
Describing Additive Fluents in Action Language C+

Joohyung Lee and Vladimir Lifschitz
Department of Computer Sciences,

University of Texas, Austin, TX 78712
{appsmurf ,v l }@cs.utexas.edu

Abstract

An additive fluent is a fluent with numerical values
such that the effect of several concurrently executed
actions on it can be computed by adding the effects
of the individual actions. We propose a method for
describing effects of actions on additive fluents in
the declarative language An implementation of
this language, called the Causal Calculator, can be
used for the automation of examples of common-
sense reasoning involving additive fluents.

1 Introduction
Action languages [Gelfond and Lifschitz, 1998] serve to de­
scribe effects of actions on the states of the world. For in­
stance, the expression

Walk causes Location(x) = / (1)

is a proposition, or "causal law," of action language
[Giunchiglia et al, 2003] that describes an effect of ac­
tion Walk : this action causes the location of to be­
come /. The semantics of action languages is defined in
terms of "transition systems"—directed graphs whose ver­
tices correspond to the states of the world, and whose edges
correspond to the execution of actions. The execution of a
sequence of actions can be represented by a path in such a
graph.

Some action languages, including _ , allow us to
talk about the effects of the concurrent execution of ac­
tions. Causal law (1) is understood in to imply that
Location holds after any event that involves the exe­
cution of Walk , even if other actions are executed con­
currently. To distinguish the events involving the concurrent
execution of actions a1 and < from the events that involve
but not we can write

In this paper we investigate the possibility of using i to
represent the effects of actions on fluents of a special kind,
called "additive." An additive fluent is a fluent with numer­
ical values such that the effect of several concurrently exe­
cuted actions on it can be computed by adding the effects

of the individual actions. For example, the gross receipts of
a store are represented by an additive fluent: when several
customers pay to different cashiers simultaneously, the gross
receipts wil l increase by the sum of the "contributions" of the
individual customers. The voltage of a battery is an addi­
tive fluent: the increase in voltage obtained by adding several
cells to a battery can be computed by addition. In mechan­
ics, the velocity of a particle is an additive fluent, because the
net effect of several forces on this fluent over a time interval
equals the sum of the effects of the individual forces. Addi­
tive fluents are ubiquitous; this may be the reason why adding
numbers is such a useful operation.

Unfortunately, the causes construct of and similar lan­
guages is not directly applicable to describing the effects of
actions on additive fluents. Consider, for instance, the effect
of the action Buy (cus tomerbuys books) on the
number of books available at the bookstore. The causal law

(2)

is applicable in the case when no customer other than is
buying books at the same time: books are available
after the event if there were books in the store before the
event. But (2) is not acceptable if we are interested in the
concurrent execution of such actions.

We introduce here a syntactic construct, increments, that
allows us to describe the effects of actions on additive fluents.
Semantically this construct is treated as "syntactic sugar"
on top of the propositions involving that construct are
viewed as abbreviations for causal laws of The interpre­
tation of increments described below has been used to ex­
tend the implementation of called the Causal Calculator
(C C A L C) , to cover additive fluents.

After a review of transition systems and of the syntax of
in the next two sections, we describe the syntax of increment
laws (Section 4), define their semantics by showing how to
treat them as abbreviations (Section 5), and illustrate the use
of additive fluents in the language of CCALC by formalizing
an example that involves buying and selling (Section 6). Two
other examples of commonsense reasoning related to addi­
tive fluents are discussed in Sections 7 and 8. A proposition
stated in Section 9 confirms that additive fluents behave as
one would expect on the basis of the informal discussion of
additivity above, and thus provide a justification for the ap­
proach to formalizing additive fluents proposed in this paper.

REASONING ABOUT ACTIONS AND CHANGE 1079

Figure 1: A transition system.

2 Transition Systems
Consider a set of symbols, called constants, along with a non­
empty finite set of symbols Dom(c) assigned to each con­
stant c. We call Dom(c) the domain of

The constants are divided into two groups—fluent con­
stants and action constants. Intuitively, a fluent constant rep­
resents a fluent, and the elements of its domain are the possi­
ble values of that fluent. A state of the world is characterized
by a function that maps each fluent constant to an element of
its domain. In [Giunchiglia et al., 2003, Section 4.2], fluent
constants are further subdivided into simple and statically de­
termined; in the examples below, only fluent constants of the
first kind wil l be used.

