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Abstract 
We present a sufficient as well as a necessary 
condition for the equivalence between answer sets 
and models of completion for logic programs with 
nested expressions in the bodies of rules. This con­
dition is the weakest among all that we are aware of 
even for normal logic programs. To obtain this re­
sult, we present a polynomial time reduction from 
this class of nested logic programs to extended pro­
grams. Consequently, answer sets for these nested 
programs can be computed by an answer set gen­
erator for extended programs on the one hand, and 
characterized in terms of models of completion on 
the other. 

1 Introduction 
We consider logic programs with nested expressions in the 
bodies of rules , called nested logic programs in this paper. 
Nested expressions arc formulas built from literals (atoms 
with or without classic negation), connectives such as nega­
tion as failure not, disjunction ";", and conjunction ",". This 
is a proper subset of the class of programs considered in iLif-
schitz et al, 1999], where the head of a rule can also be an 
arbitrary formula. Lloyd and Topor [Lloyd and Topor, 1984] 
defined nested logic programs without negation as failure, 
and argued for the higher expressive power of the extended 
language, while Lifschitz et al. further showed the role of 
negation as failure in nested logic programs. 

Our goal in this paper is to provide a characterization of 
answer sets for nested logic programs in terms of tightness 
on the one hand, and to use an answer set generator, such 
as Smodels or DLV to compute answer sets for nested logic 
programs on the other. The studies on characterizations of 
answer sets have proved useful in relating the completion se­
mantics iClark, 1978] with the answer set semantics [Gel-
fond and Lifschitz, 1988]. Fages [Fages, 1994] defined a 
syntactic condition on logic programs, called positive-order-
consistent, which guarantees the equivalence of the two se­
mantics. Positive-order-consistent requires a program to have 
no positive loops. For example, the program is not 
positive-order-consistent. Babovich et al. [Babovich et al, 
2000] on the other hand formalized the notion, tight on a set, 
which says that an extended logic program II is tight on X if 

there exists a level mapping from A" to ordinals, such that 
for any rule 

Erdem and Lifschitz lErdem and Lifschitz, to appear] ex­
tended the work to nested logic programs, and weakened the 
condition so that the positive literals are required to be or­
dered by only for applicable rules w.r.t. A\ 

As shown in [Babovich et al, 2000; Erdem and Lifschitz, 
to appear], that a program is tight on S is a sufficient con­
dition for the equivalence of S being an answer set and S 
satisfying the completion of the program. However, there are 
simple programs that are not tight even on their answer sets. 
For example, suppose we want to express that two or more 
propositions are equivalent, and they are true if certain condi­
tions are satisfied. For instance, consider 

Clearly, is not tight on its unique answer set {a, b}. Any 
level mapping that maps the domain {a, b} to non-negative 
integers wil l have to satisfy as well as  

(a), which is impossible. 
Even for logic programs without negation as failure, tight­

ness may fail to apply, e.g., with II = II is 
not tight on its unique answer set {a}. 

In this paper, we define the notion of weak tightness, which 
is a sufficient as well as a necessary condition for a model of 
completion to be an answer set. Consequently, an answer set 
is characterized by three independent properties: weak tight­
ness, supportedness, and closedness. This characterization of 
answer sets can be generalized to nested programs via a lin­
ear time transformation to extended programs. This yields a 
new characterization of answer sets for nested programs. Al­
though the transformation uses a linear number of extra vari­
ables, we wil l see that these extra variables are non-split, in 
the sense that in a Davis-Putnam procedure [Davis and Put­
nam, 1960], they need not create choice points during search 
for answer sets, and thus they need not enlarge the search 
space. 

Our results have some practical implications. First, 
they widen the application range of systems like Cmodels 
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[Babovich, 2002], a system implemented for the computa­
tion of answer sets for tight logic programs. Secondly, the 
transformation from nested programs to extended programs 
allows answer sets for nested programs to be computed by an 
answer set generator for extended programs, or indirectly via 
the models of their completed programs. 

