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Abstract 
This paper focuses on temporal constraint prob­
lems where the objective is to optimize a set of lo­
cal preferences for when events occur. In previous 
work, a subclass of these problems has been for­
malized as a generalization of Temporal CSPs, and 
a tractable strategy for optimization has been pro­
posed, where global optimality is defined as maxi­
mizing the minimum of the component preference 
values. This criterion for optimality, which we call 
"Weakest Link Optimization" (WLO), is known to 
have limited practical usefulness because solutions 
are compared only on the basis of their worst value; 
thus, there is no requirement to improve the other 
values. To address this limitation, we introduce a 
new algorithm that rc-applies WLO iteratively in 
a way that leads to improvement of all the values. 
We show the value of this strategy by proving that, 
with suitable preference functions, the resulting so­
lutions are Pareto Optimal. 

1 Introduction 
The notion of softness has been applied to either a constraint 
or planning goal, indicating that either can be satisfied to mat­
ters of degree. It is not hard to find applicable real world 
problems for such a notion. For example, in an earth orbit­
ing spacecraft, sensitive instruments like imagers have duty 
cycles, which impose restrictions on the amount of use of 
the instrument. A duty cycle is typically a complex function 
based on both the expected lifetime of the instrument, as well 
as short term concerns such as the amount of heat it can be 
exposed to while turned on. Duty cycles impose constraints 
on the duration of the periods for which the instrument can 
be on, but it is natural to view this duration as flexible. For 
example, this restriction might be waived to capture an im­
portant event such as an active volcano. Thus, the flexibility 
of the duty cycle "softens" the constraint that the instrument 
cannot be on beyond a certain duration. Reasoning about soft 
constraints for planning or scheduling is for the purpose of 
finding a solution that satisfies the constraints to the highest 
degree possible. 

For temporal reasoning problems, a simple method for 
evaluating the global temporal preference of a solution to 
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a Temporal CSP involving local temporal preferences was 
introduced in [Khatib et at, 2001], based on maximizing 
the minimally preferred local preference for a time value. 
Because the locally minimally preferred assignment can be 
viewed as a sort of "weakest link" with respect to the global 
solution, we dub this method "weakest link optimization" 
(WLO), in the spirit of the television game show. WLO 
can be formalized using a generalization of Simple Tempo­
ral Problems (STPs), called STPs with Preferences (STPPs), 
that preserves the capability to tractably solve for solutions 
(with suitable preference functions associated with the tem­
poral constraints). Unfortunately, as often occurs, this effi­
ciency has a price. Specifically, WLO offers an insufficiently 
fine-grained method for comparing solutions, for it is based 
on a single value, viz., the "weakest link." It is consequently 
easy to conceive of examples where WLO would accept in­
tuitively inferior solutions because of this myopic focus. A l ­
though it is possible to consider more robust alternatives to a 
WLO strategy for evaluating solutions, it is not clear whether 
any of these methods would preserve the computational ben­
efits of WLO. This impasse is the starting point of the work 
described in this paper. 

We propose here to make WLO more robust by combin­
ing it with an iterative strategy for solving STPPs. The pro­
cess involves repeatedly restricting temporal values for the 
weakest links, resetting their preference values, and apply­
ing the WLO procedure to the reduced problem that results 
from these changes. The intuition is a simple one, and we 
motivate this technique with an example from a Mars Rover 
planning domain. In Section 2, we summarize the soft con­
straint problem solver based on WLO introduced previously. 
We then illustrate in section 3 the deficiencies of WLO on 
a simple example, which also reveals the intuition underly­
ing the proposed strategy for overcoming this deficiency. The 
main contribution of this paper is discussed in sections 4 and 
5, which formalize this strategy and prove that any solution 
generated by an application of this strategy is in the set of 
Pareto optimal solutions for the original problem. 

2 Reasoning about preferences with soft 
constraints 

This section reviews the material first presented in [Khatib et 
al., 2001]. There, a class of constrained optimization prob-
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lems, called Temporal Constraint Satisfaction Problems with 
Preferences (TCSPPs), was first defined. A TCSPP is a gen­
eralization of classical TCSPs which allows for a represen­
tation of soft constraints. In classical TCSPs [Dechter et 
al., 1991], a unary constraint over a variable X represent­
ing an event restricts the domain of X, representing its pos­
sible times of occurrence; the constraint is then shorthand for 

Similarly, a 
binary constraint over X and Y restricts the values of the dis­
tance in which case the constraint can be expressed as 

A uniform, 
binary representation of all the constraints results from intro­
ducing a variable for the beginning of time, and recasting 
unary constraints as binary constraints involving the distance 

A soft temporal constraint is a pair where / is a set 
of intervals of temporal values, and / is a func­
tion from (UI to a set A of values. Intuitively, / expresses 
local preferences for temporal values based on the value it as­
signs from A. For example, the soft constraint represented 
by can be interpreted to mean that the 
temporal assignments must be selected from either of the in­
tervals in the set, and the function min assigns a greater pref­
erence to smaller values. The cardinality of the set A, i.e., 
the number of distinct preference values, reflects the ability 
to discriminate among degrees of preference for temporal as­
signments. The class of TCSPPs in which each soft constraint 
consists of a single interval is called Simple Temporal Prob­
lems with Preferences (STPPs). 

