
Behavior Bounding: Toward Effective Comparisons of Agents & Humans*

Scott A. Wallace and John E. Laird
Artificial Intelligence Laboratory

University of Michigan
Ann Arbor, MI 48109

Abstract
In this paper, we examine methods for comparing
human and agent behavior. The results of such
a comparison can be used to validate a computer
model of human behavior, score a Turning test, or
guide an intelligent tutoring system. We introduce
behavior bounding, an automated model-based ap­
proach for behavior comparison. We identify how
this approach can be used with both human and
agent behavior. We demonstrate that it requires
minimal human effort to use, and that it is efficient
when working with complex agents. Finally, we
show empirical results indicating that this approach
is effective at identifying behavioral problems in
certain types of agents and that it has superior per­
formance when compared against two benchmarks.

1 Introduction
Over the past twenty years, AI research has successfully
demonstrated a number of techniques for constructing agents
that exhibit intelligent behavior. Many applications have the
additional requirement that the agent's behavior be consistent
with that of a human expert. This is especially true for tasks
in which the agent must simulate a human such as in train­
ing situations or in virtual social experiences such as on-line
gaming.

For these tasks, the standard approach to developing ex­
pert level agents begins with knowledge acquisition. Unfor­
tunately, knowledge acquisition is usually imperfect. As a re­
sult, significant resources must be spent on validation, which
often requires both a knowledge engineer and domain expert
to monitor the agent's behavior in a large number of test sce­
narios. In this paper, we present a method for automatically
comparing two actors' behavior that could be used to over­
come this validation bottleneck.

The potential uses of automated behavior comparison ex­
tend well beyond knowledge-base validation. For example, a
generalized approach for comparing two actors' behavior can
be used to objectively score a Turing test. A perfect result
would be indicated if no detectable differences between the

*This work was supported by the Office of Naval Research, con­
tract N61339-99-C-O104

MULTIAGENT SYSTEMS

human and its computer counterpart were identified. In addi­
tion, automated behavior comparison can serve as the core of
an intelligent tutoring system, where the roles are reversed. A
novice human's behavior is compared to a computer agent's
behavior which serves as a gold standard and information
about the student's errors is used to guide the lesson. In all of
these applications, the basic process for comparing behavior
is identical. The differences only stem from the source of be­
havior (e.g. human or machine, expert or novice) and how the
results of the comparison are used (to identify programming
errors, to score a test or to guide a lesson). For simplicity and
cohesiveness, this paper wil l focus on using behavior compar­
isons to aid the knowledge-base validation problem, but the
discussion and results can also be applied to the other tasks
as well.

2 Interactive Human-Level Agents
The need for behavior comparisons is particularly pro­
nounced when the agent must masquerade as its human coun­
terpart (the expert). These agents, which we term interac­
tive human-level agents, are distinguished by two properties.
First, the agent's performance is judged based on its ability
to behave as the human expert would behave. Secondly, like
humans themselves, interactive human-level agents must in­
teract with an external environment in order to perform many
of their tasks.

A good example of an interactive human-level agent is
TacAir-Soar [Jones et al, 1999]. TacAir-Soar flics virtual
military planes as part of a simulated training exercise. Team­
mates may be other TacAir-Soar agents or human counter­
parts. Because the agents are intended to model expert level
behavior, it is not acceptable just to achieve the final states
(e.g. shooting down the enemy planes). Instead, the agent
must generate the same behavior as the expert. Meeting this
requirement is challenging because the expert may perform
the task differently on different occasions.

In the remainder of this paper, we first begin by examin­
ing a simple method of comparing a computer agent's be­
havior to a human expert's behavior. Deficiencies with this
method lead us to examine more sophisticated model-based
approaches. In Section 4 we summarize desirable features of
such an approach. Then, beginning in Section 5, we present
our method of model-based behavior comparison.