The next section introduces logic programs with nested ex­
pressions. In Section 3 we define weak tightness and show 
that answer sets are characterized by this condition along with 
models of completion. In Section 4 we present a polynomial 
time transformation from nested programs to extended pro­
grams. Section 5 remarks on related work. 

2 Nested Logic Programs 
We consider a propositional language L. A literal is an 
atom, or an atom with the sign in front, called the classi­
cal negation. Elementary formulas are literals and constants 

. Formulas are built from elemen­
tary formulas using the unary connective not and the binary 
connectives, (conjunction) and ; (disjunction). A nested logic 
program (or, just program if not otherwise specified) is a set 
of rules of the form 

where H is a literal or , and G is a formula. H is called the 
head of the rule and G the body. If G = , we will drop it 
from the body; rules with the body are called facts. 

Here are some special cases. A formula of the form not t 

where is a literal, is called a default negation. When G is a 
conjunction of literals and default negations, the rule is called 
an extended rule. In an extended rule, the literals that do not 
appear in the scope of not are called positive literals. The 
programs that consist of only extended rules are called ex­
tended programs; and extended logic programs without clas­
sic negation arc called normal programs. 

An extended rule may be denoted by where 
is the set of positive literals and B- the set of default 

negations. 
We denote by the set of literals occurring in  

where is any syntactic entity, such as a formula or a pro­
gram. Let A" be a set of literals. denotes the subset of 
Ar, restricted to the literals in V, i.e., . A set of 
elementary formulas A' is consistent if i. tf X and it contains 
no complementary literals / and  

That a consistent set of literals X satisfies a formula F, 
denoted , is defined recursively as follows: 

for elementary formula  

A consistent set Ar of literals is closed under a program II if, 
for every rule H G in H X whenever X G. X is 
supported by if, for any / X there is a rule / G such 
that X G. 

We now define answer sets for a program. For a program 
without negation as failure, a consistent set of literals X is 

an answer set for II if and only if X is minimal among the 
consistent sets of literals closed under I I . 

A consistent set of literals A' is an answer set of program 
if and only if A" is minimal among the consistent sets of 

literals closed under , where the reduct is obtained 
from by replacing every maximal occurrence of a formula 
not F by if X F and otherwise. 

We define the completion semantics for finite nested pro­
grams without the classic negation. Let II be such a program. 
The completion of , denoted Comp\ , is the following set 
of propositional formulas: for each atom which is either an 
atom in L, or , 

• if does not appear as the head of any rule in IT, then 

• otherwise, (with 
each default negation not ^ replaced by negative literal 

, if there are exactly n rules 
as the head. 

Finally, given a nested program without negation as fail­
ure, to construct the unique minimal set among the consistent 
sets of literals closed under I I , we define the familiar op­
erator as 

It is clear that is monotonic over the domain of sets of 
literals. The least fixpoint can then be computed by 

The following proposition is needed later in this paper. 
Proposition 2.1 Let be a program without negation as fail­
ure. Then, X is an answer set for iff X is consistent and 

3 Weakly Tight Logic Programs 
Let be an extended program, A' a set of literals, and h a 
literal in A". We define the set of applicable rules of , with 
respect to h and A\ as follows; 

A level mapping A is a partial function from literals to nat­
ural numbers such that the set A/* of natural numbers mapped 
from literals forms a partial order  
Definition 3.1 Let X be a set of literals and an extended 
program. is said to be weakly tight on X if there ex­
ists a level mapping with the domain such that for 
any nonempty where there is a rule  
Body* \Body~ in [h,X) such that for each Body*, 

Example 3.2 Let program  
c, not d. .}. Then, is the only answer set 
for Though is not tight on S, n is weakly tight on S. 
For example, a level mapping A satisfying the weak tightness 
condition can be:  

'By a partial order, we mean a relation that is transitive and ir-
reflexive. 
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Lemma 3.3 Let be an extended program, and S an answer 
set for Then is weakly tight on S. 

Proof. Since S is an answer set for , S — It can 
be seen that the following mapping exists: for each literal q 
such that 
Clearly, satisfies the condition for weak tightness.  

Theorem 3.4 For any extended program and any consis­
tent set of literals S, S is an answer set for iff is weakly 
tight on S, and S is closed under and supported by I I . 

