
Maximizing Flexibility: A Retraction Heuristic for Oversubscribed Scheduling
Problems

Laurence A. Kramer and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{lkramer,sfs}@cs.cmu.edu

Abstract

In this paper we consider the solution of schedul­
ing problems that are inherently over-subscribed.
In such problems, there are always more tasks to
execute within a given time frame than available
resource capacity will allow, and hence decisions
must be made about which tasks should be in­
cluded in the schedule and which should be ex­
cluded. We adopt a controlled, iterative repair
search approach, and focus on improving the re­
sults of an initial priority-driven solution generation
procedure. Central to our approach is a new retrac­
tion heuristic, termed max-flexibility, which is re­
sponsible for identifying which tasks to (temporar­
ily) retract from the schedule for reassignment in an
effort to incorporate additional tasks into the sched­
ule. The max-flexibility heuristic chooses those
tasks that have maximum flexibility for assignment
within their feasible windows. We empirically eval­
uate the performance of max-flexibility using prob­
lem data and the basic scheduling procedure from a
fielded airlift mission scheduling application. We
show that it produces better improvement results
than two contention-based retraction heuristics, in­
cluding a variant of min-conflictsLMinton et al.,
1992], with significantly less search and computa­
tional cost.

1 Introduction
Many scheduling domains present problems that are oversub­
scribed; problems where there are more tasks to be performed
over a given time frame than can be feasibly accommodated
by available resources. In such problems, it is inevitably nec­
essary to exclude some tasks from the schedule. Hence, a
basic objective is to maximize resource utilization (or some­
what equivalently to accommodate as many tasks as possi­
ble). However, in many cases, the situation is further com­
plicated. Input tasks are often differentiated by priorty, im­
plying that some tasks are more important than others and if
necessary should be included at the expense of others. In the
particular domain that motivates this work, for example, task
priorities must be rigidly respected. Though it is theoretically

possible to trade one higher priority task for a set of lower pri­
ority tasks in some circumstances, this is the exception rather
than the rule. Thus, the objective is to accommodate as many
tasks as possible within this constraint.

Oversubscribed problems present an interesting challenge
for constraint-directed search procedures. Oversubscribed
problems are not particularly well suited to formulation
within a standard backtracking search framework. Hence the
application of constructive approaches depends heavily on the
ability of search control heuristics to anticipate resource inter­
actions. Repair-based approaches, on the other hand, tend to
operate myopically through infeasible intermediate states in
hopes of arriving at a better final feasible state. Their effec­
tiveness in the presence of global constraints (such as enforce­
ment of priority) will similarly rely on the ability of search
heuristics to effectively focus the repair process.

In this paper, we take a repair-based search perspective of
the problem and focus on locally improving an initial solu­
tion. We assume that the initial solution generator is priority-
driven, and define a controlled, task swapping search proce­
dure for finding and exploiting opportunities to rearrange cur­
rently scheduled tasks and incorporate additional tasks that
were excluded from the initial solution. To direct the re­
pair process we introduce a novel retraction heuristic, max-
flexibility, for choosing which tasks to (temporarily) retract
to make room for additional, lower priority tasks. Max-
flexibility chooses based on a simple measure of the relative
temporal flexibility that alternative competing tasks have for
feasible re-assignment elsewhere in the schedule.

We evaluate the efficacy of this approach using data
and the basic scheduling procedure obtained from a real-
world, multi-mission scheduling problem: the day-to-day
airlift scheduling problem faced by the USAF Air Mobil­
ity Command (AMC). We compare the performance of max-
flexibility to a variant of the min-conflicts heuristic [Minton
et ai, 1992] (adapted to serve as a retraction heuristic) and
another more-informed contention-based heuristic.

2 Basic Allocation Procedure
Without loss of generality the AMC scheduling problem can
be characterized abstractly as follows:

• A set T of tasks (or missions) are submitted for exe­
cution. Each task i £ T has an earliest pickup time

1218 SCHEDULING

a latest delivery time a pickup location
a dropoff location desti, a duration di, (determined by
origi and desti) and a priority pri

• A set Res of resources (or air wings) are available for
assignment to missions. Each resource r has
capacity (corresponding to the number of con­
tracted aircraft for that wing).