727

3 Toward Automated Behavior Comparison
Before two actors' behavior can be compared, the behav­
ior must be represented in a form that can be processed
by the comparison algorithm. We can do this most eas­
ily by storing individual instances of behavior, or behav­
ior traces. A behavior trace is a sequence of tuples B —

in which each tuple
indicates the environmental state (s), the goals be­

ing pursued by the actor (G), and the action being performed
(a). The state and action portion of the behavior trace can be
captured by observing the actor perform the specified task.
The actor's goals are necessary to disambiguate instances
when different actions are performed in equivalent environ­
mental states. Depending on whether the actor is human or
computer agent, the actor may need to record how their goals
change during the task.

A simple approach to comparing the actor's behavior can
be performed with the following steps:

Acquire a set of behavior traces from the human expert and
the agent for the specified task. These sets, H and A,
represent the human expert's and agent's behavior re­
spectively over a number of different trials.

Extract relevant features from the behavior traces. Some in­
formation gathered through observation may not be use­
ful to detect errors. In this step, the salient features from
the sets H and A are used to create two new sets of se­
quences and

Compare each sequence to the contents of
Compute the minimal number of edit operations (insert,
delete, modify) that would be required to transform a
into / i , where h is the sequence in that is most simi­
lar to a. Each edit operation indicates a potential error.

Report all deviations (after removing any redundancies) be­
tween the human's and agent's behavior. This report
summarizes all potential errors.

This simple approach performs a more detailed analysis of
behavior than simply checking that the agent and the expert
reach the same final (goal) state. In this way, the agent's ex­
ternally observable behavior as well as some aspects of its
internal reasoning process can be inspected to ensure that it is
consistent with the human expert's. In addition, this method­
ology has the ability to identify a large number of possible
errors because it has access to all the salient properties of the
behavior trace.

However, this simple approach also suffers from a num­
ber of potentially serious flaws. First, the representation of
the actors' behavior is a set of sequences extracted from the
behavior traces. These sets grow as more observations are
considered. Because interactive human-level agents can typ­
ically solve problems in a number of different ways, and be­
cause the environments they operate within are complex, it
is likely that a very large number of observations wil l be re­
quired to adequately cover the actor's behavior. This problem
is exacerbated by the fact that the sequential representation
makes no assumption about how the actor's behavior might
be constrained. Although this makes it possible to use this
simple approach with any variety of behavior, it also makes

728

it impossible to leverage regularities that might exist in large
classes of goal directed tasks.

4 Model Based Approaches
To improve upon the simple approach for automated error de­
tection described in Section 3, we propose a model-based ap­
proach to comparing actors' behavior. Central to any such ap­
proach are the properties of the behavioral model. Our choice
is guided by the following requirements:
Low Complexity Unless the new model is significantly less

complex than the agent's knowledge base, understand­
ing the model and the behavior it represents is no eas­
ier than examining the knowledge base directly. For the
model to be an asset, it must provide an adequately ac­
curate representation of behavior while remaining easy
to understand.

Low Effort We have argued that one of the main uses of the
behavior comparison is to reduce the cost of validating
a human-level agent. In order to accomplish this goal,
the human effort required to build the behavioral models
must remain low.

Compatibility Behavior comparison has a number of poten­
tial applications, but most rely on being able to examine
both human and software agent behavior. Thus the rep­
resentation must be limited to data that can be collected
from either of these types of participants.

Efficiency Human-level agents operate in complex environ­
ments and may perform their tasks in a variety of differ­
ent ways. To address this problem, a model may be built
using observations of expert behavior. In this case, it
must be possible to generate the model efficiently, even
if many observations are required.

Efficacy Meeting the preceding requirements will come at
a cost. Most likely this wi l l be a decreased ability to
distinguish between some types of behavioral deviations
(potential errors). A good representation wil l nonethe­
less be able to identify a wide range of behavioral devi­
ations that are likely to occur within the target environ­
ments and overlook meaningless differences.

Prior work in model-based diagnosis (e.g. [Lucas, 1998])
has examined how to detect errors given a model of correct
behavior. In general, however, the models in these systems
are relatively complicated and intended to identify problems
with mechanical or solid state devices as opposed to software
agents. However, one system, CLIPS-R [Murphy and Paz-
zani, 1994] was designed expressly for validating software
agents.

