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Abstract 

Voting is a general method for preference aggrega­
tion in multiagent settings, but seminal results have 
shown that all (nondictatorial) voting protocols are 
manipulable. One could try to avoid manipula­
tion by using voting protocols where determining 
a beneficial manipulation is hard computationally. 
A number of recent papers study the complexity 
of manipulating existing protocols. This paper is 
the first work to take the next step of designing 
new protocols that are especially hard to manip­
ulate. Rather than designing these new protocols 
from scratch, we instead show how to tweak ex­
isting protocols to make manipulation hard, while 
leaving much of the original nature of the protocol 
intact. The tweak studied consists of adding one 
elimination preround to the election. Surprisingly, 
this extremely simple and universal tweak makes 
typical protocols hard to manipulate! The proto­
cols become NP-hard, #P-hard, or PSPACE-hard 
to manipulate, depending on whether the sched­
ule of the preround is determined before the votes 
are collected, after the votes are collected, or the 
scheduling and the vote collecting are interleaved, 
respectively. We prove general sufficient condi­
tions on the protocols for this tweak to introduce 
the hardness, and show that the most common vot­
ing protocols satisfy those conditions. These are 
the first results in voting settings where manipula­
tion is in a higher complexity class than NP (pre­
suming PSPACE NP). 

1 Introduction 
Often, a group of agents has to make a common decision, yet 
they have different preferences about which decision is made. 
Thus, it is of central importance to be able to aggregate the 
preferences, that is, to make a socially desirable decision as to 
which candidate is chosen from a set of candidates. Such can­
didates could be potential presidents, joint plans, allocations 
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of goods or resources, etc. Voting is the most general prefer­
ence aggregation scheme, and has been used in several multi-
agent decision making problems in A I , such as collaborative 
filtering (e.g. [Pennock et ai, 2000]) and planning among au­
tomated agents (e.g. lEphrati and Rosenschein, 1991; 19931). 

A key problem voting mechanisms are confronted with is 
that of manipulation by the voters. An agent is said to vole 
strategically when it does not rank the alternatives accord­
ing to its true preferences, but differently so as to manipulate 
the outcome to be more favorable to the agent. For exam­
ple, if an agent prefers Nader to Gore to Bush, but knows that 
Nader has too few other supporters to win, while Gore and 
Bush are close to each other, the agent would be better off by 
declaring Gore as its top candidate. Manipulation is an unde­
sirable phenomenon. For one, because social choice schemes 
are tailored to aggregate preferences in a socially desirable 
way, and if the agents reveal their preferences insincerely, a 
socially undesirable candidate may be chosen. 

A seminal negative result, the Gibbard-Satterthwaite theo­
rem, shows that if there are three or more candidates, then in 
any nondictatorial voting scheme, there are preferences un­
der which an agent is better off voting strategically [Gibbard, 
1973; Satterthwaite, 1975]. (A voting scheme is called dicta­
torial if one of the voters dictates the social choice no matter 
how the others vote). In automated group decision making 
where the voters are software agents, the manipulability of 
protocols is even more problematic, for at least two reasons. 
First, the algorithms they use to decide how to vote must be 
coded explicitly. Given that the voting algorithm needs to be 
designed only once (by an expert), and can be copied to large 
numbers of agents (even ones representing unsophisticated 
human voters), it is likely that rational strategic voting wil l in­
creasingly become an issue, unmuddied by irrationality, emo­
tions, etc. Second, software agents have more computational 
power and are more likely to find effective manipulations. 

We take the following tack toward avoiding manipulation: 
ensuring that finding a beneficial manipulation is so hard 
computationally that it is unlikely that voters will be able to 
manipulate. So, unlike in most of computer science, here 
high computational complexity is a desirable property. The 
harder it is to manipulate, the better. 

Prior work on the complexity of manipulating elections 
has focused on existing protocols iBartholdi et a/., 1989; 
Bartholdi and Orlin, 1991; Conitzer and Sandholm, 2002a]. 
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This paper is the first to take the next step of designing 
new protocols that are especially hard to manipulate. Rather 
than designing these protocols from scratch, we show how to 
tweak existing protocols to make manipulation computation­
ally much more difficult, while leaving much of the original 
nature of the protocol intact, for the following reasons: 

Results on the computational complexity induced by a 
tweak typically apply to a large family of protocols. 

Many of the original protocol's nice theoretical proper­
ties are preserved by the tweak. 