• Each task i has an associated set of feasible re­
sources (or air wings), any of which can be assigned to
carry out i. Any given task i requires 1 unit of capacity
(i.e., one aircraft) of the resource r that is assigned to
perform it.

• Each resource r has a designated location home,. For
a given task i, each resource r requires a posi­
tioning time to travel from homer to and
a de-positioning time to travel from desti back
to homer.

A schedule is a feasible assignment of missions to wings.
To be feasible, each task i must be scheduled to execute
within its interval, and for each resource r and
time point /, Typically, the prob­
lem is over-subscribed and only a subset of tasks in T can
be feasibly accommodated. If all tasks cannot be scheduled,
preference is given to higher priority tasks. Tasks that cannot

Both the scale and continuous, dynamic nature of the AMC
scheduling problem effectively preclude the use of system­
atic solution procedures that can guarantee any sort of maxi­
mal accommodation of the tasks in T. The approach adopted
within the AMC Allocator application instead focuses on
quickly obtaining a good baseline solution, and then pro­
viding a number of tools for the end user to selectively re­
lax problem constraints to incorporate as many additional
(initially unassignable) tasks as possible [Becker and Smith,
2000; Kramer and Smith, 2002].

The basic allocation procedure used within the AMC Al­
locator constructs a schedule incrementally; the set of unas-
signcd input missions is first prioritized, and then missions
are successively inserted into the current partial scheduling in
priority order. The prioritization scheme utilized in the initial
step considers the assigned priority pr(i) of each mission i as
its dominant ordering criterion. In case of missions of equal
priority, secondary criteria give preference to missions with
earlier possible start times and smaller overall slack. A given
mission i is inserted into the schedule via a search of alter­
native options. More specifically, for each r R i, a set of
candidate execution intervals is generated and evaluated, and
the highest ranked alternative is selected as the assignment.
In the search procedure's basic configuration, only feasible
intervals are generated and the evaluation function empha­
sizes choices that minimize and execute i as
early as possible. If a mission cannot be feasibly assigned, it
is marked as unassignable.

This scheduling process allows for assignment of individ­
ual missions on the order of milliseconds, with a two to

three week window of approximately a thousand missions
assignable in a few seconds.

Since it is generally expected that several or more missions
wil l be unable to be assigned during the first pass allocation
process, the user can direct the system to automatically ex­
plore the space of constraint relaxation options on a given
mission, or can do this on a more interactive basis. Available
relaxation options include delaying a mission beyond its due
date, over-allocating beyond contracted capacity on a wing,
bumping a lower priority mission, or some combination of
these basic options. Specifically tailored evaluation functions
are used when searching in the space of relaxed constraints.
For instance, when searching for delay options, the dominant
optimization criterion is minimizing tardiness.1

3 Improving on the Initial Solution
The quality of any schedule produced by the above greedy
procedure will be a function in large part of its prioritiza­
tion heuristic. This heuristic dictates the assignment possi­
bilities that will be available to a given task i at the time it
is inserted into the schedule, and consequently which tasks
will ulitmately end up as unassignable. As just indicated, this
heuristic gives over-riding preference to higher priority tasks.
This bias in fact reflects the basic scheduling policy in the
AMC application domain.

At the same time, strict relance on this ordering heuristic
can obviously lead to sub-optimal solutions. It is quite pos­
sible that some "rearrangement" of the assignments of higher
priority tasks could enable the feasible insertion of additional,
lower priority tasks. Since, in practice, the end user may
spend non-trivial amounts of time analyzing and negotiating
constraint relaxation options to enable incorporation of addi­
tional unassignable missions, it makes sense to consider tech­
niques for productively broadening the search performed by
this basic procedure.