In CLIPS-R, the behavior model consists of environmen­
tal constraints that must be met initially, as well as during
and after task execution. In addition, the model can include
a finite state machine which identifies acceptable sequences
of actions pursued by the agent. Superficially, the require­
ments for the CLIPS-R approach seem relatively simple to
meet. However, specifying this additional knowledge is a
manual process that can significantly increase human effort
and ironically can introduce a recursive validation problem
for the constraints.

MULTIAGENT SYSTEMS

5 Behavior Bounding
As an improvement to CLIPS-R and to the simple method
presented in Section 3, our approach to behavior comparison,
called behavior bounding, automatically and efficiently builds
concise models of both the human's and agent's behavior by
examining behavior traces. The model of the expert's behav­
ior is used to identify boundaries on acceptable behavior, and
potential errors are reported by comparing the model of agent
behavior to these boundaries.

5,1 A Hierarchical Mode l

The advantages of behavior bounding all stem from its rep­
resentation of behavior. Behavior bounding is inspired by
the hierarchical representations used in A N D / O R trees, HTN
planning [Erol et al., 1994] and GOMS modeling [John and
Kieras, 1996] to encode the variety of ways in which particu­
lar tasks can be accomplished.

The hierarchical behavior representation (HBR) used in
our approach is illustrated in Figure 1A. The hierarchy is
an A N D / O R tree with binary temporal constraints represent­
ing the relationships between the actor's goals and actions.
In this representation, internal nodes correspond to goals
and leaves correspond to primitive actions. A node's chil­
dren indicates the set of sub-goals or primitive actions that
are relevant to accomplishing the specified goal. For ex­
ample, in Figure 1A, the sub-goals D e s t r o y - L e a d and
Des t roy -W ingman are relevant for completing their par­
ent goal, Engage - Enemy. The manner in which sub-goals
should be used to achieve their parent goal is encoded by the
parent's node-type constraint (A N D vs O R) and the ordering
constraints between sub-goals. In Figure 1A, A N D and OR
nodes are represented with ovals and rectangles respectively.
Binary temporal constraints are represented with arrows be­
tween siblings. Thus, the hierarchy specifies that Engage -
Enemy may be correctly accomplished by first accomplish­
ing D e s t r o y - L e a d and then accomplishing D e s t r o y -
Wingman.

This model of behavior is clearly less complex than the
agent's underlying knowledge base, indeed, it is likely to
be less complex than the model used by CLIPS-R. Behav­
ior bounding abstracts away internal data-structures the agent
may use in problem solving that cannot be represented by the
constraints in the hierarchy. This means, that the HBR alone
could not be used to perform some basic tasks such as depth
first search. This begs the question, if the agent's behavior
can be represented using such a simple structure, why was
it not programmed in this representation to begin with? The
hypothesis here is not that this representation is sufficient to
completely capture the agent's behavior. Most human-level
agents do rely on intermediate data-structures that are not
available through the environment or through the structure
of the goal hierarchy. However, our hypothesis is that the
representation provided by behavior bounding is sufficient to
identify a large class of possible errors in agent behavior with­
out sacrificing efficiency. Moreover, we believe that behavior
bounding can also help identify potential problem spots in the
agent's knowledge (e.g. a specific goal) even if an exact error
cannot be identified.

MULTIAGENT SYSTEMS

Figure 1: Hierarchical Behavior Representation & Goal Stack

In contrast to the behavior representations used for the
simple comparison described in Section 3, the HBR makes
two strong assumptions about the organization of the actors'
knowledge and the effects this will have on their behavior.
These assumptions increase the efficiency and efficacy of er­
ror detection for certain types of human-level agents.

