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Abstract 

In this paper we consider the solution of schedul­
ing problems that are inherently over-subscribed. 
In such problems, there are always more tasks to 
execute within a given time frame than available 
resource capacity will allow, and hence decisions 
must be made about which tasks should be in­
cluded in the schedule and which should be ex­
cluded. We adopt a controlled, iterative repair 
search approach, and focus on improving the re­
sults of an initial priority-driven solution generation 
procedure. Central to our approach is a new retrac­
tion heuristic, termed max-flexibility, which is re­
sponsible for identifying which tasks to (temporar­
ily) retract from the schedule for reassignment in an 
effort to incorporate additional tasks into the sched­
ule. The max-flexibility heuristic chooses those 
tasks that have maximum flexibility for assignment 
within their feasible windows. We empirically eval­
uate the performance of max-flexibility using prob­
lem data and the basic scheduling procedure from a 
fielded airlift mission scheduling application. We 
show that it produces better improvement results 
than two contention-based retraction heuristics, in­
cluding a variant of min-conflictsLMinton et al., 
1992], with significantly less search and computa­
tional cost. 

1 Introduction 
Many scheduling domains present problems that are oversub­
scribed; problems where there are more tasks to be performed 
over a given time frame than can be feasibly accommodated 
by available resources. In such problems, it is inevitably nec­
essary to exclude some tasks from the schedule. Hence, a 
basic objective is to maximize resource utilization (or some­
what equivalently to accommodate as many tasks as possi­
ble). However, in many cases, the situation is further com­
plicated. Input tasks are often differentiated by priorty, im­
plying that some tasks are more important than others and if 
necessary should be included at the expense of others. In the 
particular domain that motivates this work, for example, task 
priorities must be rigidly respected. Though it is theoretically 

possible to trade one higher priority task for a set of lower pri­
ority tasks in some circumstances, this is the exception rather 
than the rule. Thus, the objective is to accommodate as many 
tasks as possible within this constraint. 

Oversubscribed problems present an interesting challenge 
for constraint-directed search procedures. Oversubscribed 
problems are not particularly well suited to formulation 
within a standard backtracking search framework. Hence the 
application of constructive approaches depends heavily on the 
ability of search control heuristics to anticipate resource inter­
actions. Repair-based approaches, on the other hand, tend to 
operate myopically through infeasible intermediate states in 
hopes of arriving at a better final feasible state. Their effec­
tiveness in the presence of global constraints (such as enforce­
ment of priority) will similarly rely on the ability of search 
heuristics to effectively focus the repair process. 

In this paper, we take a repair-based search perspective of 
the problem and focus on locally improving an initial solu­
tion. We assume that the initial solution generator is priority-
driven, and define a controlled, task swapping search proce­
dure for finding and exploiting opportunities to rearrange cur­
rently scheduled tasks and incorporate additional tasks that 
were excluded from the initial solution. To direct the re­
pair process we introduce a novel retraction heuristic, max-
flexibility, for choosing which tasks to (temporarily) retract 
to make room for additional, lower priority tasks. Max-
flexibility chooses based on a simple measure of the relative 
temporal flexibility that alternative competing tasks have for 
feasible re-assignment elsewhere in the schedule. 

We evaluate the efficacy of this approach using data 
and the basic scheduling procedure obtained from a real-
world, multi-mission scheduling problem: the day-to-day 
airlift scheduling problem faced by the USAF Air Mobil­
ity Command (AMC). We compare the performance of max-
flexibility to a variant of the min-conflicts heuristic [Minton 
et ai, 1992] (adapted to serve as a retraction heuristic) and 
another more-informed contention-based heuristic. 

2 Basic Allocation Procedure 
Without loss of generality the AMC scheduling problem can 
be characterized abstractly as follows: 

• A set T of tasks (or missions) are submitted for exe­
cution. Each task i £ T has an earliest pickup time 
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a latest delivery time a pickup location  
a dropoff location desti, a duration di, (determined by 
origi and desti) and a priority pri 

• A set Res of resources (or air wings) are available for 
assignment to missions. Each resource r has 
capacity (corresponding to the number of con­
tracted aircraft for that wing). 