A function that maps each action constant to an element
of its domain characterizes an event occurring over a time
interval between two successive states. In many examples of
the use of the domain of every action constant is the set
of truth values constants with this domain are called
Boolean. Intuitively, a Boolean action constant represents an
action; the value of such a constant is t if the action is one of
those that are executed as part of the event.

A transition system is a directed graph whose vertices are
functions that map every fluent constant to an element of its
domain, and whose edges are labeled by functions that map
every action constant to an element of its domain. The ver­
tices of a transition system are called its states. The functions
labeling the edges of a transition system are called events.
As an example, consider a transition system representing the
effect of buying a book on the number of books that the per­
son owns (Figure 1). It uses two fluent constants—Has(A)
(the number of books that Alice has) and Has(B) (the num­
ber of books that Bob has)—with the domain { 0 , . . . , N},
where N is a fixed nonnegative integer, and two Boolean
action constants—Buy(A) (Alice buys a book) and Buy(B)
(Bob buys a book). Every state is represented by two equa­
tions showing the values of the fluent constants. Every event
is represented by the set of action constants that are mapped
to t. The loops are labeled by the trivial event 0 (no actions
are executed). The horizontal edges are labeled by the event
in which Alice buys a book and Bob doesn't; along each of
the vertical edges, Bob buys a book and Alice doesn't. The

diagonal edges correspond to Alice and Bob buying books
concurrently.

3 Syntax of C+
The review of the syntax of C+ in this section follows
[Giunchigiia et al., 2003, Section 4.2]. An atom is an expres­
sion of the form where c is a constant and Dom(c).
For instance, the equalities in Figure 1 are atoms. A formula
is a propositional combination of atoms. By a fluent formula
we mean a formula such that all constants occurring in it are
fluent constants. An action formula is a formula that contains
at least one action constant and no fluent constants.

A static law is an expression of the form

caused F if G (3)

where F and G are fluent formulas. An action dynamic law is
an expression of the form (3) in which F is an action formula
and G is a formula. A fluent dynamic law is an expression of
the form

caused F if G a f ter H (4)
where F and G are fluent formulas and H is a formula, pro­
vided that F does not contain statically determined constants.
A causal law is a static law, or an action dynamic law, or a flu­
ent dynamic law.

Here are two examples. The expression

, , k (5)
where is an abbreviation
for the fluent dynamic law

is an abbreviation for the fluent dynamic law

is the 0-place connective "false").
Causal laws (5) and (6) describe an effect of action Buy

and a restriction on its executability. To get a complete de­
scription of Figure 1 in language we need two more pos­
tulates. First, we should specify that the edge labels of the
transition system may assign truth values to the action con­
stants Buy arbitrarily. This is expressed by

exogenous Buy (7)

which stands for the pair of action dynamic laws

Action Buy is exogenous in the sense that the action de­
scription does not determine whether that action is executed.
If it is not executed then there is a cause for this; if it is ex­
ecuted then there is a cause for that too. Second, we need
to say that the fluent constant Has satisfies the "common-
sense law of inertia": in the absence of evidence to the con­
trary, its value after an event is assumed to be the same as its
value before the event. This is expressed by

i n e r t i a l Has (8)

1080 REASONING ABOUT ACTIONS AND CHANGE

which stands for fluent dynamic laws Notation: x ranges over {A, B}.

caused Has

If the value of Has after an event is the
same as the value before the event then there is a cause for
this. Intuitively, inertia is the cause.

An action description is a set of causal laws. The semantics
of described in [Giunchiglia et al, 2003, Section 4.4],
specifies the transition system represented by any given ac­
tion description. For instance, action description (5)-(8) rep­
resents the transition system shown in Figure 1.

This action description does not say explicitly that the triv­
ial event has no effect on the values of Has(A) and Has(B),
or that event does not affect the value of Has(B).
Nevertheless, every edge of the transition system labeled is
a loop, and every edge labeled is horizontal, be­
cause of the postulates (8) that express, under the semantics
of the persistence property of Has(x).