The first assumption used by the behavior bounding ap­
proach is that the actor's goals are organized hierarchically,
with more abstract goals placed toward the top of the tree.
We also assume that at any point in the problem solving pro­
cess the actor pursues a set of goals belonging to different
levels in the hierarchy. This set, referred to as the goal stack,
corresponds to a path in the hierarchy beginning at the top
node and descending to the most concrete sub-goal that is
currently being pursued by the actor. Figure IB illustrates a
possible goal stack maintained by the actor whose behavior is
represented in Figure 1 A.

The second assumption leveraged by behavior bounding
relates to the independence of goals. Temporal constraints
can only be formed between sibling nodes, and A N D / O R clas­
sification determines which of a node's children must be per­
formed for a particular task. This makes it is easy to con­
strain the way a particular goal is achieved, but difficult to
represent constraints between arbitrary parts of the hierarchy.
Although this may cause problems with some agent imple­
mentations, this property has significant benefits. Most im­
portantly, it decreases the number of observations that are re­
quired. Consider a task that requires completing two goals,
each of which could be fulfilled in four distinct ways. A se­
quential representation that makes no assumptions about goal
independence (such as the one described in Section 3) would
require sixteen distinct observations to cover the acceptable
behavior space where as behavior bounding would only re­
quire four observations. This significant impact on efficiency
is the direct result of leveraging the assumption about how
goals are likely to add regular structure to an actor's behav­
ior.

5.2 Ident i fy ing E r ro rs

In general, we can view a behavior comparison method as an
algorithm which divides the space of possible behaviors into
two regions: behaviors that are likely to be consistent with
the expert, and behaviors that are likely to be inconsistent
with the expert. The simple comparison method described
in Section 3 does this by enumerating consistent behaviors.

729

Figure 2: Imposing Order on the Behavior Space

In behavior bounding, however, the constrained hierarchical
representation allows us to break the space of possible behav­
iors into more refined regions.

We begin by noting that the constrained hierarchical rep­
resentation allows us impose order on the space of possi­
ble behaviors. In particular, we can define an ordering from
specific to general over the behavior hierarchies, by starting
with a maximally constrained hierarchy (at the top) and it-
eratively removing constraints until none remain. Construct­
ing a representation of an expert's behavior (Section 6) per­
forms this same generalization, but most often stops before
all constraints have been removed. Figure 2, in which each
node represents a behavior hierarchy, illustrates this ordering.
Once we have created a representation for the expert's behav­
ior, we can identify the node it occupies in this ordered space
(call this node A in Figure 2). This node (the upper boundary
node) allows us to easily determine if the agent's behavior is
likely to be correct. Because correct behavior must be con­
sistent with expert behavior, an agent whose behavior repre­
sentation is a specialization of the expert's (i.e. lies above A
in the generalization lattice) exhibits behavior that is is likely
to be correct.

The node that represents the completely unconstrained goal
hierarchy is at the bottom of Figure 2 (labeled B) and provides
a lower boundary. It contains the most basic specification
for what may constitute acceptable agent behavior and as a
result could be used to identify behavior representations that
are known to be incorrect. Such representations would have a
goal decomposition structure that was inconsistent with (i.e.
contained different parent/child relationships than) this lower
boundary (nodes in the right side of Figure 2).

Using the upper and lower boundaries described above we
can classify any representation of agent behavior as: likely-
correct (a specialization of the expert's behavior representa­
tion); likely-incorrect (a specialization of the expert's goal
decomposition structure); and known-incorrect (inconsistent
with the expert's goal decomposition structure).

Clearly, the hierarchical representation used by our ap-
proach describes behavior at a much higher level of abstrac­
tion than a typical knowledge base and in so doing, it presents
a much more concise illustration of potential behavior than,
for example, a set of individual rules. As a result, it meets our
first requirement (low complexity). In addition, this represen­
tation can be generated automatically by examining behavior

730

traces of an actor's performance on a task thus meeting the
second requirement (low human effort). And because the be­
havior traces can be captured from either human or agent be­
havior with only minor support from the human participant,
this model meets the third requirement. In the following sec­
tions, we wil l examine the remaining requirements in detail.