• Each task i has an associated set of feasible re­
sources (or air wings), any of which can be assigned to 
carry out i. Any given task i requires 1 unit of capacity 
(i.e., one aircraft) of the resource r that is assigned to 
perform it. 

• Each resource r has a designated location home,. For 
a given task i, each resource r requires a posi­
tioning time to travel from homer to and 
a de-positioning time to travel from desti back 
to homer. 

A schedule is a feasible assignment of missions to wings. 
To be feasible, each task i must be scheduled to execute 
within its interval, and for each resource r and 
time point /, Typically, the prob­
lem is over-subscribed and only a subset of tasks in T can 
be feasibly accommodated. If all tasks cannot be scheduled, 
preference is given to higher priority tasks. Tasks that cannot 

Both the scale and continuous, dynamic nature of the AMC 
scheduling problem effectively preclude the use of system­
atic solution procedures that can guarantee any sort of maxi­
mal accommodation of the tasks in T. The approach adopted 
within the AMC Allocator application instead focuses on 
quickly obtaining a good baseline solution, and then pro­
viding a number of tools for the end user to selectively re­
lax problem constraints to incorporate as many additional 
(initially unassignable) tasks as possible [Becker and Smith, 
2000; Kramer and Smith, 2002]. 

The basic allocation procedure used within the AMC Al­
locator constructs a schedule incrementally; the set of unas-
signcd input missions is first prioritized, and then missions 
are successively inserted into the current partial scheduling in 
priority order. The prioritization scheme utilized in the initial 
step considers the assigned priority pr(i) of each mission i as 
its dominant ordering criterion. In case of missions of equal 
priority, secondary criteria give preference to missions with 
earlier possible start times and smaller overall slack. A given 
mission i is inserted into the schedule via a search of alter­
native options. More specifically, for each r R i, a set of 
candidate execution intervals is generated and evaluated, and 
the highest ranked alternative is selected as the assignment. 
In the search procedure's basic configuration, only feasible 
intervals are generated and the evaluation function empha­
sizes choices that minimize and execute i as 
early as possible. If a mission cannot be feasibly assigned, it 
is marked as unassignable. 

This scheduling process allows for assignment of individ­
ual missions on the order of milliseconds, with a two to 

three week window of approximately a thousand missions 
assignable in a few seconds. 

Since it is generally expected that several or more missions 
wil l be unable to be assigned during the first pass allocation 
process, the user can direct the system to automatically ex­
plore the space of constraint relaxation options on a given 
mission, or can do this on a more interactive basis. Available 
relaxation options include delaying a mission beyond its due 
date, over-allocating beyond contracted capacity on a wing, 
bumping a lower priority mission, or some combination of 
these basic options. Specifically tailored evaluation functions 
are used when searching in the space of relaxed constraints. 
For instance, when searching for delay options, the dominant 
optimization criterion is minimizing tardiness.1 

3 Improving on the Initial Solution 
The quality of any schedule produced by the above greedy 
procedure will be a function in large part of its prioritiza­
tion heuristic. This heuristic dictates the assignment possi­
bilities that will be available to a given task i at the time it 
is inserted into the schedule, and consequently which tasks 
will ulitmately end up as unassignable. As just indicated, this 
heuristic gives over-riding preference to higher priority tasks. 
This bias in fact reflects the basic scheduling policy in the 
AMC application domain. 

At the same time, strict relance on this ordering heuristic 
can obviously lead to sub-optimal solutions. It is quite pos­
sible that some "rearrangement" of the assignments of higher 
priority tasks could enable the feasible insertion of additional, 
lower priority tasks. Since, in practice, the end user may 
spend non-trivial amounts of time analyzing and negotiating 
constraint relaxation options to enable incorporation of addi­
tional unassignable missions, it makes sense to consider tech­
niques for productively broadening the search performed by 
this basic procedure. 

