important for two reasons: it demon­
strates that this new learning method does perform well on 
this particular task, and encourage us to further investigate 
other fields of application, in which GW's simplicity could 
perform as well as other state-of-the-art machine learning 
methods. 

5 Future Work 
Two are the most compelling issues that we are going to com­
plete in the future work are two: 

• Incorporate a wrapper phase [Kohavi and John, 1997] 
to run systematically varying experiments with (i) using 
Expressiveness or not, (ii) varying values of ThresP and 
ThresE, (iii) varying values of GW variance, and (iv) 
using a Gaussian function or not; 

• Test the full Reuters benchmark data rather than restrict­
ing ourselves to only the 10 most frequent categories, 
and on other collections like 20 Newsgroups2 or Med-
Line3 . 

6 Conclusions 
In this paper we addressed the problem of finding a simple 
learning algorithm that uses naive, human comprehensible 
parameters. A very accurate text classifier can be learned au­
tomatically by using only two information parameters: pres­
ence P and expressivity E. The algorithm proposed here has, 
in the worst case, a quadratic computational cost, with respect 
to the number of categories of documents. We tested GW 
on the Reuters-21578 benchmark and calculated the micro-
averaged Fl-measure to directly compare our results with 
the ones of the literature, and the macro-Recall and macro-
Precision. The results achieved are satisfactory and can be 
compared to most state-of-the-art machine learning methods 
applied to TC. 
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