
Jia-Huai You and Li-Yan Yuan Mingyi Zhang
Department of Computing Science Guizhou Academy of Sciences

University of Alberta, Canada RR. China

Abstract
We present a sufficient as well as a necessary
condition for the equivalence between answer sets
and models of completion for logic programs with
nested expressions in the bodies of rules. This con­
dition is the weakest among all that we are aware of
even for normal logic programs. To obtain this re­
sult, we present a polynomial time reduction from
this class of nested logic programs to extended pro­
grams. Consequently, answer sets for these nested
programs can be computed by an answer set gen­
erator for extended programs on the one hand, and
characterized in terms of models of completion on
the other.

1 Introduction
We consider logic programs with nested expressions in the
bodies of rules , called nested logic programs in this paper.
Nested expressions arc formulas built from literals (atoms
with or without classic negation), connectives such as nega­
tion as failure not, disjunction ";", and conjunction ",". This
is a proper subset of the class of programs considered in iLif-
schitz et al, 1999], where the head of a rule can also be an
arbitrary formula. Lloyd and Topor [Lloyd and Topor, 1984]
defined nested logic programs without negation as failure,
and argued for the higher expressive power of the extended
language, while Lifschitz et al. further showed the role of
negation as failure in nested logic programs.

Our goal in this paper is to provide a characterization of
answer sets for nested logic programs in terms of tightness
on the one hand, and to use an answer set generator, such
as Smodels or DLV to compute answer sets for nested logic
programs on the other. The studies on characterizations of
answer sets have proved useful in relating the completion se­
mantics iClark, 1978] with the answer set semantics [Gel-
fond and Lifschitz, 1988]. Fages [Fages, 1994] defined a
syntactic condition on logic programs, called positive-order-
consistent, which guarantees the equivalence of the two se­
mantics. Positive-order-consistent requires a program to have
no positive loops. For example, the program is not
positive-order-consistent. Babovich et al. [Babovich et al,
2000] on the other hand formalized the notion, tight on a set,
which says that an extended logic program II is tight on X if

there exists a level mapping from A" to ordinals, such that
for any rule

Erdem and Lifschitz lErdem and Lifschitz, to appear] ex­
tended the work to nested logic programs, and weakened the
condition so that the positive literals are required to be or­
dered by only for applicable rules w.r.t. A\

As shown in [Babovich et al, 2000; Erdem and Lifschitz,
to appear], that a program is tight on S is a sufficient con­
dition for the equivalence of S being an answer set and S
satisfying the completion of the program. However, there are
simple programs that are not tight even on their answer sets.
For example, suppose we want to express that two or more
propositions are equivalent, and they are true if certain condi­
tions are satisfied. For instance, consider

Clearly, is not tight on its unique answer set {a, b}. Any
level mapping that maps the domain {a, b} to non-negative
integers wil l have to satisfy as well as

(a), which is impossible.
Even for logic programs without negation as failure, tight­

ness may fail to apply, e.g., with II = II is
not tight on its unique answer set {a}.

In this paper, we define the notion of weak tightness, which
is a sufficient as well as a necessary condition for a model of
completion to be an answer set. Consequently, an answer set
is characterized by three independent properties: weak tight­
ness, supportedness, and closedness. This characterization of
answer sets can be generalized to nested programs via a lin­
ear time transformation to extended programs. This yields a
new characterization of answer sets for nested programs. Al­
though the transformation uses a linear number of extra vari­
ables, we wil l see that these extra variables are non-split, in
the sense that in a Davis-Putnam procedure [Davis and Put­
nam, 1960], they need not create choice points during search
for answer sets, and thus they need not enlarge the search
space.

Our results have some practical implications. First,
they widen the application range of systems like Cmodels

NONMONOTONIC REASONING 859

On the Equivalence between Answer Sets and Models of Completion for Nested
Logic Programs

[Babovich, 2002], a system implemented for the computa­
tion of answer sets for tight logic programs. Secondly, the
transformation from nested programs to extended programs
allows answer sets for nested programs to be computed by an
answer set generator for extended programs, or indirectly via
the models of their completed programs.

The next section introduces logic programs with nested ex­
pressions. In Section 3 we define weak tightness and show
that answer sets are characterized by this condition along with
models of completion. In Section 4 we present a polynomial
time transformation from nested programs to extended pro­
grams. Section 5 remarks on related work.