Two broad classes of approaches have been pursued in the 
literature. One set of approaches (e.g., LJoslin and Clements, 
1998; Bresina, 1996; Cicirello and Smith, 2002]) focuses on 
exploring a "neighborhood" around the trajectory of the base 
heuristic. In our context, this would correspond to repeat­
edly perturbing the task order in some manner and reapply­
ing the basic search procedure. Another set of approaches 
have been termed iterative repair (e.g., [Minton et al, 1992; 
Zweben et al., 1994; Rabideau et ai, 1999]), wherein an ini­
tial base solution is progressively revised (and hopefully im­
proved) over time. In our context, this would correspond to 
repeated retraction and (rc)assertion of subsets of task as­
signments. Both sets of approaches have natural anytime 
properties. One interesting requirement in the current con­
text, however, is that we would like to guarantee that higher 
priority missions won't be supplanted by lower priority mis­
sions. In the case of iterative re-solving approaches, enforce­
ment of this constraint would seem possible only in a rather 

'A separate search procedure designed to identify and exploit 
opportunities for reclaiming resource capacity by combining (or 
"merging") two or more roundtrip missions into one is also pro­
vided, but this capability is orthogonal to the techniques discussed 
in the current paper. 
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indirect way (through global filtering of the solutions gener­
ated). Iterative repair approaches typically involve generation 
of infeasible solutions and are thus potentially well-suited 
to controlled exploration of solution improvement opportu­
nities. However, they are generally not designed to enforce 
global solution constraints. 

Accordingly, the approach we propose takes the solution 
improvement perspective of iterative repair methods as a 
starting point, but manages solution change in a more sys­
tematic, globally constrained manner. Starting with an initial 
baseline solution and a set U of unassignable tasks, the basic 
idea is to spend some amount of iterative repair search around 
the "footprint" of each unassignable task's feasible execution 
window in the schedule. Within the repair search for a given 

criteria other than task priority are used to determine 
which task(s) to retract next, and higher priority tasks can be 
displaced by a lower priority task. If the repair search car­
ried out for a given task u can find a feasible rearrangement 
of currently scheduled tasks that allows u to be incorporated, 
then this solution is accepted, and we move on to the next 
unconsidered task If, alternatively, the repair search 
for a given task u is not able to feasibly reassign all tasks dis­
placed by the insertion of u into the schedule, then the state of 
the schedule prior to consideration of u is restored, and u re­
mains unassignable. Conceptually, the approach can be seen 
as successively relaxing and reasserting the global constraint 
that higher priority missions must take precedence over lower 
priority missions, temporarily creating "infeasible" solutions 
in hopes of arriving at a better feasible solution. 

In the subsections below, we describe this task swapping 
procedure, and the heuristics that drive it, in more detail. 

3.1 Task Swapping 

Figure 2: Basic MissionSwap Search Procedure 

Given these preliminaries, the basic repair search proce­
dure for inserting an unassignable task, referred to as Mis­
sionSwap, is outlined in Figure 2. It proceeds by computing 

(line 2), and then retracting one conflict­
ing task for each (line3). 
This frees up capacity for inserting task (line 5), and once 
this is done, an attempt is made to feasibly reassign each re­
tracted task (line 6). For those retracted tasks that remain 
unassignable, MissionSwap is recursively applied (lines 7-
10). As a given task is inserted by MissionSwap, it is marked 
as protected, which prevents subsequent retraction by any 
later calls to MissionSwap. 

In Figure 3, top-level InsertUnassignableTasks proce­
dure is shown. Once MissionSwap has been applied to all 
unassignable tasks, one last attempt is made to schedule any 
remaining tasks. This step attempts to capitalize on any op­
portunities that have emerged as a side-effect of Mission-
Swap's schedule re-arrangement. 