Proof Let S be an answer set for . Then !  
5. It's obvious that S is closed under and supported by IT 
From Lemma 3.3 we know that TI is also weakly tight on S. 

Assume is weakly tight on S, and S is closed under 
and supported by I I . We show that S is an answer set for 
Let Mm The condition that S is closed implies 
M S. We are done if M - S. Otherwise we have M S. 
Let q Since S is supported by I I , there is a rule 
r : in such that Body  
and Body Thus, the same rule r is in II (q, S), which 
is nonempty. As II is weakly tight on 5, there is a mapping 

and a rule q , Body , Body ' in such that  
Body and - for each . Since 
M is also closed, there is " Body such that 
Then, from the definition of ', there is a literal ~ " such 
that I is minimal, hence . This contradicts the 
assumption that M is the least fixpoint of the operator  

Note that neither supportcdness nor closedness can be re­
moved from the theorem for it still to hold. E.g. the program 

is tight as well as weakly tight on {a,/;}, 
which is not supported by For closedness, we note that 
any program is tight as well as weakly tight on the empty set. 

Corollary 3.5 Let be a finite normal program and S a set 
of atoms satisfying Comp . Then, is weakly tight on S 
ifj'S is an answer set for  

To compare two conditions that guarantee a model of com­
pletion to be an answer set, we have the following definition. 
Deiinilion 3.6 Let Cond\ (A\ Y) and Cond'2(X,Y) be con­
ditions where X ranges over the set of all extended programs 
and Y over the set of all sets of literals. Cond\(X, Y) is said 
to be weaker than Cond2(X, Y) if 

• for all X and Y, Cond2(X, Y) implies Comll(X, Y), 
and 

• there exist some X and Y such that Condi (Ar, V) does 
not imply Cond2{X, Y). 

Proposition 3.7 For any extended program and set of lit­
erals X, if is tight on X then it is weakly tight on X. But 
the converse is not true. 

In Section 5, we wil l see that weak tightness is also weaker 
than other conditions used to characterize answer sets in the 
literature. Then, the question arises as whether the weak 
tightness condition is the weakest. Technically, the answer 
is no, since the weak tightness condition can be made weaker 
in trivial ways, e.g., one can make it weaker by not requiring 

a level mapping to be applied to a rule with a body literal that 
does not appear in the head of any rule. 

4 Transformation 
When a program II is translated to another program I I 7 , new 
propositional symbols may be used. Thus, the language for 

is enlarged. Below, we define a notion of equivalence be­
tween a program and its translation. Throughout this section, 
a program means a finite nested program. 

Definition 4.1 Let be a program in language L. Suppose 
the language V for is a superset of L. ' is equivalent 
to , denoted , if and only if both of the following 
statements hold. 

• For any answer set S for , there is exactly one answer 
set S' for such that  

• For any answer set S' for is an answer set for 

Lemma 4.2 The relation is reflexive and transitive. 

Our transformation makes use of some transformations in 
[Lifschitz et ai, 19991 that preserve strong equivalence. Two 
programs are said to be strongly equivalent if for 
any program and have the same set of 
answer sets. Strong equivalence entails our notion of equiva­
lence. 

Proposition 4.3 If two programs and are strongly 
equivalent, then they are equivalent to each other, i.e.,  

4.1 Transformation 
In the following, we say that a formula is basic if it is built 
from l Y \ 47\ literals, constants, and not L and not not L 
where L is a literal or constant. A program is said to be basic 
if it consists of rules whose body formulas are basic. A rule 

is said to be fiat if every G\ is a conjunction of literals and 
default negations. A program \sflat if every rule in it is flat. 

Let II be a nested program. Our transformation consists of 
three steps, briefly described below. 

• II is transformed to a basic program I I ' by some simpli­
fication rules. 

• IT is transformed to a flat program I I " by transformation 
rules that name some subexpressions by new atoms. 

• I I " is then transformed to f by splitting each flat rule 
with disjunctive body into several extended rules with 
the same head. 

We now give the details. Below, Jenotes a rewrite 
rule. 