Similarly, causal laws (5)-(8) do not say anything about the
concurrent execution of actions Buy(A) and Buy(B). But the
edges labeled in Figure 1 are directed di­
agonally, in accordance with our commonsense expectations.
This fact illustrates the convenience of the approach to con­
currency incorporated in the semantics of

However, as discussed in the introduction, this built-in
mechanism is not directly applicable to the effects of actions
on additive fluents. We are now ready to turn to the main sub­
ject of this paper—extending with the additional notation
that resolves this difficulty.

Action constants: Domains:
Buy Boolean

Additive fluent constant: Domain:
InStore

Causal laws:
Buy increments InStore by —1
exogenous Buy

Figure 3: The transition system described by Figure 2.

4 Increment Laws
In our proposed extension of some of the simple fluent
constants can be designated as additive. The domain of every
additive fluent constant is assumed to be a finite set of num­
bers. We understand "numbers" as (symbols for) elements of
any set with an associative and commutative binary operation

that has a neutral element 0.' Effects of actions on additive
fluents are described in extended by causal laws of a new
kind—"increment laws." Accordingly, we modify the defi­
nition of a causal law reproduced in Section 3 in two ways.
First, in causal laws (3) and (4) formula F is not allowed to
contain additive fluent constants. Second, we extend the class
of causal laws by including increment laws—expressions of
the form

a increments c by if G (9)

where

is a Boolean action constant,

is an additive fluent constant,

is a number, and

is a formula that contains no Boolean action constants.

[Thc additive group of integers is the main example we are inter­
ested in, and this is the case that has been implemented. The max
operation on an ordered set with the smallest element is another in­
teresting case.

We will drop ' i f G' in (9) if G is T. In extended an action
description is a set of causal laws that contains finitely many
increment laws.

In the next section we define the semantics of extended
by describing a translation that eliminates increment laws in
favor of additional action constants.

As an example, consider the effects of actions Buy (A),
Buy(B) on the number of books available in the bookstore
where Alice and Bob are buying books. A description of
these effects in extended is shown in Figure 2 (as before,
TV is a fixed nonnegative integer). The transition system rep­
resented by the translation of Figure 2 into the non-extended
language is depicted in Figure 3 (with the auxiliary action
constants dropped from the edge labels). The causal laws in
Figure 2 do not say explicitly that the trivial event has no
effect on the value of InStore, or that the concurrent execution
of actions Buy(A) and Buy(B) decrements the value of this
fluent by 2. Nevertheless, every edge of the corresponding
transition system labeled is a loop, and every edge labeled

goes up 2 levels, in accordance with our
commonsense expectations. This happens because Figure 2
classifies InStore as an additive fluent constant.

The causal laws in this action description do not say explic­
itly that actions Buy are not executable when InStore = 0,
and that actions Buy(A), Buy(B) cannot be executed concur­
rently when InStore = 1. This is taken care of by our seman­
tics of increment laws, in view of the fact that the domain
of InStore does not contain negative numbers.

REASONING ABOUT ACTIONS AND CHANGE 1081

Figure 2: An action description in extended C+.

5 Translating Increment Laws
Let D be an action description in extended i . In connection
with the increment laws (9) in /) , the following terminology
will be used: about the Boolean action constant the additive
fluent constant c and the number in (9) we will say that
is a c-contributing constant, and that is a contribution of
to c.

The auxiliary action constants introduced in the translation
are expressions of the form Contr where c is an additive
fluent constant, and a is a c-contributing action constant. The
domain of Contr consists of all contributions of to c
and number 0.

To translate the increment laws from D, we

(i) replace each increment law (9) in D with the action dy­
namic law

(10)

(ii) for every auxiliary constant Contr(a,c), add the action
dynamic law

caused ConU (11)

(iii) add the fluent dynamic laws

caused (12)

for every additive fluent constant
and every function that maps each
contributing constant a to an element of the domain of
Contr so t h a t ~ ~ is in the domain of c.