6 Learnability
In this section, we examine two aspects of behavior bound-
ing's hierarchical representation: the effort required to cre­
ate and maintain it, and its ability to represent behavior effi­
ciently. Both of these requirements are addressed by the over­
all learnability of the representation. That is, if the representa­
tion can be learned from observations (as we have suggested),
then it requires human effort only to initiate the learning pro-
cess. If the learning procedure is efficient, and the data struc-
ture's growth is limited, we can further say that the hierarchy
represents behavior efficiently.

The learning procedure for constructing the HBR extracts
goal stacks and actions from a behavior trace, forming a hi­
erarchical structure such as the one illustrated in the previ­
ous section. After processing the first behavior trace, the
hierarchy contains the maximum number of constraints (i.e.
A N D / O R constraints on the goals and binary temporal con­
straints between siblings) that are consistent with the behavior
in the trace. So, if each goal in the hierarchy is pursued only
once while performing the task, all internal node-types are
A N D (maximally constrained) and all sibling internal nodes
are totally ordered (again, maximally constrained)., Upon
examining subsequent behavior traces, the hierarchy is gen-
eralized in such a way that it remains maximally constrained
with respect to all of the behavior traces it has processed.

Due to page limitations, we cannot present the learning al­
gorithm in detail, however it should be clear that the hierarchy
can be built as described above with complexity
where is the size of the goal hierarchy and L is the length
of the behavior trace. In most cases, it is reasonable to as­
sume that one property of expert quality behavior is comple­
tion of the task within a number of steps proportional to
When this assumption holds, we can say that this algorithm
is bounded by \ in time and space, with respect to the
size of the input (i.e. the length of the behavior trace). Be­
cause this complexity is a low order polynomial of the
hierarchy is efficient when encoding an instance of behavior.

We can also classify the sample complexity of our hier­
archical representation. We can think of our representation
as an ordered tuple P = where each pi
is itself a tuple containing the type of the node z (either
A N D or O R) , as well as a list L = such
that i f f is ordered before Note that since ordering
constraints only occur between siblings, the length of the list
L would only need to be length in the degenerate case.
The size of this hypothesis space is bounded by
Using Haussler's equation [Haussler, 1988], the number of

'The leaves, representing primitive actions, will only be totally
ordered if each action was used only a single time to achieve its
parent goal.

MULTIAGENT SYSTEMS

training examples m required to learn the appropriate behav­
ior representation is bounded by:

This indicates that the required sample size is polynomial
with respect to the number of goals in the hierarchy (\N\).
This, together with the fact that the time required to incorpo­
rate a new behavior trace into the learned HBR is also polyno­
mial in lNl, shows that our representation is PAC-Learnable.
This means that the HBR efficiently represents aggregate be­
havior as well an individual instance of behavior, thus meet­
ing our fourth requirement.

7 Efficacy
The efficacy of behavior bounding is addressed by two com­
ponents. First, how good is the unconstrained hierarchical
representation (the lower boundary) at identifying behavior
that is known to be incorrect. Second, how well does the
expert's representation (the upper boundary) serve to distin­
guish between potentially correct and incorrect behavior.

At first glance, it is not obvious how much behavior can be
filtered by the lower boundary. However, its effectiveness as a
filter is quite surprising. Consider an unconstrained behavior
representation with branching factor b and depth d. Without
loss of generality, assume that the nodes are uniquely labeled.
For simplicity, also assume that at any level in this hierar­
chy, the actor completes its current goal before starting the
next goal. Then, we could define an actor's behavior as a
sequence of symbols chosen from the lowest level of the un­
constrained hierarchy. For behavior sequences of length bd,
in which no symbol is repeated, there are
possible sequences that are consistent with the goal decom­
position of the unconstrained hierarchy. In contrast, there are
bd\ sequences in which the symbols may be placed without
necessarily conforming to the unconstrained hierarchy. For
a hierarchical structure of depth 4 and branching factor 2,
only 1 in approximately 6.4 • 108 of the possible sequences
of length 16 are consistent with the goal decomposition spec­
ified by the unconstrained hierarchy. This illustrates the po­
tential power of the lower behavior boundary to discriminate
between behavior that is potentially correct and the large col­
lection of behavior that is inconsistent with the expert's goal
decomposition structure, and thus known to be incorrect.