In practice, it will be much easier to replace a currently 
used protocol with a tweaked version of it, than with an 
altogether new protocol. 

The type of tweak we study in this paper is the follow­
ing. Al l the candidates are paired in a preround; of each pair 
of candidates, only the winner of their pairwise election sur­
vives. (The winner of the pairwise election between two can­
didates is the candidate that is ranked above the other more 
often in the votes.) After the preround, the original protocol 
is executed on the remaining candidates. The schedule of the 
preround (i.e., who faces who) can be determined before the 
votes are collected; after the votes are collected; or while the 
votes are collected (the processes are interleaved). We study 
these three cases in Sections 4, 5, and 6, respectively. l 

2 Definitions 

2.1 Elections and vot ing protocols 

An election consists of a set of candidates C\ a set of voters 
V\ and a protocol for deciding on a winner w € C given all 
the voters' votes. (Here, a vote is a total ordering of the candi­
dates.) A deterministic protocol is a function from the set of 
all combinations of votes to C. (All our results hold even for 
unweighted voters, so in this paper this function will always 
treat the voters symmetrically.) A randomized protocol is a 
function from the set of all combinations of votes to proba­
bility distributions over C. An interleaved protocol is a pro­
cedure for alternating between collecting parts of the voters' 
votes (e.g. whether they prefer candidate a to candidate /;) 
and drawing and publishing random variables (such as parts 
of the schedule for an election), together with a function from 
the set of all combinations of votes and random variables to 
C. (Collecting only parts of the voters' preferences is also 
known as elicitation.) 

The high complexity results obtained in this paper are depen­
dent on the number of candidates growing. This places them in 
line with all the early results in this area [Bartholdi et al, 1989; 
Bartholdi and Orlin, 1991], but in contrast with more recent re­
sults [Conitzcr and Sandholm, 2002a] that show high complexity 
of manipulation with a constant number of candidates for some pro­
tocols. Having high complexity of manipulation occur with a con­
stant number of candidates already is certainly preferable to having 
it occur only with a growing number. On the other hand, unlike in 
that paper, the results here hold even when the voters all have equal 
weight, and even when manipulation is attempted by an individual 
rather than a coalition, making the results in this paper stronger in 
that sense, so there is a tradeoff. 
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The standard definitions of most voting protocols allow for 
the possibility of ties between candidates, in which case a tie-
breaking rule is required to fully specify the protocol. Al l our 
results hold for any tie-breaking rule, so we do not need to 
specify such rules here. 

In this paper we apply our technique to the most common 
voting protocols (in these definitions, whenever points are de­
fined, the candidate with the most points wins): 

Plurality. A candidate receives 1 point for every voter 
that ranks it first. (Thus, the voters effectively only vote 
for one candidate.) 

Borda. For each voter, a candidate receives m - 1 points 
if it is the voter's top choice, m - 2 if it is the second 
choice,..., 0 if it is the last. 

Maximin. A candidate's score in a pairwise election is 
the number of voters that prefer it over the opponent. A 
candidate's number of points is the lowest score it gets 
in any pairwise election. 

Single Transferable Vote (STV). The winner determina­
tion process proceeds in rounds. In each round, a candi­
date's score is the number of voters that rank it highest 
among the remaining candidates, and the candidate with 
the lowest score drops out. The last remaining candidate 
wins. (A vote '"transfers" from its top remaining can­
didate to the next highest remaining candidate when the 
former drops out.) 

2.2 Preround 
The tweaks we study in this paper all involve the addition of 
a preround. We will now define how this works. 

Definition 1 Given a protocol P, the new protocol obtained 
by adding a preround to it proceeds as follows : 

1. 

2. 

3. 

The candidates are paired. If there is an odd number of 
candidates, one candidate gets a bye. 

In each pairing of two candidates, the candidate losing 
the pairwise election between the two is eliminated. A 
candidate with a bye is never eliminated. 

On the remaining candidates, P is executed to produce 
a winner. For this, the implicit votes over the remaining 
candidates are used. (For example, if a voter voted a y 
b c d c, and b and c were eliminated, the voter's 
implicit vote i s a d e.) 

The pairing of the candidates is also known as the schedule 
for the preround. If the schedule is decided and published be­
fore the votes are collected, we have a deterministic preround 
{DP RE), and the resulting protocol is called DP RE + P. If 
the schedule is drawn completely randomly after the votes are 
collected, we have a randomized preround (RPRE), and the 
resulting protocol is called RPRE + P. Finally, if the votes 
are elicited incrementally, and this elicitation process is in­
terleaved with the scheduling-and-publishing process (which 
is again done randomly), as described in detail in Section 6, 
we have an interleaved preround (IPRE), and the resulting 
protocol is called I PRE + P. 