The sum and the multiple conjunction in (12) range over all
c-contributing constants

Causal law (10) interprets increment law (9) as the as­
sertion that executing (possibly along with other actions)
causes constant Contr to get the value under some
conditions characterized by formula G. Causal laws (11) say
that the value of this constant is 0 by default, that is to say,
when another value is not required by any increment law.
Causal laws (12) say that the value of an additive fluent con­
stant after an event can be computed as the sum of the value
of this constant prior to the event and the contributions of all
actions to this constant.

The result of translating increment laws from Figure 2
is shown in Figure 4. In this case, the translation de­
scribed above introduces two auxiliary action constants:
Contr{Buy{A), InStore) and Contr{Buy{B), InStore). The
domain of each of them has 2 elements: the contribution -1
of #MV(X) to InStore and number 0.

The edges of the transition system described by Figure 4,
and the corresponding events, can be computed using the
methods presented in [Giunchiglia et al.n 2003, Sections 4.2,
2.6]. (This calculation involves turning the action descrip­
tion into a definite causal theory and computing the mod­
els of the completion of this theory.) Every event assigns
values to each action constant, including the auxiliary con­
stants Contr(Buy InStore). For instance, the label

Notation: ranges over {A, B}.

Action constants:
Buy
Contr(Buy\ InStore)

Additive fluent constant:
InStore

Figure 4: The result of translating increment laws from Fig­
ure 2.

in Figure 3 represent the following event E:

The Causal Calculator, which implements with incre­
ment laws, can be downloaded from

h t t p : / /www.cs.utexas.edu/users/ tag/ccalc/ .

6 Reasoning about Money
As an application of these ideas to automated commonsense
reasoning, consider the following example:

I have $6 in my pocket. A newspaper costs $ 1, and
a magazine costs $3. Can 1 buy 2 newspapers and a
magazine? A newspaper and 2 magazines?

These questions are about the executability of some concur­
rently executed actions, and the answers are determined by
the effect of these actions on an additive fluent—the amount
of money that 1 have.

Figure 5 describes the relevant properties of buying and
selling in the input language of C C A L C . There arc objects
of four sorts in this domain: agents, resources, items (to be
purchased) and (nonnegative) integers; items are a subset of
resources. The buyer and the seller are agents; money is a
resource; 0 , . . . ,maxlnt are integers. The price of an item is
an integer. The number of units of a resource that an agent
has is an integer-valued additive fluent. Buying is an exoge­
nous action. The four causal laws that follow these declara­
tions are self-explanatory; decrements is an abbreviation
defined in terms of i n c r e m e n t s . The last causal law ex­
presses that the number of units that are being purchased is
uniquely defined.

Figure 6 expresses the first of the two questions stated at
the beginning of this section. The line maxstep : : 1
tells CCALC that the query is about paths of length 1 in the
transition system. The question is whether the transition sys­
tem contains an edge that begins in a state in which the buyer

1082 REASONING ABOUT ACTIONS AND CHANGE

- s o r t s
agent ; resource >> i t e m ; n n l n t e g e r .

v a r i a b l e s
Ag : : agent ;
I t : : i t e m ;

ob j ec t s
b u y e r , s e l l e r
money
0 . .max ln t

Res :
M,N :

: resource ;
: n n l n t e g e r .

: agent ;
: resource ;
: n n l n t e g e r .

: - cons tants
p r i c e (i t e m) : : n n l n t e g e r ;
has(agent , resource)

: : a d d i t i v e F l u e n t (n n l n t e g e r) ;
b u y (i t e m , n n l n t e g e r) : : exogenousAct ion.

b u y (I t , N) increments h a s (b u y e r , I t) by N.
b u y (I t , N) decrements h a s (s e l l e r , I t) by N.
b u y (I t , N) increments has(se l le r ,money)

by M*N i f p r i c e (I t) = M
where M*N =< max ln t .

b u y (I t , N) decrements has(buyer,money)
by M*N i f p r i c e (I t) = M

where M*N =< max ln t .
nonexecutable b u y (I t , M) & b u y (I t , N)

where M\=N.

Figure 5: Buying and selling

: - ob j ec t s
newspaper,magazine : : i t em .

p r i ce (newspaper)=1 . p r i ce (magaz ine)=3 .