2 Nested Logic Programs
We consider a propositional language L. A literal is an
atom, or an atom with the sign in front, called the classi­
cal negation. Elementary formulas are literals and constants

. Formulas are built from elemen­
tary formulas using the unary connective not and the binary
connectives, (conjunction) and ; (disjunction). A nested logic
program (or, just program if not otherwise specified) is a set
of rules of the form

where H is a literal or , and G is a formula. H is called the
head of the rule and G the body. If G = , we will drop it
from the body; rules with the body are called facts.

Here are some special cases. A formula of the form not t

where is a literal, is called a default negation. When G is a
conjunction of literals and default negations, the rule is called
an extended rule. In an extended rule, the literals that do not
appear in the scope of not are called positive literals. The
programs that consist of only extended rules are called ex­
tended programs; and extended logic programs without clas­
sic negation arc called normal programs.

An extended rule may be denoted by where
is the set of positive literals and B- the set of default

negations.
We denote by the set of literals occurring in

where is any syntactic entity, such as a formula or a pro­
gram. Let A" be a set of literals. denotes the subset of
Ar, restricted to the literals in V, i.e., . A set of
elementary formulas A' is consistent if i. tf X and it contains
no complementary literals / and

That a consistent set of literals X satisfies a formula F,
denoted , is defined recursively as follows:

for elementary formula

A consistent set Ar of literals is closed under a program II if,
for every rule H G in H X whenever X G. X is
supported by if, for any / X there is a rule / G such
that X G.

We now define answer sets for a program. For a program
without negation as failure, a consistent set of literals X is

an answer set for II if and only if X is minimal among the
consistent sets of literals closed under I I .

A consistent set of literals A' is an answer set of program
if and only if A" is minimal among the consistent sets of

literals closed under , where the reduct is obtained
from by replacing every maximal occurrence of a formula
not F by if X F and otherwise.

We define the completion semantics for finite nested pro­
grams without the classic negation. Let II be such a program.
The completion of , denoted Comp\ , is the following set
of propositional formulas: for each atom which is either an
atom in L, or ,

• if does not appear as the head of any rule in IT, then

• otherwise, (with
each default negation not ^ replaced by negative literal

, if there are exactly n rules
as the head.

Finally, given a nested program without negation as fail­
ure, to construct the unique minimal set among the consistent
sets of literals closed under I I , we define the familiar op­
erator as

It is clear that is monotonic over the domain of sets of
literals. The least fixpoint can then be computed by

The following proposition is needed later in this paper.
Proposition 2.1 Let be a program without negation as fail­
ure. Then, X is an answer set for iff X is consistent and

3 Weakly Tight Logic Programs
Let be an extended program, A' a set of literals, and h a
literal in A". We define the set of applicable rules of , with
respect to h and A\ as follows;

A level mapping A is a partial function from literals to nat­
ural numbers such that the set A/* of natural numbers mapped
from literals forms a partial order
Definition 3.1 Let X be a set of literals and an extended
program. is said to be weakly tight on X if there ex­
ists a level mapping with the domain such that for
any nonempty where there is a rule
Body* \Body~ in [h,X) such that for each Body*,

Example 3.2 Let program
c, not d. .}. Then, is the only answer set
for Though is not tight on S, n is weakly tight on S.
For example, a level mapping A satisfying the weak tightness
condition can be:

'By a partial order, we mean a relation that is transitive and ir-
reflexive.

860 NONMONOTONIC REASONING

Lemma 3.3 Let be an extended program, and S an answer
set for Then is weakly tight on S.

Proof. Since S is an answer set for , S — It can
be seen that the following mapping exists: for each literal q
such that
Clearly, satisfies the condition for weak tightness.

Theorem 3.4 For any extended program and any consis­
tent set of literals S, S is an answer set for iff is weakly
tight on S, and S is closed under and supported by I I .

Proof Let S be an answer set for . Then !
5. It's obvious that S is closed under and supported by IT
From Lemma 3.3 we know that TI is also weakly tight on S.

Assume is weakly tight on S, and S is closed under
and supported by I I . We show that S is an answer set for
Let Mm The condition that S is closed implies
M S. We are done if M - S. Otherwise we have M S.
Let q Since S is supported by I I , there is a rule
r : in such that Body
and Body Thus, the same rule r is in II (q, S), which
is nonempty. As II is weakly tight on 5, there is a mapping

and a rule q , Body , Body ' in such that
Body and - for each . Since
M is also closed, there is " Body such that
Then, from the definition of ', there is a literal ~ " such
that I is minimal, hence . This contradicts the
assumption that M is the least fixpoint of the operator

Note that neither supportcdness nor closedness can be re­
moved from the theorem for it still to hold. E.g. the program

is tight as well as weakly tight on {a,/;},
which is not supported by For closedness, we note that
any program is tight as well as weakly tight on the empty set.