MULTIAGENT SYSTEMS 



2.3 Manipulation 
We now define the computational problem of manipulation. 
Because all our hardness results hold even when the voters 
are unweighted, only a single voter is trying to manipulate, 
and all the other voters' votes are known to the manipulator, 
we will only define this simple setting here. Any hardness 
results in this simple setting immediately imply hardness in 
all more general settings. 

Definition 2 (CONSTRUCTIVE-MANIPULATION) 
We are given a protocol P, a candidate set C, a preferred 
candidate p, and a set of votes S corresponding to all the 
other voters* votes. The manipulator has yet to decide on 
its vote, and wants to make p win. Then the constructive 
manipulation question is: 

(For deterministic protocols) Can the manipulator cast 
its vote to make p win under  

(For randomized protocols) Can the manipulator cast its 
vote to make the probability of p winning under P at 
least some given  

(For interleaved protocols) Given the initial random 
choices (if any) by the protocol, is there a contingency 
plan (based on the random decisions the protocol takes 
between eliciting parts of the votes) for the manipula­
tor to answer the queries to make the probability of p 
winning under P at least some given  

3 Complexity of manipulating untweaked 
protocols 

In this section, we briefly review the complexity of ma­
nipulating voting protocols, as a benchmark for our re­
sults. CONSTRUCTIVE-MANIPULATION is in P for the 
Plurality, Borda, and Maximin voting protocols iBartholdi 
et al, 1989]. The only voting protocol for which 
CONSTRUCTIVE-MANIPULATION is known to be NP-
hard is the STV protocol [Bartholdi and Orlin, 1991 ].2 

4 NP-hardness when scheduling precedes 
voting 

In this section, we examine the complexity induced by the 
preround when the voters know the schedule before they vote. 

4.1 A sufficient condition for NP-hardness 
We present a sufficient condition under which adding a pre­
round with a preannounced schedule makes manipulation 
NP-hard. The condition can be thought of as an NP-hardness 
reduction template. If it is possible to reduce an arbitrary SAT 
instance to a set of votes satisfying certain properties under 
the given voting protocol, that protocol—with a preround— 
is NP-hard to manipulate. 

Theorem 1 Given a voting protocol P, suppose that it is pos­
sible, for any Boolean formula in conjunctive normal form 

2CONSTRUCnVE-MANTPULATION is NP-hard also for the 
Second Order Copeland protocol [Bartholdi et a/., 1989], but the 
hardness is driven solely by the tie-breaking rule. 
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(i.e., a SAT instance), to construct in polynomial time a set 
of votes over a candidate set containing at least 
where (L is the set of literals  

, where V is the set of variables used in 
, with the following properties: 

(Property la) If we remove, for each one of 
and p would win an election under protocol P 

against the remaining candidates if and only if for every 
clause (where K is the set of clauses in , there 
is some I L such that ci has not been removed, and I 
occurs in k. This should hold even if a single arbitrary 
vote is added. 

(Property lb) For any and are tied in 
their pairwise election after these votes. 

Then CONSTRUCTIVE-MANIPULATION in DP RE + P is 
NP-hard (and NP-complete if P is deterministic and can be 
executed in polynomial time). 

Proof: Consider the following election under DPRE + P. 
Let the candidate set be the set of all candidates occurring 
in the votes constructed from (the "original candidates"), 
plus one dummy candidate for each of the original candidates 
besides those in C^. To each of the constructed votes, add 
all the dummy candidates at the bottom; let the resulting set 
of votes be the set of the nonmanipulators' votes. A single 
manipulator's vote is yet to be added. Let the schedule for 
the preround be as follows: for each and face 
each other in the preround; and every other original candidate 
faces (and, because of the dummy candidates' position in the 
votes, defeats) a dummy candidate. Thus, the set of candi­
dates that make it through the preround consists of, for each 

", one of a n d a n d all the other original candi­

dates. The manipulator's vote will decide the winner of every 
match-up, because by property lb, all these pair-

wise elections are currently tied. Moreover, it is easy to see 
that the manipulator can decide the winner of each of these 
match-ups independently of how it decides the winners of the 
other match-ups. Thus, we can think of this as the manipu­
lator giving the variables truth-values: v is set to true if 
survives, and to false if survives. By property la it then 
follows that wins if and only if the manipulator's assign­
ment satisfies all the clauses, i.e. is a solution to the SAT 
instance. Hence there is a successful constructive manipu­
lation if and only if there is a solution to the SAT instance, 
and it follows that CONSTRUCTIVE-MANIPULATION in 
DPRE 4 P is NP-hard. (It is also in NP if P is deterministic 
and can be executed in polynomial time, because in this case, 
given a vote for the manipulator, it can be verified in polyno­
mial time whether this vote makes p win).  