Step 1. Simplification 
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where Rule 3 has higher priority to be applied than Rules 1 
and 2.  

The simplification rules given here are essentially their cor­
responding equivalences given in [Lifschitz^/a/., 1999]. The 
only difference is that, for the purpose of termination, we 
cannot directly adopt an equivalence for symmetry, such as 

as a rewrite rule. We therefore have to repre­
sent the symmetric cases by rules. 

The simplification rules are similar to the ones found in 
propositional logic, except perhaps Rule 3, which simplifies 
negation as failure only when it is nested at least three lev­
els deep. Among these rules, only 1-3 are essential for the 
purpose of producing a basic program. The rest are used to 
simplify basic formulas further. 

That a rule has a higher priority to be applied than another 
rule means that when both rules are applicable, the former 
should be applied and the latter should not. The only intention 
here for Rule 3 over Rules 1 and 2 is to prevent transforming 
an expression of the form 

where by distributing each not over F (which would 
result in higher complexity). 

Step 2. Naming subexpressions 

Step 3. Splitting 
A flat rule of form t is replaced by rules 

The set of all transformation rules in Steps 1, 2 and 3 de­
fine a binary relation over programs. We will use to 
denote a single transformation step that transforms program 
n to program by an application of a transformation rule in 
Step i where By a rewrite sequence, we mean a se­
quence of zero or more rewrite steps which takes the general 
form 

2Apparently, in this case all the occurrences of {G\ H) in the 
given program can be replaced by simultaneously. 

A program s called an normal form if cannot be re­
duced further by transformation rules in Step where 
[1..3]. In addition, we denote by 

a rewrite sequence generated only by the transformation rules 
in Step  

Lemma 4.5 There is no infinite sequence 

Lemma 4.6 Let n be the size of the program mentioned 
below. 

We can show that every transformation in Step 2 preserves 
equivalence. 
Lemma 4.7  

For any program I I , Lemmas 4.5 and 4.6 together guaran­
tee the existence of a finite rewrite sequence 

where is an -normal form, is an u>2-normal form, 
and is an extended program. Let us call such a the 
transformation of denoted by 

We are ready to show the main theorem of this section. 

3Although transformation rules can be applied nondcterministi-
cally, it is easy to show that the rewrite relation for any 
is confluent [Dershowitz and Jouannaud, 1990J so that the final ex­
tended program is unique, up to atom renaming. 
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Corollary 4.9 For any programs II and P, 

The claim in 1 above is considered by some authors as a form 
of strong equivalence within the same language. 

It follows from Lemma 4.6 that 

Theorem 4.10 For any program there is a linear time re­
duction of to an extended program 11' so that the answer 
sets for can he identified in linear time from those for  

We remark that the extra atoms introduced in our transfor­
mation are non-split. They are just "connecting atoms" serv­
ing the purpose of propagating values from subexpressions. 
Their values can be determined solely by constraint propaga­
tion from the values of the original atoms. 

Non-split variables can be accommodated easily in systems 
like Smodels by applying the procedure Heuristic only to the 
set of original variables, so that non-split variables will not 
be picked up for guessing a value. In this way, non-split vari­
ables do not create choice points during the search for answer 
sets. 

4.2 Weakly t ight nested logic programs 

We give a characterization of answer sets for nested pro­
grams, in terms of their transformations, and show the coun­
terpart of Theorem 3.4 for nested programs. 

Theorem 4.12 Let be a nested program, and X a consis­
tent set of literals. X is an answer set for II iff is weakly 
tight on X, and X is closed under and supported by I I . 

Corollary 4.13 Let be a finite nested program without the 
classic negation and S a set of atoms satisfying Co7np(U). 
Then, U is weakly tight on SiffS is an answer set for I I . 

5 Related Work 

Well-Supported Model 

Definition 5.1 [Fages, 1991] Let be a normal program. A 
set of atoms S is well-supported iff there exists a level map­
ping with S as the domain such that for any atom a 
there exists a rule v , „ .. . which is appli­
cable w.r.t. S, and for each  

Ben-Eliyahu and Dechter's characterization [Ben-Eliyahu 
and Dechter, 1994] of answer sets for head cycle-free disjunc­
tive programs reduces to that of Fages for normal programs. 