Two broad classes of approaches have been pursued in the
literature. One set of approaches (e.g., LJoslin and Clements,
1998; Bresina, 1996; Cicirello and Smith, 2002]) focuses on
exploring a "neighborhood" around the trajectory of the base
heuristic. In our context, this would correspond to repeat­
edly perturbing the task order in some manner and reapply­
ing the basic search procedure. Another set of approaches
have been termed iterative repair (e.g., [Minton et al, 1992;
Zweben et al., 1994; Rabideau et ai, 1999]), wherein an ini­
tial base solution is progressively revised (and hopefully im­
proved) over time. In our context, this would correspond to
repeated retraction and (rc)assertion of subsets of task as­
signments. Both sets of approaches have natural anytime
properties. One interesting requirement in the current con­
text, however, is that we would like to guarantee that higher
priority missions won't be supplanted by lower priority mis­
sions. In the case of iterative re-solving approaches, enforce­
ment of this constraint would seem possible only in a rather

'A separate search procedure designed to identify and exploit
opportunities for reclaiming resource capacity by combining (or
"merging") two or more roundtrip missions into one is also pro­
vided, but this capability is orthogonal to the techniques discussed
in the current paper.

SCHEDULING 1219

indirect way (through global filtering of the solutions gener­
ated). Iterative repair approaches typically involve generation
of infeasible solutions and are thus potentially well-suited
to controlled exploration of solution improvement opportu­
nities. However, they are generally not designed to enforce
global solution constraints.

Accordingly, the approach we propose takes the solution
improvement perspective of iterative repair methods as a
starting point, but manages solution change in a more sys­
tematic, globally constrained manner. Starting with an initial
baseline solution and a set U of unassignable tasks, the basic
idea is to spend some amount of iterative repair search around
the "footprint" of each unassignable task's feasible execution
window in the schedule. Within the repair search for a given

criteria other than task priority are used to determine
which task(s) to retract next, and higher priority tasks can be
displaced by a lower priority task. If the repair search car­
ried out for a given task u can find a feasible rearrangement
of currently scheduled tasks that allows u to be incorporated,
then this solution is accepted, and we move on to the next
unconsidered task If, alternatively, the repair search
for a given task u is not able to feasibly reassign all tasks dis­
placed by the insertion of u into the schedule, then the state of
the schedule prior to consideration of u is restored, and u re­
mains unassignable. Conceptually, the approach can be seen
as successively relaxing and reasserting the global constraint
that higher priority missions must take precedence over lower
priority missions, temporarily creating "infeasible" solutions
in hopes of arriving at a better feasible solution.

In the subsections below, we describe this task swapping
procedure, and the heuristics that drive it, in more detail.

3.1 Task Swapping

Figure 2: Basic MissionSwap Search Procedure

Given these preliminaries, the basic repair search proce­
dure for inserting an unassignable task, referred to as Mis­
sionSwap, is outlined in Figure 2. It proceeds by computing

(line 2), and then retracting one conflict­
ing task for each (line3).
This frees up capacity for inserting task (line 5), and once
this is done, an attempt is made to feasibly reassign each re­
tracted task (line 6). For those retracted tasks that remain
unassignable, MissionSwap is recursively applied (lines 7-
10). As a given task is inserted by MissionSwap, it is marked
as protected, which prevents subsequent retraction by any
later calls to MissionSwap.

In Figure 3, top-level InsertUnassignableTasks proce­
dure is shown. Once MissionSwap has been applied to all
unassignable tasks, one last attempt is made to schedule any
remaining tasks. This step attempts to capitalize on any op­
portunities that have emerged as a side-effect of Mission-
Swap's schedule re-arrangement.

The driver of this repair process is the retraction heuristic
ChooseTaskToRetract. We define several possibilities in the
next subsection.