Local preferences combine to form global preferences for 
complete assignments. To formalize these operations, A can 
be structured in the form of a c-semiring [Bistarelli et al.,  
1997]. A semiring is a tuple such that 

• A is a set and 0,1 A: 

• +, the additive operation, is commutative, associative 
and 0 is its identity element (a+0= a); 

• x, the multiplicative operation, is associative, distributes 
over +, 1 is its identity element and 0 is its absorbing 
element (ax 0 = 0 ). 

A c-semiring is a semiring in which + is idempotent (i.e., 
a + a = a,a A), 1 is its absorbing element, and x is 
commutative. The semi-ring representation of operations on 
preference values is used as part of the proof of tractability 
for restricted sub-classes of TCSPP, which occurs below. 

A solution to a TCSPP is a complete assignment to all 
the variables that satisfies the temporal constraints. An arbi­
trary assignment of values to variables has a global preference 
value, obtained by combining the local preference values us­
ing the semiring operations. A c-semiring induces a partial 
order relation over A to compare preference values of ar­
bitrary assignments; a b can be read b is more preferred 
than a. Classical Temporal CSPs can be seen as a special case 
of TCSPP, with "soft" constraints that assign the "best" pref­
erence value to each element in the domain, and the "worst" 
value to everything else. The optimal solutions of a TCSPP 
are those solutions which have the best preference value in 
terms of the ordering  

As with classical (binary) CSPs, TCSPPs can be arranged 
to form a network of nodes representing variables, and edges 
labeled with constraint information. Given a network of soft 
constraints, under certain restrictions on the properties of the 
semiring, it can be shown that local consistency techniques 
can be applied in polynomial time to find an equivalent mini­
mal network in which the constraints are as explicit as possi­
ble. The restrictions that suffice for this result apply to 

1. the "shape" of the preference functions used in the soft 
constraints; 

2. the multiplicative operator x (it should be idempotent); 
and 

3. the ordering of the preference values (<s must be a total 
ordering). 

The class of restricted preference functions that suffice to 
guarantee that local consistency can be meaningfully applied 
to soft constraint networks is called semi-convex. This class 
includes linear, convex, and also some step functions. Al l 
of these functions have the property that if one draws a hor­
izontal line anywhere in the Cartesian plane of the graph of 
the function, the set of X such that f(X) is not below the 
line forms an interval. Semi-convexity is preserved under the 
operations performed by local consistency (intersection and 
composition). STPPs with semiring SWLO can easily be seen 
to satisfy these restrictions. 

The same restrictions that allow local consistency to be 
applied are sufficient to prove that STPPs can be solved 
tractably. Finding an optimal solution of the given STPP 
with semi-convex preference functions reduces to a two-step 
search process consisting of iteratively choosing a preference 
value, "chopping" every preference function at that point, 
then solving a STP defined by considering the interval of tem­
poral values whose preference values lies above the chop line 
(semi-convexity ensures that there is a single interval above 
the chop point, hence that the problem is indeed an STP). 
Figure 1 illustrates the chopping process. It has been shown 
that the "highest" chop point that results in a solvable STP in 
fact produces an STP whose solutions are exactly the optimal 
solutions of the original STPP. Binary search can be used to 
select candidate chop points, making the technique for solv­
ing the STPP tractable. The second step, solving the induced 
STP, can be performed by transforming the graph associated 
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Figure 2: The STPP for the Rover Science Planning Problem 
where T is any timepoint 

with this STP into a distance graph, then solving two single-
source shortest path problems on the distance graph. (The 
solutions to these provide upper and lower time bounds for 
each event. If the problem has a solution, then for each event 
it is possible to arbitrarily pick a time within its time bounds, 
and find corresponding times for the other events such that the 
set of times for all the events satisfy the interval constraints.) 
For N nodes and E edges, the complexity of this phase is 
0{EN) (using the Bellman-Ford algorithm [Cormen et al, 
1990]). 