The driver of this repair process is the retraction heuristic 
ChooseTaskToRetract. We define several possibilities in the 
next subsection. 
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Figure 3: InsertUnassignableTasks procedure 

3.2 Retract ion Heurist ics 
In designing a retraction heuristic, our general goal is to re­
tract the task assignment that posseses the greatest potential 
for reassignment. One simple estimate of this potential is the 
scheduling flexibility provided by a task's feasible execution 
interval. More precisely, let repre­
sent the amount of time available for executing task ?. Then a 
simple, resource-indepedent measure of flexibility is 

However, recall that di is not the total amount of time that 
the supporting resource must be allocated for. dt only ac­
counts for the time required to execute the task; it does not 
account for the time to position and deposition the resource 
for task execution. The total time that a given resource r 
must be allocated for is 
Given that the resources being allocated are generally sched­
uled near to capacity, a worst-case, resource-dependent mea­
sure offlexibilty is  

A potentially more informed measure of contention is one 
that considers the proportion of a task i's required execution 
interval on resource r that is currently unavailable (i.e., con­
tained in a conflict). For any conflict 
assume that dure designates the duration of int. Then we 
define a task /'s overall contention level as 

Using this measure, we can define a third retraction heuristic: 

4 Computational Analysis 
The genesis of the max-flexibility heuristic and the mission-
swap algorithm took place while experimenting with the 
canonical data set used to test and demonstrate the AMC Al ­
locator. This data set, which we'll refer to as the Tutorial Data 
Set, consists of 982 actual missions (3,251 operations) and 12 
actual air wings, and represents a two to three week horizon 
of AMC airlift and air refueling missions. 

Using the basic allocation procedure the system is able to 
feasibly allocate all but two of the 982 missions in the Tutorial 
Data Set. For demonstration purposes those two missions are 
usually added to the schedule by over-allocating a given wing. 

It turned out that this particular data set was not as re­
source over-constrained as we had thought. Application of 
the mission-swap algorithm with even a random retraction 
heuristic is able to schedule the two unassignable missions 
in a few seconds. 

4.1 Exper imenta l Design 
For our experiments we generated data sets using the Tutorial 
Data Set as a seed: five data sets of twenty problems each 
were generated, with the wing capacities randomly reduced 

For each data set, the basic allocation procedure was 
employed to quickly schedule as many missions as possible 
in priority order. The number of unassignable missions was 
recorded, and then InsertUnassignableTasks was executed 
on the set of unassignable missions. Then run-time, nodes 
searched (number of times MissionSwap was called), and 
final number of unassignable missions were recorded. For 
each run this process was repeated with min-conflicts, min-
contention, max-flexibility and random choice as the retrac­
tion heuristic (ChooseTaskToRetract, in Figure2). 

Experiments were run on a 1.8Ghz Pentium IV PC with 
1 Gb of RAM, running Windows 2000. The scheduling engine 
is implemented in Allegro Common Lisp 6.1. 

4.2 Results 
The results of our experiments are shown in Figures 4, 
5, and 6. As expected, as the random degree of over-
allocation was increased from 10% to 50%, the number of 
initial unassignable missions increased, as did the numbers of 
unassignables after application of InsertUnassignableTasks. 
Over all problem sets the baseline random-choice heuristic 
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Figure 6: Search Nodes Explored 

Figure 5: Computational Cost 

was able to assign 36% of the unassignable missions. Min-
conflicts, min-contention and max-fiexibility were able to as­
sign 30%, 38%, and 42%, respectively. 

What is most striking, though, are the results shown in fig­
ures five and six. While max-flexibility achieved somewhat 
better results in solution quality, it did so while searching far 
less and reaching a solution far more quickly than any of the 
competing heuristics. 

4.3 Discussion 
Our preliminary results show that in the face of a resource 
constrained scheduling problem, the decision of what tasks to 
temporarily retract in order admit more tasks into the sched­
ule may be delegated to an extremely simple and cheap retrac­
tion heuristic: max-flexibility. In order for this heuristic to be 
effective it should retract tasks that have a high likelihood of 
reassignment elsewhere within their feasible windows. 