Theorem 5.2 [Fages, 1991] For any normal program I I , the 
well-supported models ofU are exactly the answer sets for I I . 

The level mapping in Fages' definition depends on the sup-
portedness: one needs to find a rule that supports an atom, and 
then determines if a level mapping applies to the same rule. 
The two conditions in our case are independent. 

To summarize the relationships among tightness, weak 
tightness and well-supportedness for normal programs, we 
have, for any normal program and set of atoms 5, 

• If 5 is well-supported, then is weakly tight on 5; but 
the converse is not true. 

• If is tight on 5, then is weakly tight on 5; but the 
converse is not true. 

• That is tight on S is not a sufficient condition for S 
to be well-supported; that S is well-supported is not a 
sufficient condition for to be tight on S. 

Therefore, the weak tightness is the weakest among all three, 
bridging the gap between tightness and well-supportedness. 

Strong Compatibility of Logic Programs 
In [Zhang, 1992], Zhang showed a characterization of de­

fault extensions. Here, we re-formulate it for logic programs. 
For an extended logic program let us define 

/ 
C  

The characterization of default extensions as given in 
[Zhang, 1992], when applied to logic programs, can be stated 
as follows. 

Theorem 5.4 Let U be an extended logic program. U has an 
answer set iff there is a subprogram I I ' C 17 such that 

A subprogram is said to be strongly compatible if 
it is compatible and We can show the following 
relationship. 
Proposition 5.5 Let be an extended program. For any 
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I. if is strongly compatible, then is weakly tight on 
Con(n ' ) ; 

Since no proper subset of corresponds to the 
satisfaction of completion, to see whether a model of comple­
tion is also an answer set one needs all three conditions. The 
key lies in condition P2 which embodies both supportedness 
and an order of derivation. Thus, Zhang's characterization 
does not provide a nontrivial condition for a model of com­
pletion to be an answer set. 

ASSAT 
In the system ASSAT iLin and Zhou, 2002], the comple­

tion of a normal program is executed by a SAT solver, pos­
sibly repeatedly. When a model M of the completion from 
program II is generated, if then M is not an answer 
set for I I . ASSAT relies on f to compute loop for­
mulas which say that the atoms in that are involved 
in a (maximal) loop should be false if they cannot be derived 
otherwise. However, does not provide a complete 
picture of the loops involved. There could be loops whose in­
terpretation in M is faked due to the loops on A7 - I I M / . For 
example, let II  
and let the computed model of completion be 
this case, Though the loop on a is captured 
correctly, the loop on c is captured incorrectly. It remains 
to be seen whether stronger loop formulas can be computed, 
based on the idea of level mapping. 

Transformations of Nested Programs 
The transformation given in [Lifschitz et al, 19991 deals 

with arbitrary nested programs where rules may have arbi­
trary formulas in the heads. The transformation preserves 
strong equivalence but is not polynomial. 

Independently in [Pearce et al., 2002], arbitrary nested pro­
grams are translated to disjunctive programs where extra vari­
ables arc used to avoid an exponential blow-up, an idea simi­
lar to the one adopted in this paper. Our transformation how­
ever departs from that of [Lifschitz et al, 1999] in a mini­
mal way. By partitioning the transformation into three stages 
(cf. Theorem 4.8), we are able to identify exactly where ex­
tra variables are required. This is only when dealing with 
a disjunction or an expression like not not L where L is a 
literal. In [Pearce et al., 2002], other forms of subformu-
las, such as the whole body of a rule and a conjunction, can 
also be labeled by extra variables. Our transformation is thus 
simpler and more compact. While our transformation takes 
linear time, the one in [Pearce et al, 2002] is only claimed 
to be polynomial time. Finally, the extra variables introduced 
in our case are non-split. It is not clear whether this is pos­
sible for the class of all nested programs where the heads of 
rules are arbitrary formulas. It is interesting to see whether 
our approach, combined with some of the ideas in [Pearce et 

al, 2002], can be extended in order to be able to handle all 
nested programs. 
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