Corollary 3.5 Let be a finite normal program and S a set
of atoms satisfying Comp . Then, is weakly tight on S
ifj'S is an answer set for

To compare two conditions that guarantee a model of com­
pletion to be an answer set, we have the following definition.
Deiinilion 3.6 Let Cond\ (A\ Y) and Cond'2(X,Y) be con­
ditions where X ranges over the set of all extended programs
and Y over the set of all sets of literals. Cond\(X, Y) is said
to be weaker than Cond2(X, Y) if

• for all X and Y, Cond2(X, Y) implies Comll(X, Y),
and

• there exist some X and Y such that Condi (Ar, V) does
not imply Cond2{X, Y).

Proposition 3.7 For any extended program and set of lit­
erals X, if is tight on X then it is weakly tight on X. But
the converse is not true.

In Section 5, we wil l see that weak tightness is also weaker
than other conditions used to characterize answer sets in the
literature. Then, the question arises as whether the weak
tightness condition is the weakest. Technically, the answer
is no, since the weak tightness condition can be made weaker
in trivial ways, e.g., one can make it weaker by not requiring

a level mapping to be applied to a rule with a body literal that
does not appear in the head of any rule.

4 Transformation
When a program II is translated to another program I I 7 , new
propositional symbols may be used. Thus, the language for

is enlarged. Below, we define a notion of equivalence be­
tween a program and its translation. Throughout this section,
a program means a finite nested program.

Definition 4.1 Let be a program in language L. Suppose
the language V for is a superset of L. ' is equivalent
to , denoted , if and only if both of the following
statements hold.

• For any answer set S for , there is exactly one answer
set S' for such that

• For any answer set S' for is an answer set for

Lemma 4.2 The relation is reflexive and transitive.

Our transformation makes use of some transformations in
[Lifschitz et ai, 19991 that preserve strong equivalence. Two
programs are said to be strongly equivalent if for
any program and have the same set of
answer sets. Strong equivalence entails our notion of equiva­
lence.

Proposition 4.3 If two programs and are strongly
equivalent, then they are equivalent to each other, i.e.,

4.1 Transformation
In the following, we say that a formula is basic if it is built
from l Y \ 47\ literals, constants, and not L and not not L
where L is a literal or constant. A program is said to be basic
if it consists of rules whose body formulas are basic. A rule

is said to be fiat if every G\ is a conjunction of literals and
default negations. A program \sflat if every rule in it is flat.

Let II be a nested program. Our transformation consists of
three steps, briefly described below.

• II is transformed to a basic program I I ' by some simpli­
fication rules.

• IT is transformed to a flat program I I " by transformation
rules that name some subexpressions by new atoms.

• I I " is then transformed to f by splitting each flat rule
with disjunctive body into several extended rules with
the same head.

We now give the details. Below, Jenotes a rewrite
rule.

Step 1. Simplification

NONMONOTONIC REASONING 861

file:///sflat

where Rule 3 has higher priority to be applied than Rules 1
and 2.

The simplification rules given here are essentially their cor­
responding equivalences given in [Lifschitz^/a/., 1999]. The
only difference is that, for the purpose of termination, we
cannot directly adopt an equivalence for symmetry, such as

as a rewrite rule. We therefore have to repre­
sent the symmetric cases by rules.

The simplification rules are similar to the ones found in
propositional logic, except perhaps Rule 3, which simplifies
negation as failure only when it is nested at least three lev­
els deep. Among these rules, only 1-3 are essential for the
purpose of producing a basic program. The rest are used to
simplify basic formulas further.

That a rule has a higher priority to be applied than another
rule means that when both rules are applicable, the former
should be applied and the latter should not. The only intention
here for Rule 3 over Rules 1 and 2 is to prevent transforming
an expression of the form

where by distributing each not over F (which would
result in higher complexity).

Step 2. Naming subexpressions

Step 3. Splitting
A flat rule of form t is replaced by rules

The set of all transformation rules in Steps 1, 2 and 3 de­
fine a binary relation over programs. We will use to
denote a single transformation step that transforms program
n to program by an application of a transformation rule in
Step i where By a rewrite sequence, we mean a se­
quence of zero or more rewrite steps which takes the general
form

2Apparently, in this case all the occurrences of {G\ H) in the
given program can be replaced by simultaneously.

A program s called an normal form if cannot be re­
duced further by transformation rules in Step where
[1..3]. In addition, we denote by

a rewrite sequence generated only by the transformation rules
in Step

Lemma 4.5 There is no infinite sequence

Lemma 4.6 Let n be the size of the program mentioned
below.