It is somewhat counter-intuitive, then, that max-flexibility 
is able to perform so well, based only on task flexibility to re­
schedule, irrespective of other competing tasks in the sched­
ule. Min-contention performance approaches that of max-
flexibility, but only at significant additional cost - approxi­
mately triple the run-time on average in our experiments. 

Our conjecture is that as a schedule becomes more and 

more highly constrained, contention wil l increase to the limit 
of available capacity, and thus its measure will serve as a less 
informed heuristic. Under these conditions, though, a met­
ric based on a task's "innate" flexibility to schedule along a 
timeline might be more useful. 

5 Related Work 
The use of measures of temporal flexibility and resource con­
tention as guidance for variable and value ordering has a long 
history in the field of constraint-directed scheduling [Sadeh, 
1991; Smith and Cheng, 1993; Beck, 1999], although for the 
most part use has been in constructive search contexts. Our 
work, alternatively, seeks to exploit these measures in an iter­
ative repair search context, to determine which tasks to retract 
and reassign. 

Work in manufacturing scheduling domains has addressed 
a broad range of priority based scheduling problems [Mor­
ton and Pentico, 1993], and some of this work (e.g., [Smith, 
1994]) discusses heuristic techniques for schedule repair. 
However, a broad assumption that underlies most of this work 
is that due dates are relaxable and the objective is to minimize 
tardiness. As such, these are not over-subscribed problems in 
the same sense as the type of problem considered here. 

Research in the domain of space mission planning and 
scheduling, alternatively, has focused on the solution of over­
subscribed problems (e.g., [Minton et al., 1992; Johnston 
and Miller, 1994; Rabideau et al, 1999]). Generally this re­
search is aimed at solving the single mission, single resource 
problem (e.g., the observing schedule for a space telescope). 
[Zweben et al.9 1994]'s shuttle ground processing domain is 
one exception, wherein both multiple resources and multi-
capacity resources are considered. The approach employed 
here is repair-based, and simple heuristics are employed to 
mitigate resource constraint violations. It is not clear how 
useful this technique would be, however, in addressing prob­
lems where maintaining task priority is crucial. 

Recent work in the area of scheduling observations on mul­
tiple earth satellites comes closest to tackling the same is­
sues which we address: multiple resources, multi-capacity 
resources, fixed time windows, and mission priority. [Pem-
berton, 2000] proposes a solution to preserving priority in the 
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face of over-constrained resources by segmenting the prob­
lem into priority classes, solving them individually, and re-
combining them. [Frank et al, 2001] propose a contention-
based heuristic for use in solving a very similar problem 
within an iterative sampling framework. However, no experi­
mental analysis is given. 

Finally, work in constraint satisfaction problem solving 
(CSP) has explored ideas similar to those introduced in this 
paper. [Verfaillie and Schiex, 1994] describe a repair proce­
dure similar to MissionSwap for non-disruptively resolving 
conflicts in dynamic CSPs (actually motivated by previous 
work on a continuous, single-resource scheduling problem). 
[Prcstwich, 2001] utilizes a "largest domain first" retraction 
heuristic to drive an incomplete backtracking procedure. 

6 Conclusions 
We have presented a novel retraction heuristic, max-
flexibility, and shown its applicability to a multi-mission air-
lift scheduling problem. This heuristic is much faster and 
less memory intensive than min-confiicts and min-contention, 
and provides better solution quality. We suggest that max-
flexibility as used in a generic task swapping algorithm 
like mission-swap may generally be applicable to resource-
constrained scheduling problems with fixed time windows. 
This method is particularly suitable to dynamic scheduling 
domains, where an existing schedule must be preserved as 
tasks change and new ones are added. 

It is possible that with further study and experimentation a 
more informed retraction heuristic than max-flexibility might 
be found. It is likely, though, that such a heuristic would be 
much more expensive, and that a heuristic that is fairly smart, 
but very cheap, may be the best choice of all. 
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