3 The problem with WLO 
Formalized in this way, WLO offers what amounts to a coarse 
method for comparing solutions, one based on the minimal 
preference value over all the projections of the solutions to lo­
cal preference functions. Consequently, the advice given to a 
temporal solver by WLO may be insufficient to find solutions 
that are intuitively more globally preferable. For example, 
consider the following simple Mars rover planning problem, 
illustrated in Figure 2. The rover has a sensing instrument and 
a CPU. There are two sensing events, of durations 3 time units 
and 1 time unit (indicated in the figure by the pairs of nodes 
labeled ins", ins1

e and ins2
8, ins2

e respectively). There is a hard 
temporal constraint that the CPU be on while the instrument 
is on, as well as a soft constraint that the CPU should be on 
as little as possible, to conserve power. This constraint is 
expressed in the STPP as a function from temporal values in­
dicating the duration that the CPU is on, to preference values. 
For simplicity, we assume that the preference function min 
on the CPU duration constraints is the negated identity func­
tion; i.e., min(t) = thus higher preference values, i.e. 
shorter durations, are preferred. Because the CPU must be on 
at least as long as the sensing events, any globally preferred 
solution using WLO has preference value -3. The set of solu­

tions that have the optimal value includes solutions in which 
the CPU duration for the second sensing event varies from 1 
to 3 time units. The fact that WLO is unable to discriminate 
between the global values of these solutions, despite the fact 
that the one with 1 time unit is obviously preferable to the 
others, is a clear limitation of WLO. 

One way of formalizing this drawback of WLO is to ob­
serve that a WLO policy is not Pareto Optimal. To see this, 
we reformulate the set of preference functions of a STPP, 

as criteria requiring simultaneous optimization, 
and let s = and s' = be two solutions 
to a given STPP. s' dominates s if for each j, 
and for some In a Pareto optimiza­
tion problem, the Pareto optimal set of solutions is the set 
of non-dominated solutions. Similarly, let the WLO-optimal 
set be the set of optimal solutions that result from applying 
the chopping technique for solving STPPs described above. 
Clearly, applying WLO to an STPP does not guarantee that 
the set of WLO-optimal solutions is a Pareto optimal set. In 
the rover planning problem, for example, suppose we con­
sider only solutions where the CPU duration for the first sens­
ing event is 3. Then the solution in which the CPU duration 
for the second sensing event is 1 time unit dominates the so­
lution in which it is 2 time units, but both are WLO-optimal, 
since they have the same weakest link value.1 

Assuming that Pareto-optimality is a desirable objective in 
optimization, a reasonable response to this deficiency is to 
replace WLO with an alternative strategy for evaluating solu­
tion tuples. A natural, and more robust alternative evaluates 
solutions by summing the preference values, and ordering 
them based on preferences towards larger values. (This strat­
egy would also ensure Pareto optimality, since every maxi­
mum sum solution is Pareto optimal.) This policy might be 
dubbed "utilitarian." The main drawback to this alternative 
is that the ability to solve STPPs tractably is no longer ap­
parent. The reason is that the formalization of utilitarianism 
as a semiring forces the multiplicative operator (in this case, 
sum), not to be idempotent (i.e., a + a # a), a condition 
required in the proof that a local consistency approach is ap­
plicable to the soft constraint reasoning problem. 

Of course, it is still possible to apply a utilitarian frame-
work for optimizing preferences, using either local search or 
a complete search strategy such as branch and bound. Rather 
than pursuing this direction of resolving the problems with 
WLO, we select another approach, based on an algorithm that 
interleaves flexible assignment with propagation using WLO. 

4 An algorithm for Pareto Optimization 
The proposed solution is based on the intuition that if a con­
straint solver using WLO could iteratively "ignore" the weak­
est link values (i.e. the values that contributed to the global 
solution evaluation) then it could eventually recognize solu­
tions that dominate others in the Pareto sense. For example, 
in the Rover Planning problem illustrated earlier, if the weak­
est link value of the global solution could be "ignored," the 
WLO solver could recognize that a solution with the CPU on 

'This phenomenon is often referred to in the literature as the 
"drowning effect.*' 
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Figure 3: STPP solver WLO+ returns a solution in the Pareto 
optimal set of solutions 

for 1 time unit during the second instrument event is to be 
preferred to one where the CPU is on for 2 or 3 time units. 

We formalize this intuition by a procedure wherein the 
original STPP is transformed by iteratively selecting what we 
shall refer to as a weakest link constraint, changing the con­
straint in such a way that it can effectively be "ignored," and 
solving the transformed problem. A weakest link (soft) con­
straint for a WLO set of solutions is one in which the prefer­
ence value of its duration in all the WLO solutions is the same 
as the chop level v of the optimal STP using WLO. For exam­
ple, after applying WLO to the problem in Figure 2, the CPU 
duration constraint associated with the first sensing event will 
be a weakest link, since it now has a fixed preference value 
of -3. However, the CPU constraint for the second event will 
not be a weakest link since its preference value can still vary 
from -3 to - 1 . 