1220 SCHEDULING

Figure 3: InsertUnassignableTasks procedure

3.2 Retract ion Heurist ics
In designing a retraction heuristic, our general goal is to re­
tract the task assignment that posseses the greatest potential
for reassignment. One simple estimate of this potential is the
scheduling flexibility provided by a task's feasible execution
interval. More precisely, let repre­
sent the amount of time available for executing task ?. Then a
simple, resource-indepedent measure of flexibility is

However, recall that di is not the total amount of time that
the supporting resource must be allocated for. dt only ac­
counts for the time required to execute the task; it does not
account for the time to position and deposition the resource
for task execution. The total time that a given resource r
must be allocated for is
Given that the resources being allocated are generally sched­
uled near to capacity, a worst-case, resource-dependent mea­
sure offlexibilty is

A potentially more informed measure of contention is one
that considers the proportion of a task i's required execution
interval on resource r that is currently unavailable (i.e., con­
tained in a conflict). For any conflict
assume that dure designates the duration of int. Then we
define a task /'s overall contention level as

Using this measure, we can define a third retraction heuristic:

4 Computational Analysis
The genesis of the max-flexibility heuristic and the mission-
swap algorithm took place while experimenting with the
canonical data set used to test and demonstrate the AMC Al ­
locator. This data set, which we'll refer to as the Tutorial Data
Set, consists of 982 actual missions (3,251 operations) and 12
actual air wings, and represents a two to three week horizon
of AMC airlift and air refueling missions.

Using the basic allocation procedure the system is able to
feasibly allocate all but two of the 982 missions in the Tutorial
Data Set. For demonstration purposes those two missions are
usually added to the schedule by over-allocating a given wing.

It turned out that this particular data set was not as re­
source over-constrained as we had thought. Application of
the mission-swap algorithm with even a random retraction
heuristic is able to schedule the two unassignable missions
in a few seconds.

4.1 Exper imenta l Design
For our experiments we generated data sets using the Tutorial
Data Set as a seed: five data sets of twenty problems each
were generated, with the wing capacities randomly reduced

For each data set, the basic allocation procedure was
employed to quickly schedule as many missions as possible
in priority order. The number of unassignable missions was
recorded, and then InsertUnassignableTasks was executed
on the set of unassignable missions. Then run-time, nodes
searched (number of times MissionSwap was called), and
final number of unassignable missions were recorded. For
each run this process was repeated with min-conflicts, min-
contention, max-flexibility and random choice as the retrac­
tion heuristic (ChooseTaskToRetract, in Figure2).

Experiments were run on a 1.8Ghz Pentium IV PC with
1 Gb of RAM, running Windows 2000. The scheduling engine
is implemented in Allegro Common Lisp 6.1.

4.2 Results
The results of our experiments are shown in Figures 4,
5, and 6. As expected, as the random degree of over-
allocation was increased from 10% to 50%, the number of
initial unassignable missions increased, as did the numbers of
unassignables after application of InsertUnassignableTasks.
Over all problem sets the baseline random-choice heuristic

SCHEDULING 1221

Figure 6: Search Nodes Explored

Figure 5: Computational Cost

was able to assign 36% of the unassignable missions. Min-
conflicts, min-contention and max-fiexibility were able to as­
sign 30%, 38%, and 42%, respectively.

What is most striking, though, are the results shown in fig­
ures five and six. While max-flexibility achieved somewhat
better results in solution quality, it did so while searching far
less and reaching a solution far more quickly than any of the
competing heuristics.

4.3 Discussion
Our preliminary results show that in the face of a resource
constrained scheduling problem, the decision of what tasks to
temporarily retract in order admit more tasks into the sched­
ule may be delegated to an extremely simple and cheap retrac­
tion heuristic: max-flexibility. In order for this heuristic to be
effective it should retract tasks that have a high likelihood of
reassignment elsewhere within their feasible windows.

It is somewhat counter-intuitive, then, that max-flexibility
is able to perform so well, based only on task flexibility to re­
schedule, irrespective of other competing tasks in the sched­
ule. Min-contention performance approaches that of max-
flexibility, but only at significant additional cost - approxi­
mately triple the run-time on average in our experiments.

Our conjecture is that as a schedule becomes more and

more highly constrained, contention wil l increase to the limit
of available capacity, and thus its measure will serve as a less
informed heuristic. Under these conditions, though, a met­
ric based on a task's "innate" flexibility to schedule along a
timeline might be more useful.