We can show that every transformation in Step 2 preserves
equivalence.
Lemma 4.7

For any program I I , Lemmas 4.5 and 4.6 together guaran­
tee the existence of a finite rewrite sequence

where is an -normal form, is an u>2-normal form,
and is an extended program. Let us call such a the
transformation of denoted by

We are ready to show the main theorem of this section.

3Although transformation rules can be applied nondcterministi-
cally, it is easy to show that the rewrite relation for any
is confluent [Dershowitz and Jouannaud, 1990J so that the final ex­
tended program is unique, up to atom renaming.

862 NONMONOTONIC REASONING

Corollary 4.9 For any programs II and P,

The claim in 1 above is considered by some authors as a form
of strong equivalence within the same language.

It follows from Lemma 4.6 that

Theorem 4.10 For any program there is a linear time re­
duction of to an extended program 11' so that the answer
sets for can he identified in linear time from those for

We remark that the extra atoms introduced in our transfor­
mation are non-split. They are just "connecting atoms" serv­
ing the purpose of propagating values from subexpressions.
Their values can be determined solely by constraint propaga­
tion from the values of the original atoms.

Non-split variables can be accommodated easily in systems
like Smodels by applying the procedure Heuristic only to the
set of original variables, so that non-split variables will not
be picked up for guessing a value. In this way, non-split vari­
ables do not create choice points during the search for answer
sets.

4.2 Weakly t ight nested logic programs

We give a characterization of answer sets for nested pro­
grams, in terms of their transformations, and show the coun­
terpart of Theorem 3.4 for nested programs.

Theorem 4.12 Let be a nested program, and X a consis­
tent set of literals. X is an answer set for II iff is weakly
tight on X, and X is closed under and supported by I I .

Corollary 4.13 Let be a finite nested program without the
classic negation and S a set of atoms satisfying Co7np(U).
Then, U is weakly tight on SiffS is an answer set for I I .

5 Related Work

Well-Supported Model

Definition 5.1 [Fages, 1991] Let be a normal program. A
set of atoms S is well-supported iff there exists a level map­
ping with S as the domain such that for any atom a
there exists a rule v , „ .. . which is appli­
cable w.r.t. S, and for each

Ben-Eliyahu and Dechter's characterization [Ben-Eliyahu
and Dechter, 1994] of answer sets for head cycle-free disjunc­
tive programs reduces to that of Fages for normal programs.

Theorem 5.2 [Fages, 1991] For any normal program I I , the
well-supported models ofU are exactly the answer sets for I I .

The level mapping in Fages' definition depends on the sup-
portedness: one needs to find a rule that supports an atom, and
then determines if a level mapping applies to the same rule.
The two conditions in our case are independent.

To summarize the relationships among tightness, weak
tightness and well-supportedness for normal programs, we
have, for any normal program and set of atoms 5,

• If 5 is well-supported, then is weakly tight on 5; but
the converse is not true.

• If is tight on 5, then is weakly tight on 5; but the
converse is not true.

• That is tight on S is not a sufficient condition for S
to be well-supported; that S is well-supported is not a
sufficient condition for to be tight on S.

Therefore, the weak tightness is the weakest among all three,
bridging the gap between tightness and well-supportedness.

Strong Compatibility of Logic Programs
In [Zhang, 1992], Zhang showed a characterization of de­

fault extensions. Here, we re-formulate it for logic programs.
For an extended logic program let us define

/
C

The characterization of default extensions as given in
[Zhang, 1992], when applied to logic programs, can be stated
as follows.

Theorem 5.4 Let U be an extended logic program. U has an
answer set iff there is a subprogram I I ' C 17 such that

A subprogram is said to be strongly compatible if
it is compatible and We can show the following
relationship.
Proposition 5.5 Let be an extended program. For any

NONMONOTONIC REASONING 863

I. if is strongly compatible, then is weakly tight on
Con(n ') ;

Since no proper subset of corresponds to the
satisfaction of completion, to see whether a model of comple­
tion is also an answer set one needs all three conditions. The
key lies in condition P2 which embodies both supportedness
and an order of derivation. Thus, Zhang's characterization
does not provide a nontrivial condition for a model of com­
pletion to be an answer set.