4.2 Examples 

We now show how to apply Theorem 1 to the well-known 
protocols we discussed, thus showing that each of these 
protocols—with a preround—is NP-hard to manipulate. 

Theorem 2 There exists a reduction that satisfies properties 
la and lb of Theorem 1 under the Plurality protocol. 
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When it does not matter for our proofs whether a given vote 
is we write  
Proof: Given the formula , let the candidate set be the min-
ithally required candidates "' plus a set of candidates 
corresponding to the set of clauses K of , CK =  

. Then, let the set of votes be as follows: votes 
ranking the candidates for each  
votes ranking the candidates  

and for each votes ranking the candidates 

Additionally, we require that these votes 
are such that after counting them, for each and 

are tied in their pairwise election, so that property lb is 
satisfied. (This is possible because the total number of votes 
is even, and the majority of the votes do not yet have any re­
strictions on the order of the CL.) We now show property la 
is satisfied. We first observe that regardless of which of the 
candidates corresponding to literals are removed, p wil l get 

votes. Now, if for some all the candidates 
ci with are removed, then Ck wil l get at least 

votes and p wil l not win. On the other hand, if for 
each at least one candidate ct w i t h r e m a i n s ,  
then each of the c* wi l l get precisely votes. Because 
each remaining cj can get at most votes as well, p wil l 
win. In both cases there is a "margin" of at least 2, so a sin­
gle additional vote wil l not change this. Thus, property la is 
satisfied.  

Theorem 3 There exists a reduction that satisfies properties 
la and lb of Theorem 1 under the Borda protocol 

Proof: Given the formula , let the candidate set be the min­
imally required candidates plus a set of candi­
dates corresponding to the set of clauses K of CK = 

which we order in some arbitrary way 
to get Let M be the total number of can­
didates this defines. Then, let the set of votes be as fol­
lows: for every , AM votes ranking the candidates 

(here, the slight abuse of notation means that / oc­
curs in the clause corresponding to c»;) AM votes ranking the 
candidates one vote 

one vote  
and finally, A\K\M votes ranking the 

candidates and  
votes ranking the candidates 
Additionally, we require that these votes are such that after 
counting them, for each and are tied in their 
pairwise election, so that property lb is satisfied. (This is 
possible because the total number of votes is even, and the 
majority of the votes do not yet have any restrictions on the 
order of the Q.) We now show property la is satisfied. It is 
easy to see that none of the Q can win, regardless of which of 
them are removed. Thus, we only need to consider the Ci and 
p. The last votes wil l have no net effect on the rela­
tive scores of these candidates, so we need not consider these 
here. After the first M votes, any ck for which 
all the ci with have been removed will be tied with p, 
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and any other c^ wi l l be at least AM points behind p. Finally, 
from the last remaining two votes, any wil l gain 

points on p. It follows that p wins if 
and only if for every clause there is some with 

such that c\ has not been removed. In both cases there 
is a "margin" of at least points, so a single additional 
vote wil l not change this. Thus, property la is satisfied. ■ 

Theorem 4 There exists a reduction that satisfies properties 
la and lb of Theorem 1 under the Maximin protocol 

Proof: Given the formula , let the candidate set be the min­
imally required candidates plus a set of candidates 
corresponding to the set of clauses K of   

are such that after counting them, for each v e V, c+v and 
c-v are tied in their pairwise election, so that property lb is 
satisfied. (This is possible because the total number of votes 
is even, and the majority of the votes do not yet have any 
restrictions on the order of the C/.) We now show property 
la is satisfied. Regardless of which of the candidates corre­
sponding to literals are removed, p's worst score in a pairwise 
election is against any of the c/c, namely 16 + 2. Any c^ 
for which all the cl with / k have been removed will get its 
worst pairwise election score against any of the C L , namely 
16 + 4. Finally, any other Ck wil l get its worst pairwise 
election score against one of the Q with / k, namely, 16 
It follows that p wins if and only if for every clause k e K 
there is some / K such that cl has not been removed. In both 
cases there is a "margin" of at least 2, so a single additional 
vote will not change this. Thus, property la is satisfied. ■ 

Theorem 5 There exists a reduction that satisfies properties 
la and lb of Theorem 1 under the STV protocol 

Proof: We omit the proof due to limited space. ■ 

Theorem 6 In any of DPRE + Plurality, DP RE + 
Borda, DPRE + Maximin, and DPRE + STV3 , 
CONSTRUCTIVE-MANIPULATION is NP-complete. 