: - query
maxstep : : 1 ;
0: has(buyer,money)=6,

buy(newspaper ,2) , buy(magaz ine,1) .

Figure 6: Do I have enough cash?

has $6, and whose label includes buying 2 newspapers and 1
magazine. CCALC responds to this query by finding such an
edge.2 Its reply to a similar question about 1 newspaper and
2 magazines is negative.

7 Reasoning about Motion
Some additive fluents mentioned in the introduction—for in­
stance, the velocity of a particle—are real-valued, rather than
integer-valued. CCALC cannot deal with real numbers yet,
and its input language does not allow us to express properties
of such fluents.

But let's imagine a movable object that is immune to this
complication—the spacecraft Integer. Far away from stars

2This example involves the concurrent execution of two actions,
but in general the CCALC implementation of additive fluents does
not impose any specific restriction on the number of actions that can
be executed concurrently.

and planets, the Integer is not affected by any external forces.
As its proud name suggests, the mass of the spacecraft is an
integer. For every integer the coordinates and all three com­
ponents of the Integer's velocity vector at time are integers;
the forces applied to the spacecraft by its jet engines over
the interval for any integer are constant vectors
whose components are integers as well. If the crew of the In­
teger attempts to violate any of these conditions, the jets fail
to operate!

Our formalization of the motion of the Integer uses the flu­
ents Pos where a ranges over {X, Y, Z } , to represent the
current position of the Integer along the a axis. The additive
fluents Vel are the components of its velocity. According
to Newton's Second Law, the acceleration created by firing a
jet can be computed by dividing the force by the mass of the
spacecraft. This relationship can be expressed without men­
tioning the acceleration explicitly—in terms of the change in
the velocity over a unit time interval:

Fire(j) increments Vel by /Mass {{Force

To test our representation, we instructed C C A L C to answer
the following question:

The mass of the Integer is 1. The Integer has two
jets, and the force that can be applied by each jet
along each axis is at most 2. The current position
of the Integer is (-1 ,0 ,1) , and its current velocity
is (0,1,1). How can it get to (0,3,1) within 1 time
unit?

One of the solutions found by CCALC is to apply the forces
(2,2,0) and (0 ,2 , -2) .

8 Missionaries and Cannibals with Two Boats
In the Missionaries and Cannibals Problem (MCP), three mis­
sionaries and three cannibals come to a river and find a boat
that can hold two people. If the cannibals ever outnumber the
missionaries on either bank, the missionaries will be eaten.
How shall they cross? The shortest solution involves 11 steps.

Lifschitz [2000] showed how to express this puzzle and
some of its elaborations due to McCarthy [1999] in the lan­
guage of C C A L C . Some simple elaborations of MCP in the
spirit of this work require that the number of members of
a group (missionaries or cannibals) at a given location be
treated as an additive fluent. This is the case, for instance,
when several boats are available and are allowed to operate
concurrently.

Using the ideas of this paper, we formalized the modifica­
tion of MCP in which the travelers find two boats: a small
boat that holds one, and a bigger boat that holds two. Using
our formalization, CCALC has determined that the modified
problem can be solved in 7 steps.

9 Properties of Additive Constants
By examining Figure 3 in isolation from its symbolic descrip­
tion in Figure 2 we can see that the constant In Store exhibits
some features typical for additive fluent constants.

Consider, for instance, the edges that start at the vertex
InStore = 2 and are labeled by the events {Buy(A)} and

REASONING ABOUT ACTIONS AND CHANGE 1083

{Buy(B)}. Each of them leads to the vertex InStore = 1,
so that each of these two events, when it occurs in the
state InStore = 2, increments the value of InStore by - 1 .
In accordance with the intuitive idea of an additive fluent,
we can expect that the "union" of these events, when it oc­
curs in the same state, wil l increment the value of InStore
by And this is true, because the edge in Fig­
ure 3 that starts at the vertex InStore = 2 and is labeled

leads to the vertex InStore = 0.
Proposition 1 below generalizes this observation to a class

of action descriptions in the language C+ extended as de­
scribed in Sections 4, 5. By D we denote any action descrip­
tion in this language.