ASSAT
In the system ASSAT iLin and Zhou, 2002], the comple­

tion of a normal program is executed by a SAT solver, pos­
sibly repeatedly. When a model M of the completion from
program II is generated, if then M is not an answer
set for I I . ASSAT relies on f to compute loop for­
mulas which say that the atoms in that are involved
in a (maximal) loop should be false if they cannot be derived
otherwise. However, does not provide a complete
picture of the loops involved. There could be loops whose in­
terpretation in M is faked due to the loops on A7 - I I M / . For
example, let II
and let the computed model of completion be
this case, Though the loop on a is captured
correctly, the loop on c is captured incorrectly. It remains
to be seen whether stronger loop formulas can be computed,
based on the idea of level mapping.

Transformations of Nested Programs
The transformation given in [Lifschitz et al, 19991 deals

with arbitrary nested programs where rules may have arbi­
trary formulas in the heads. The transformation preserves
strong equivalence but is not polynomial.

Independently in [Pearce et al., 2002], arbitrary nested pro­
grams are translated to disjunctive programs where extra vari­
ables arc used to avoid an exponential blow-up, an idea simi­
lar to the one adopted in this paper. Our transformation how­
ever departs from that of [Lifschitz et al, 1999] in a mini­
mal way. By partitioning the transformation into three stages
(cf. Theorem 4.8), we are able to identify exactly where ex­
tra variables are required. This is only when dealing with
a disjunction or an expression like not not L where L is a
literal. In [Pearce et al., 2002], other forms of subformu-
las, such as the whole body of a rule and a conjunction, can
also be labeled by extra variables. Our transformation is thus
simpler and more compact. While our transformation takes
linear time, the one in [Pearce et al, 2002] is only claimed
to be polynomial time. Finally, the extra variables introduced
in our case are non-split. It is not clear whether this is pos­
sible for the class of all nested programs where the heads of
rules are arbitrary formulas. It is interesting to see whether
our approach, combined with some of the ideas in [Pearce et

al, 2002], can be extended in order to be able to handle all
nested programs.

References
[Babovich et al., 20001 Y. Babovich, E. Erdem, and V. Lif-

schitz. Fages' theorem and answer set programming. In
Proc. 8th International Workshop on Non-Monotonic Rea-
soning, 2000.

[Babovich, 2002] Y. Babovich. Cmodels home papge at
www.cs.utexas.edu/users/tag/cmodcls.html. 2002.

iBen-Eliyahu and Dechter, 1994] R. Ben-Eliyahu and
R. Dechter. Propositional semantics for disjunctive logic
programs. Annals of Math, and Artificial Intelligence,
14:53-87, 1994.

[Clark, 1978] K.L. Clark. Negation as failure. In H. Gallaire
and J. Minker, editors, Logic and Data Bases, pages 293-
322. Plenum Press, 1978.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A
computing procedure for quantification theory. J ACM,
7(3):201-215, 1960.

[Dershowitz and Jouannaud, 19901 N. Dershowitz and
P Jouannaud. Rewrite systems. In Handbook of Theo­
retical Computer Science, Vol B: Formal Methods and
Semantics, pages 243-320. North-Holland, 1990.

[Erdem and Lifschitz, to appear] E. Erdem and V. Lifschitz.
Tight logic programs. Theory and Practice of Logic Pro­
gramming, to appear.

[Fages, 1991] F. Fages. A fixpoint semantics for general
logic programs compared with the well-supported and sta­
ble model semantics. New Generation Computing, 9:425-
443,1991.

[Fages, 1994] F. Fages. Consistency of Clark's completion
and existence of stable models. Journal of Methods of
U)gic In Computer Science, 1:51-60, 1994.

[Gelfond and Lifschitz, 1988] M. Gclfond and V. Lifschitz.
The stable model semantics for logic programming. In
Proc. 5th ICLP, pages 1070-1080. MIT Press, 1988.

[Lifschitz etal, 1999] V. Lifschitz, L. Tang, and H. Turner.
Nested expressions in logic programs. Annals of Mathe­
matics and Artificial Intelligence, 25:369-389, 1999.

[Lin and Zhou, 20021 F. Lin and Y. Zhou. ASSAT, comput­
ing answer set of a logic program by SAT solvers. In Proc.
AAAI V2, pages 112-118, 2002.

[Lloyd and Topor, 1984] J Lloyd and R. Topor. Making Pro­
log more expressive. J. Logic Programming, 1(3):225-
240, 1984.

[Pearce etal., 20021 D. Pearce, V. Sarsakov, T. Schaub,
H. Tompits, and S. Woltran. A polynomial translation
of logic programs with nested expressions into disjunctive
logic programs (preliminary report). In Proc. 19th ICLP,
2002.

[Zhang, 1992] M. Zhang. A characterization of extensions
of general default theories. In Proc.9th Canadian Artificial
Intelligence Conference, pages 134-139, 1992.

864 NONMONOTONIC REASONING