Proof: NP-hardness is immediate from the previous theo­
rems. The problem is in NP because these protocols can be 

3The NP-completeness of manipulating DPRE + STV is, in 
itself, not that interesting, because STV is already NP-hard to ma­
nipulate without the preround as we discussed. Nevertheless, our 
method highlights a different aspect of the NP-hardness of manip­
ulating DPRE + STV. We build on this reduction later to prove 
PSPACE-hardness of manipulating STV with a preround when the 
scheduling of the preround is interleaved with the vote clicitation. 
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executed in polynomial time. 

In the next sections, we wil l raise the bar and bring 
the problem of manipulating elections to higher complexity 
classes by abandoning the assumption that the schedule for 
the preround should be known in advance. 

5 P-hardness when voting precedes 
scheduling 

In this section, we will examine the complexity induced by 
the preround when the schedule is drawn completely (uni­
formly) randomly after all the votes have been collected. 

5.1 A sufficient condition for P-hardness 
We present a sufficient condition for a voting protocol to be­
come #P-hard4 to manipulate in this setting. Again, this con­
dition can be thought of as a reduction template. If it is possi­
ble to reduce an arbitrary PERMANENT instance to a set of 
votes satisfying certain properties under the given voting pro­
tocol, that protocol is P-hard to manipulate when a random­
ized preround is added to it. (In the PERMANENT problem, 
we are given a bipartite graph B with the same number of 
vertices k in both parts, and are asked how many matchings 
there are. This problem is P-complete [Valiant, 1979].) 

Theorem 7 Given a voting protocol P, suppose that it is pos­
sible, for any bipartite graph B with the same number of ver­
tices k in both parts (labeled 1 to k in one part, k + 1 to 2k 
in the other), to construct in polynomial time a set of votes 
over the candidate set {c1,..., c2k, p} (where c1 corresponds 
to vertex i in B) with the following properties: 

(Property 2a) If we remove k of the ci, p would win an 
election under protocol P against the remaining c1 if and 
only if the removed c1 are exactly all the ct with k +1 2K 
i 2k; 

(Property 2b) p loses its pairwise election against all c1 

with k+1 i 2k; 

(Property 2c) For any l i f e and K : +1 j 2k, c2 

defeats c3 in their pairwise election if and only if in B, 
there is an edge between vertices i and j. (Property 2d) All the previous properties still hold with 
any additional single vote. 

Then CONSTRUCTIVE-MANIPULATION in RPRE + P is 
#P-hard. 

Proof: Given the set of votes constructed on the basis of an ar­
bitrary B, let us compute the probability that p wins under the 
protocol RPRE + P with only these votes. In the preround, 
there are k matches and one bye. By property 2a, p wil l win 
the election if and only if the k candidates eliminated in this 
preround are precisely all the C* with k + 1 i 2k. By 
property 2b, p could not win a preround match against any of 
these, so p wil l win the election if and only if it gets the bye, 
and each of the c3 with k+1 j 2k faces one of the cx with 
1 i k that defeats it in the preround. Then, by property 

4 P is the class of problems where the task is to count the number 
of solutions to a problem in NP. 
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2c, it follows that p wins if and only if the preround pairing 
corresponds to a matching in B. Thus the probability of p 
winning is , where ms is the number of matchings 
in B and e(2fc, 2fc + 1) is the number of different ways to pair 
2k of the 2k -f 1 candidates in the preround (which is straight-
forward to compute). Thus, evaluating p's chances of win­
ning in this election is at least as hard as counting the num­
ber of matchings in an arbitrary B, which is P-hard. More­
over, because we can compute p's chances of winning solely 
on the basis of properties 2a, 2b, and 2c, and by property 
2d, these properties are maintained for any single additional 
vote, it follows that a manipulator cannot affect p's chances 
of winning. Thus, CONSTRUCTIVE-MANIPULATION in 
this case simply comes down to computing p's chances of 
winning, which is P-hard as demonstrated. ■ 

5.2 A broadly applicable reduction 
In this subsection we present a single broadly applicable re­
duction which wil l satisfy the precondistions of Theorem 7 
for many voting protocols, including all of the protocols dis­
cussed in this paper, thus proving them #P-hard to manipulate 
when the voting precedes the preround scheduling. 