To examine how well the expert's representation distin­
guishes between correct and incorrect behavior we would ide­
ally examine a large set of hand-programmed agents before
they have been validated. Unfortunately, this is not feasi­
ble. Instead, we make random modifications to an agent's
knowledge base. These modifications introduce unbiased be­
havioral flaws in the agent program, and experiments are per­
formed to determine how well each type of error is identified.
Because the modifications are made randomly, the errors that
are examined will not be biased by our expectations about
how easily they wi l l be to identified.

Our experiments are performed on a series of agents within
a simulated object-retrieval environment. The object-retrieval
task requires both planning and reactive reasoning. Initially,

MULTIAGENT SYSTEMS

when given the task, the agent must plan a route through
known territory to a building thought to contain the desired
artifact. Because the agent has no prior knowledge of the
building's layout, it must explore the facility until the object
is found, and then find its way back out. The task is complete
once the agent leaves the building with the object. A behavior
comparison metric's performance is judged based its ability
to correctly identify errors in agent behavior, to identify all
errors that have occurred, and to produce minimal amounts
of spurious information in the report.

7.1 Methodology
We implemented the algorithm described in Section 6,
along with two version of the simple approach de­
scribed in Section 3 to serve as benchmarks. The
first benchmark, the action sequence, extracts the se­
quence from the behavior trace
B — while the sec­
ond benchmark extracts the sequence of goals G =
(Go, G i , . . . , from B. Remember that the benchmarks
are not particularly efficient representations; they can grow
exponentially and have an exponential sample complexity.
However, they do make interesting benchmarks of efficacy.

We initially constructed an agent that solves the problem
in a very rigid manner. That is, across different attempts,
the agent wil l complete the task using identical behavior so
long as it is provided identical initial states and so long as the
environment responds identically to its behavior. Given this
agent, we performed modifications on its knowledge-base by
randomly removing rules that determine preferences between
competing goals and actions. The results of these modifica­
tions are agents that complete the task successfully in the tra­
ditional sense (i.e. they reach the same end state), but have
increased flexibility in terms of the sequence of goals and
actions they use to achieve that final state. In addition, the
behavior exhibited by these modified agent's cannot be clas­
sified as incorrect by the lower behavior boundary node. As
a result, these tests directly examine the abilities of the upper
boundary node to distinguish between correct and incorrect
behavior.

Each family of experiments begins by selecting two agents,
e and n, such that n is a modified (more flexible) version of
e. We designate e as the expert, and n as the novice. Because
n is more flexible than e, it wil l behave in certain ways that
are not consistent with expert behavior—these are errors.

After the expert and novice have been selected, they are
individually incorporated into a simulation so their behavior
can be observed. We then gather between 10 and 15 behavior
traces of the actors performing their task, ensuring that no two
behavior traces are identical. These traces form the sets
and for the expert and novice respectively. Finally, each
behavior trace in is examined manually to determine
what errors it contains.

The captured behavior traces are then split into a number
of subsets: and A single experi­
ment consists of examining each comparison method's per­
formance on a pair of these subsets and , A family
of experiments contains the experiments that compare all
to all for a particular novice/expert pair. Thus comparing

731

Experiment Family

Figure 3: Report Density

four expert/novice pairs results in four experiment families
although the total number of individual experiments may be
much larger. By constructing experiment families in the way,
we are able to examine the impact of different observational
data more easily.

7.2 Results

For each experiment, we begin with a record (summarized
by our manual examination of the agent's behavior traces)
of what behavior errors were committed by the agent; these
are true errors. This record identifies both low-level true er­
rors such as omissions, commissions, and intrusions, as well
as higher-level true errors such as misplacement, or repetition
which are the result of multiple low-level errors. We then col­
lect a summary from each comparison method about how the
agent's behavior differed from the expert's behavior. Based
on this, we record the number of true errors that occurred but
were not identified by the summary (false negatives). Then,
for each behavioral deviation in the summary we manually
determine whether it indicates a new true error in the agent's
behavior. If so, this deviation is meaningful and thus a useful
part of the report, otherwise it is spurious.