5 Related Work
The use of measures of temporal flexibility and resource con­
tention as guidance for variable and value ordering has a long
history in the field of constraint-directed scheduling [Sadeh,
1991; Smith and Cheng, 1993; Beck, 1999], although for the
most part use has been in constructive search contexts. Our
work, alternatively, seeks to exploit these measures in an iter­
ative repair search context, to determine which tasks to retract
and reassign.

Work in manufacturing scheduling domains has addressed
a broad range of priority based scheduling problems [Mor­
ton and Pentico, 1993], and some of this work (e.g., [Smith,
1994]) discusses heuristic techniques for schedule repair.
However, a broad assumption that underlies most of this work
is that due dates are relaxable and the objective is to minimize
tardiness. As such, these are not over-subscribed problems in
the same sense as the type of problem considered here.

Research in the domain of space mission planning and
scheduling, alternatively, has focused on the solution of over­
subscribed problems (e.g., [Minton et al., 1992; Johnston
and Miller, 1994; Rabideau et al, 1999]). Generally this re­
search is aimed at solving the single mission, single resource
problem (e.g., the observing schedule for a space telescope).
[Zweben et al.9 1994]'s shuttle ground processing domain is
one exception, wherein both multiple resources and multi-
capacity resources are considered. The approach employed
here is repair-based, and simple heuristics are employed to
mitigate resource constraint violations. It is not clear how
useful this technique would be, however, in addressing prob­
lems where maintaining task priority is crucial.

Recent work in the area of scheduling observations on mul­
tiple earth satellites comes closest to tackling the same is­
sues which we address: multiple resources, multi-capacity
resources, fixed time windows, and mission priority. [Pem-
berton, 2000] proposes a solution to preserving priority in the

1222 SCHEDULING

face of over-constrained resources by segmenting the prob­
lem into priority classes, solving them individually, and re-
combining them. [Frank et al, 2001] propose a contention-
based heuristic for use in solving a very similar problem
within an iterative sampling framework. However, no experi­
mental analysis is given.

Finally, work in constraint satisfaction problem solving
(CSP) has explored ideas similar to those introduced in this
paper. [Verfaillie and Schiex, 1994] describe a repair proce­
dure similar to MissionSwap for non-disruptively resolving
conflicts in dynamic CSPs (actually motivated by previous
work on a continuous, single-resource scheduling problem).
[Prcstwich, 2001] utilizes a "largest domain first" retraction
heuristic to drive an incomplete backtracking procedure.

6 Conclusions
We have presented a novel retraction heuristic, max-
flexibility, and shown its applicability to a multi-mission air-
lift scheduling problem. This heuristic is much faster and
less memory intensive than min-confiicts and min-contention,
and provides better solution quality. We suggest that max-
flexibility as used in a generic task swapping algorithm
like mission-swap may generally be applicable to resource-
constrained scheduling problems with fixed time windows.
This method is particularly suitable to dynamic scheduling
domains, where an existing schedule must be preserved as
tasks change and new ones are added.

It is possible that with further study and experimentation a
more informed retraction heuristic than max-flexibility might
be found. It is likely, though, that such a heuristic would be
much more expensive, and that a heuristic that is fairly smart,
but very cheap, may be the best choice of all.

Acknowledgements
The work reported in this paper was sponsored in part
by the Department of Defense Advanced Research Projects
Agency (DARPA) and the US Air Force Research Labora­
tory under contracts F30602-00-2-0503 and F30602-02-2-
0149, by the USAF Air Mobility Command under subcon­
tract 10382000 to Northrop-Grumman Corporation, and by
the CMU Robotics Institute.

References
[Beck, 1999] J.C. Beck. Texture measurements as a Basis for

Heuristic Commitment Techniques in Constraint-Directed
Scheduling. PhD thesis, Dept. of Computer Science, Uni­
versity of Toronto, 1999.