Definition 3 We label the following reduction R\. Given a 
bipartite graph B with the same number of vertices k in both 
parts (labeled 1 to k in one part, k-\-lto2k in the other), we 
construct the following set of 12k3 + 2k2 votes: 

We now have to show that this reduction satisfies the pre­
conditions of Theorem 7. We start with the properties that are 
protocol-independent. 

Theorem 8 R\ satisfies properties 2b and 2c of Theorem 7 
(under any protocol P, because these properties are indepen­
dent of P), even with a single additional arbitrary vote. 



Proof: In the pairwise election between p and any one of the 
ct with p is ranked higher in only 4k2 

votes, and thus loses the pairwise election. So property 2b 
is satisfied. For a pairwise election between some Ci and Cj 
i and the first 12K3 votes' 
net contribution to the outcome in this pairwise election is 
0. Additionally, the two votes associated with any pair q, r 
i and also have a net contribution 
of 0, if either or . The only remaining votes are 
the two associated with the pair so ci; wins the pairwise 
election by 2 votes if there is an edge (i, j) in B, and cj wins 
the pairwise election by 2 votes otherwise. So property 2c 
is satisfied. Because both are satisfied with a "margin" of at 
least 2, a single additional vote will not change this. ■ 

Finally, because property 2a is protocol-dependent, we 
need to prove it for our reduction on a per-protocol basis. This 
is what the following four theorems achieve. 

5.3 Examples 
Theorem 9 R\ satisfies property 2a of Theorem 7 under the 
Plurality protocol. This holds even when there is a single 
additional arbitrary vote. 

Proof: If at least one of the c\ with is not 
removed, p can get at most votes, whereas the lowest-
indexed remaining candidate among the ct with 
2k will get at least 6K3 votes, so p does not win. On the other 
hand, if all the c1 with are removed, /; wil l get 
at least 6K3 + 3K2 votes, which is more than half the votes, 
so p wins. In both cases there is a "margin" of at least 2, so a 
single additional vote wil l not change this.  

Theorem 10 R\ satisfies property 2a of Theorem 7 under the 
Borda protocol. This holds even when there is a single addi-
tional arbitrary vote. 

Proof: If at least one of the ct with is not 
removed, consider the highest-indexed remaining candidate 
among the c1 with call it h. The first  
votes will put h at least 9K:3 - 3A;2 points ahead of p. (12K3 -
3K2 of them rank h above p, and the 3K2 others can give p an 
advantage of at most k each.) The 2K2 remaining votes can 
contribute an advantage to P; of at most k each, and it follows 
that h wil l still have at least 7K3 - 3K2 more points than p. So 
p does not win. On the other hand, if all the cI with k + 1 
i 2k are removed, then there are two groups of 6K3 -
3k:2 among the first 12K3 votes which (over the remaining 
candidates) are each other's exact inverses and hence have 
no net effect on the scores. Also, the last 2K2 votes, which 
are organized in pairs, have no net effect on the score because 
(over the remaining candidates) the votes in each pair are each 
other's exact inverse. The remaining votes all rank p highest 
among the remaining candidates, so p wins. In both cases the 
"margin" is big enough that a single additional vote wil l not 
change this.  

Theorem 11 R1 satisfies property 2a of Theorem 7 under the 
Maximin protocol. This holds even when there is a single 
additional arbitrary vote. 
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Proof: If at least one of the c1 with is 
not removed, then in any pairwise election between such a 
candidate and p, p wil l get at most 5K2 votes. However, the 
lowest-indexed remaining candidate among the ct with k +1 

will get at least 6K:3 votes in every one of its 
pairwise elections. So p does not win. On the other hand, if 
all the c1 with are removed, p wil l get at least 

votes in every one of its pairwise elections, which 
is more than half the votes; so p wins. In both cases there is 
a "margin" of at least 2, so a single additional vote will not 
change this.  

Theorem 12 R\ satisfies property 2a of Theorem 7 under the 
STV protocol. This holds even when there is a single addi­
tional arbitrary vote. 