To judge the performance of a comparison method, we first
determine how many errors it fails to identity (false nega­
tives). From this standpoint, all comparison methods per­
formed relatively similarly. Across all experiment families
the range on false negatives is between zero and 1.75 for
all comparison metrics. However, in each experiment fam­
ily behavior bounding does perform slightly better than the
rest, maintaining the lowest average score, and achieving zero
false negatives in five experiment families.

The other performance criteria we are interested in is how
much of the comparison method's summary is useful. Be­
cause the summary is likely to be analyzed by a human, spu­
rious errors are undesirable because they require human effort
to examine and follow-up before they can be dismissed. If a
summary is largely spurious errors, it is unlikely that any­
one would actually care to read it. On the other hand, if the
summary provides a large amount of good information, an
occasional spurious error is likely to be acceptable.

This can be expressed as a ratio of how many true errors

732

can be identified by the deviations listed in the summary to
the total number of deviations listed in the summary. We call
this value the report density of the summary. Thus, a compar­
ison method that reports no meaningful deviations, and only
spurious information wil l have a report density of zero. Note
that it is possible for the report density to be higher than one.
When a deviation in the summary correctly identifies a high-
level error (such as the agent performing action a before b in
contrast to the expert who performs b before a) we consider
the summary as also identifying all the low-level errors that
form this high-level error (e.g. two commissions in which a
replaces b and vice-versa). This means that from the point
of view of report density, it is better to identify high-level er­
rors than low level errors. Because we should favor concise
summaries, this is exactly what we want. Figure 3 illustrates
the average report density of each comparison method's sum­
mary over all experiment families. Overall, behavior bound­
ing outperforms the other metrics by achieving an report den­
sity of one or higher in six of the seven experiment families.

7.3 Conclusions
Our behavior bounding method uses an abstract model of be­
havior to identify potentially problematic differences between
two actors. This in turn leads to a semi-automated method
that can be used to validate complex, human-level behavior.
Moreover, behavior bounding offers significant advantages
over prior validation approaches and traditional manual tech­
niques: it can be easily be used to validate an agent when
human performance is the specification for acceptability; it
requires only minimal human effort to initiate and perform
the behavior comparisons, and behavior bounding is effective
at identifying errors, even when compared to methods that are
not constrained by efficiency requirements.

References
[Erol et al, 1994] K. Erol, J. Hendler, and D. S. Nau. HTN

planning: Complexity and expressivity. In Proc. of the
\2th National Conf on Artificial Intelligence, pages 1123-
1128. AAAI Press/MIT Press, 1994.

[Haussler, 1988] D. Haussler. Quantifying inductive bias: Al
learning algorithms and Valiant's learning framework. Ar-
tificial Intelligence, 36:177-221, 1988.

[John and Kieras, 1996] B. E. John and D. E. Kieras. The
GOMS family of user interface analysis techniques: Com­
parison and contrast. ACM Transactions on Computer-
Human Interaction, 3(4):320-351, 1996.

[Jones et al., 1999] R. M Jones, J. E. Laird, P. E. Nielsen,
K. J. Coulter, P. Kenny, and F. V. Koss. Automated intel­
ligent pilots for combat flight simulation. AI Magazine,
20(l):27-42, 1999.

[Lucas, 1998] P. Lucas. Analysis of notions of diagnosis. Ar­
tificial Intelligence, 105:295-343, 1998.

[Murphy and Pazzani, 1994] P. M. Murphy and M. J. Paz-
zani. Revision of production system rule-bases. In Proc. of
the 11th Int. Conf on Machine Learning, pages 199-207.
Morgan Kaufmann, 1994.

MULTIAGENT SYSTEMS