About events in the transition system
represented by D we say that eo is a disjoint union of
if, for every Boolean action constant a,

t then there exists a unique such that
for this = t o r every non-

boolean action constant

then, for all

In the rest of this section we assume that the set of numbers
is a commutative group.

The special case corresponding to =0 tells us that ad­
ditive fluent constants are not affected by "trivial" events. In
this sense, they are similar to the fluent constants for which
inertia is postulated:
Corollary 1 Let e be an event such that for every Boolean
action constant If the transition system repre­
sented by D contains an edge that leads from a state s to
a state $' and is labeled e then, for any additive fluent con­
stant c, $'(c) = s(c).

The special case corresponding to n = 1 implies that the
effects of any set of actions on an additive fluent is determin­
istic:

Corollary 2 // the transition system represented by D con­
tains an edge that leads from state s to state so and is
labeled e, and an edge that leads from s to state si and
is also labeled e, then, for any additive fluent constant c,
So{c) =5 i (c) .

10 Discussion
In this paper we showed how an implemented, declarative
language for describing actions can be used to talk about
the effects of actions on additive fluents. This was accom­
plished by extending the syntax of the action language C+
from iGiunchiglia et ai, 2003] by increment laws and by
showing how to treat these laws as abbreviations.

It is interesting to note that this treatment of additive
fluents would have been impossible if, instead of C+, we
used its predecessor C from IGiunchiglia and Lifschitz,
1998]. Non-Boolean, non-exogenous action constants such
as Contr(a, c), and action dynamic laws such as (10) and (11)
are among the features of C+ that were not available in C.

In literature on planning, fluents with numerical values are
often referred to as "resources" fKoehler, 1998]. The concur­
rent execution of the actions that involve resources is usually
limited to the "serializable" case, when all ways of sequenc­
ing the concurrent actions are well-defined and equivalent.
This condition is not satisfied, however, for many uses of ad­
ditive fluents, including the space travel example (Section 7)
and the modified MCP (Section 8). Consider, for instance,
the state with two cannibals and three missionaries on the first
bank, and imagine that the missionaries are using both boats
to cross simultaneously. The concurrent execution of the ac­
tions cannot be replaced by the larger boat crossing first and
the smaller boat crossing after that—in the state between the
two actions, the missionaries on the first bank would be out­
numbered by the cannibals. This example shows that crossing
the river in the modified MCP is not serializable.

Acknowledgements
We are grateful to Yuliya Babovich, Jonathan Campbell, Esra
Erdem, Selim Erdogan, Paolo Ferraris and Wanwan Ren for
useful discussions related to the subject of this paper. This
work was partially supported by the National Science Foun­
dation under Grant IIS-9732744 and by the Texas Higher Ed­
ucation Coordinating Board under Grant 003658-0322-2001.

References
[Gelfond and Lifschitz, 1998] Michael Gelfond and

Vladimir Lifschitz. Action languages.3 Electronic
Transactions on AI, 3:195-210, 1998.

IGiunchiglia and Lifschitz, 1998] Enrico Giunchiglia and
Vladimir Lifschitz. An action language based on causal
explanation: Preliminary report. In Proc. AAAI-98, pages
623-630. AAA1 Press, 1998.

[Giunchiglia e/ al, 20031 Enrico Giunchiglia, Joohyung
Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories.4 Artificial
Intelligence, 2003. To appear.

[Koehler, 1998] J ana Koehler. Planning under resource con­
straints. In Proc. ECAI-98, pages 489-493, 1998.

iLifschitz, 2000] Vladimir Lifschitz. Missionaries and can­
nibals in the Causal Calculator. In Principles of Knowl­
edge Representation and Reasoning: Proc. Seventh Int'l
Conf, pages 85-96, 2000.

[McCarthy, 1999] John McCarthy. Elaboration tolerance.5

In progress, 1999.

3 h t t p : / / w w w . e p . l i u . s e / e a / c i s / 1 9 9 8 / 0 1 6 / .
4 h t t p : / / w w w . c s . u t e x a s . e d u / u s e r s / v l / p a p e r s /

nmct.ps .
5http://www-formal.stanford.edu/jmc/

e l a b o r a t i o n . h t m l .

1084 REASONING ABOUT ACTIONS AND CHANGE