[Becker and Smith, 2000] M.A Becker and S.F Smith.
Mixed-initiative resource management: The amc barrel
allocator. In Proc. 5th Int. Conf. on AI Planning and
Scheduling, pages 32-41, Breckenridge CO, April 2000.

[Bresina, 1996] J. Bresina. Heuristic-baised stochastic sam­
pling. In Proceedings 13th national Conference on AI,
pages 271-278, Portland OR, 1996. AAA1 Press.

[Cicirello and Smith, 2002] V. Cicirello and S.F Smith. Am­
plification of search performance through randomization

of heuristics. In Proc. 8th Int. Conf on Principles and
Practice of Constraint Programming, Ithaca NY, Sept
2002. Springer-Verlag.

[Frank etal., 2001] J. Frank, A. Jonsson, R. Morris, and
Smith D.E. Planning and scheduling for fleets of earth
observing satellites. In Proc. 6th Int. Symposium on AI,
Robotics and Automation for Space, 2001.

[Johnston and Miller, 1994] M.D. Johnston and G. Miller.
Spike: Intelligent scheduling of hubble space telescope
observations. In M. Zweben and M. Fox, editors, Intel-
ligent Scheduling. Morgan Kaufmann Publishers, 1994.

[Joslin and Clements, 1998] D.E. Joslin and D.P. Clements.
Squeakywheel optimization. In Proc. 15th National Con­
ference on AI, Madison Wl , July 1998. AAA1 Press.

[Kramer and Smith, 2002] L. Kramer and S.F Smith. Opti­
mizing for change: Mixed-initiative resource management
with the amc barrel allocator. In Proc. 3rd Int. Work­
shop on Planning and Scheduling for Space, Houston, Oct
2002.

[Minton et ai, 1992] S. Minton, M.D. Johnson, A.B Philips,
and P. Laird. Minimizing conflicts: A heuristic repair
method for constraint satisfaction and scheduling prob­
lems. Artificial Intelligence, 58(1): 161-205,1992.

[Morton and Pentico, 1993] T.E. Morton and D.W. Pentico.
Heuristic scheduling Systems. John Wiley and Sons, 1993.

[Pemberton, 2000] J.C. Pemberton. Toward scheduling over-
constrained remote-sensing satellites. In Proceedings 2nd
Int. NASA Workshop on Planning and Scheduling for
Space, San Francisco, CA, March 2000.

[Prcstwich, 2001] S. Prestwich. Local search and backtrack­
ing vs non-systematic backtracking. In Proc. AAA1 Fall
Symposium on Using Uncertainty within Computation,
North Falmouth, MA, Nov 2001.

[Rabideau et a., 1999] G. Rabideau, R. Knight, S. Chien,
A. Fukanaga, and A. Govindjee. Iterative planning for
spacecraft operations using the aspen system. In Proc. 5th
Int. Sym. on Ah Robotics and Automation for Space, 1999.

[Sadeh, 1991] N. Sadeh. Look-Ahead techniques for Micro-
Opportunistic Job Shop Scheduling. PhD thesis, Dept. of
Computer Science, Carnegie Mellon University, 1991.

[Smith and Cheng, 1993] S.F Smith and C. Cheng. Slack-
based heuristics for constraint satisfaction scheduling. In
Proc. 11th National Conference on Artificial Intelligence,
pages 139-144, Wash DC, July 1993. AAA1 Press.

[Smith, 1994] S.F. Smith. Opis: A methodology and archi­
tecture for reactive scheduling. In M. Zweben and M. Fox,
editors, Intelligent Scheduling. Morgan Kaufmann, 1994.

[Verfaillie and Schiex, 1994] G. Verfaillie and T. Schiex. So­
lution reuse in dynamic constraint satisfaction problems.
In Proc. 12th National Conf. on AI, Seattle WA, Aug 1994.

[Zweben et al., 1994] M. Zweben, B. Daun, E. Davis, and
M. Deale. Scheduling and rescheduling with iterative
repair. In M. Zweben and M. Fox, editors, Intelligent
Scheduling. Morgan Kaufmann Publishers, 1994.

SCHEDULING 1223