Proof: If at least one of the c1 with is 
not removed, consider the lowest-indexed remaining candi­
date among the c1 with call it /. / will hold at 
least 6k3 votes as long as it is not eliminated, and p can hold 
at most 5K2 votes as long as / is not eliminated. It follows that 
;; wil l be eliminated before /, so p does not win. On the other 
hand, if all the the ct with are removed, p will 
hold at least 6K3 + 3A;2 votes throughout, which is more than 
half the votes; so p cannot be eliminated and wins. In both 
cases there is a "margin" of at least 2, so a single additional 
vote will not change this.  

Theorem 13 In any of RPRE + Plurality, RPRE -f 
Borda, RPRE + Maximin, and RPRE + STV, 
CONSTRUCTIVE-MANIPULATION is #P-hard 

Proof: Immediate from the previous theorems. 

6 PSPACE-hardness when scheduling and 
voting are interleaved 

In this section, we increase the complexity of manipulation 
one more notch, to PSPACE-hardness,5 by interleaving the 
scheduling and vote elicitation processes. 

We first discuss the precise method of interleaving required 
for our result. The method is detailed and quite complicated. 
Nevertheless, this does not mean that the interleaving should 
always take place in this particular way in order to have the 
desired hardness. If the interleaving method used for a partic­
ular election is (say, randomly) chosen from a wider (and pos­
sibly more naturally expressed) class of interleaving methods 
containing this one, our hardness result still goes through, as 
hardness carries over from the specific to the general. Thus, 
our goal is to find the most specific method of interleaving 
for which the hardness still occurs, because this gives us the 
most information about more general methods. We only de­
fine the method for the case where the number of candidates 
is a multiple of 4 because this is the case that we will reduce 
to (so it does not matter how we generalize the protocol to 
cases where the number of candidates is not a multiple of 4). 

Definition 4 I PRE proceeds as follows: 

PSPACE is the class of problems solvable in polynomial space. 
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1. 

2. 

3. 

4. 

5. 

Label the matchups (a matchup is a space in the pre-
round in which two candidates can face each other; at 
this point they do not yet have candidates assigned to 
them) 1 through  

For each matchup i, assign one of the candidates to play 
in it, and denote this candidate by c(i, 1). Thus, one of 
the candidates in each matchup is known. 

For some k which is a multiple of 4, for each i with 1 
i k, assign the second candidate to play in matchup i, 
and denote this candidate c(i, 2). Thus, we have k fully 
scheduled matchups. 

For each pair of matchups (2I — 1,2i) with i , assign 
two more candidates to face the candidates already in 
these two matchups, and denote them 
and . (Thus, at this point, all that still 
needs to be scheduled is, for each i, which of these two 
faces and which  

• Ask all the voters whether they prefer or 
(We observe that, even if the number of al­

ready scheduled matchups is k — 0, the elicitation pro­
cess trails behind the scheduling process by a factor 2.) 

6. Elicit the remainder of all the votes. 

One important property of this elicitation process is that the 
voters are treated symmetrically: when a query is made, it is 
made to all of the voters in parallel. Thus, no voter gets an un­
fair advantage with regard to knowledge about the schedule. 
Another important property is that the elicitation and schedul­
ing process at no point depends on how the voters have an­
swered earlier queries. Thus, voters cannot make inferences 
about what other voters replied to previous queries on the ba­
sis of the current query or the current knowledge about the 
schedule. These two properties guarantee that many issues of 
strategic voting that may occur with vote elicitation [Conitzer 
and Sandholm, 20()2bl in fact do not occur here. 

We are now ready to present our result. 

Theorem 14 Given a voting protocol P, suppose that it is 
possible, for any Boolean formula in conjunctive normal 
form (i.e., a SAT instance) over variables V — X Y with 

— (and corresponding literals L), to construct in 
polynomial time a set of votes over a candidate set containing 
at least with the following properties: 

(Property 3a) If we remove, for each one of 
and , p would win an election under protocol P 

against the remaining candidates if and only if for every 
clause (where K is the set of clauses in ), there 
is some I L such that cl has not been removed, and I 
occurs in k. This should hold even if a single arbitrary 
vote is added. 

(Property 3b) For any x X, and are tied in 
their pairwise election after these votes. 
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(Property 3c) For any y Y, cy and are both losing 
their pairwise elections against cl

y by at least 2 votes (so 
that they will lose them regardless of a single additional 
vote). 

Then CONSTRUCTIVE-MANIPULATION in I PRE -f P is 
PSPACE-hard (and PSPACE-complete if P can be executed 
in polynomial space). 

Proof: Consider the following election under IPRE+ P. Let 
the candidate set be the set of all candidates occurring in the 
votes constructed from (the "original candidates"), plus one 
dummy candidate for each of the original candidates besides 
the and . To each of the constructed votes, add all the 
dummy candidates at the bottom; let the resulting set of votes 
be the set of the nonmanipulators' votes, according to which 
they will answer the queries posed to them. The manipulator 
has yet to decide on its strategy for answering queries. Af­
ter step 4 (according to Definition 4) of I PRE 4- P (up to 
which point the manipulator wil l not have had to make any 
decisions), let the situation be as follows: 

The number of already fully scheduled matchups is k -
. In matchup faces  

In the remaining fully scheduled matchups, candidates 
not corresponding to a literal face a dummy candidate. 

Matchups and already 
have candidates r+2/i and r_2/i in them, respectively. The 
other two candidates to be assigned to these rounds are 

and a dummy candidate. 
Thus, what will happen from this point on is the following. 

For i ranging from 1 to first the protocol will schedule 
which of and t face which of and the dummy 
candidate. The r/ facing the dummy will move on, and the 
other will be defeated by , by property 3c. Second, every­
one will be asked which of and is preferred, and 
because the nonmanipulators wil l leave this pairwise election 
tied by property 3b, the manipulator's vote will be decisive. 
Thus, we can think of this as nature and the manipulator alter-
natingly giving the variables in Y and X respectively truth-
values: •(> is set to true if survives, and to false if 
survives. By property 3a it then follows that p wins if and 
only if the resulting assignment satisfies all the clauses, i.e. is 
a solution to the SAT instance. Thus, the manipulator's strat­
egy for setting variables should aim to maximize the chance 
of the SAT instance being satisfied eventually. But this is 
exactly the problem STOCHASTIC-SAT, which is PSPACH-
complete iPapadimitriou, 1985]. 

If P can be executed in polynomial space, the manipulator 
can enumerate all possible outcomes for all possible strategies 
in polynomial space, so the problem is also in PSPACE. ■ 

Because the preconditions of Theorem 14 are similar to 
those of Theorem 1, we can build on our previous reductions 
to apply this theorem to the well-known protocols. 

Theorem 15 For each of Plurality, Dor da, Maximm, 
and STV, there exists a reduction that satisfies properties 3a, 
3b and 3c of Theorem 14. Thus, In any ofIPRE-{-Plurality, 
I PRE + Dor da, I PRE + Maximin, and I PRE + STV, 
CONSTRUCTIVE-MANIPULATION is PSPACE-complete. 
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Sketch of Proof: We can modify the reductions from Sec­
tion 4 to satisfy the preconditions of Theorem 14. This is 
done by adding in the in such a way as to achieve property 
3c (ranking them just above their corresponding cy and c-y 

in slightly more than half the votes), while preserving prop­
erty 3a (by ranking them as low as possible elsewhere). ■ 

7 Conclusions 
Voting is a general method for preference aggregation in mul-
tiagent systems, but seminal results have shown that all (non-
dictatorial) voting protocols are manipulable. One could try 
to avoid manipulation by using voting protocols where deter­
mining a beneficial manipulation is hard computationally. A 
number of recent papers study the complexity of manipulat­
ing existing protocols. 

This paper is the first work to take the next step of design­
ing new protocols that are especially difficult to manipulate. 
Rather than designing these new protocols from scratch, we 
instead showed how to tweak existing protocols to make ma­
nipulation hard, while leaving much of the original nature 
of the protocol intact. The tweak studied in this paper con­
sists of adding one preround to the election, where candi­
dates face each other one against one. The surviving can­
didates continue to the original protocol. Surprisingly, this 
extremely simple and universal tweak makes typical proto­
cols hard to manipulate! The protocols become NP-hard, #P-
hard, or PSPACE-hard to manipulate, depending on whether 
the schedule of the preround is determined before the votes 
are collected, after the votes are collected, or the schedul­
ing and the vote collecting are interleaved, respectively. We 
proved general sufficient conditions on the protocols for this 
tweak to introduce the hardness, and showed that the most 
common voting protocols satisfy those conditions. These are 
the first results in voting settings where manipulation is in a 
higher complexity class than NP (presuming PSPACE ^ NP). 
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