We also define a weakest link constraint to be open if v is 
not the "best" preference value (i.e., where 1 is the 
designated "best" value among the values in the semi-ring). 

Formalizing the process of "ignoring" weakest link values 
is a two-step process of restricting the weakest links to their 
intervals of optimal temporal values, while eliminating their 
WLO restraining influence by resetting their preferences to a 
single, "best" value. Formally, the process consists of: 

• Squeezing the temporal domain to include all and only 
those values which are optimally preferred; and 

• Replacing the preference function by one that assigns 
the most preferred value (i.e. 1) to each element in the 
new domain. 

The first step ensures that only the best temporal values are 
part of any solution, and the second step allows WLO to be 
re-applied to eliminate Pareto-dominated solutions from the 
remaining solution space. 

The algorithm WLO+ (Figure 3) returns a Simple Tem­
poral Problem (STP) whose solutions are contained in the 
WLO-optimal, Parcto-optimal solutions to the original STPP, 
P. Where C is a set of soft constraints, the STPP 
is solved (step 3) using the chopping approach described ear­
lier. In step 5, we denote the soft constraint that results from 
the two-step process described above as 
where is the interval of temporal values that are 

Figure 4: Relationships between Solution Spaces for STPPs 
that are WLO or Pareto Optimal 

optimally preferred, and fbest is the preference function such 
that for any input value v. Notice that the run 
time of times the time it takes to execute 
Solve(V, Cp), which is a polynomial. 

We now proceed to prove the main result, in two steps. In 
this section we assume the existence of weakest links at every 
iteration of the algorithm, and show that the subset of 
solutions of the input STPP returned by is contained 
in the intersection of WLO-optimal and Pareto-optimal so­
lutions. In the next section we show that, given additional 
restrictions on the shape of the preference functions, such 
weakest links can be shown to always exist. 

Given an STPP P, let be 
the set of WLO-optimal (respectively, Pareto-Optimal) solu­
tions of P, and let be the set of solutions to P 
returned by Then the result can be stated as follows. 

Proof: 
First note that after an open weakest link is processed in 

steps (4) to (6), it will never again be an open weakest link 
(since its preference is reset to Since the theorem 
assumes a weakest link constraint is found at each stage of 

the algorithm will terminate when the weakest link 
constraint is not open, i.e., when all the soft constraints in Cp 
have WLO preferences that equal the best (1) value. 

Now assume s Since the first iteration 
reduces the set of solutions of (V, Cp) to and 
each subsequent iteration either leaves the set unchanged or 
reduces it further, it follows that .s Now sup­
pose s Then s must be dominated by a Pareto 
optimal solution .s'. Let c be a soft constraint in C for which 

is superior to s. Thus, the preference value of the dura­
tion assigned by s to c cannot be 1. It follows that at some 
point during the course of the algorithm, c must become an 
open weakest link. Since s is in it survives 
until then, and so it must provide a value for c that is equal to 
the chop level. However, since s' dominates s, s' must also 
survive until then. But this contradicts the assumption that c 
is a weakest link constraint, since s' has a value greater than 
the WLO chop level. Hence, s is in and so in 

Next suppose the original STPP P has at least one solu­
tion. To see that is nonempty, observe that the 
modifications in steps (4) to (6), while stripping out solutions 
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Figure 5: A unique WLO+ Solution. 

that are not WLO optimal with respect to do retain 
all the WLO optimal solutions. Clearly, if there is any so­
lution, there is a WLO optimal one. Thus, if the in 
any iteration has a solution, the in the next iteration 
will also have a solution. Since we are assuming the first 

(— (V, C)) has a solution, it follows by induction 
that is nonempty.  

The theorem shows that it is possible to maintain the 
tractability of WLO-based optimization while overcoming 
some of the restrictions it imposes. In particular, it is pos­
sible to improve the quality of the flexible solutions gener­
ated within an STPP framework from being WLO optimal to 
being Pareto optimal. 

Although the algorithm determines a nonempty set of so­
lutions that are both WLO optimal and Pareto optimal, the set 
might not include all such solutions. Consider the example 
in figure 5. Assume the preference function for all soft con­
straints is given by / ( t ) = t, i.e., longer durations are pre­
ferred (signified by the max label on the edges). The 
algorithm will retain a single solution where BC and CD are 
both 5. However, the solution where BC = 2 and CD = 8, 
which is excluded, is also both Pareto optimal and WLO op­
timal. (Note that AB, with a fixed value of 1, is the weakest 
link.) 

Many optimization schemes seek what is known as utili­
tarian optimality, where the objective is to maximize the sum 
of the local preferences. However, the WLO+ solutions are 
not necessarily utilitarian optimal with respect to all solutions 
or even the WLO solutions. For example, in figure 5, if the 
preference function is f(t) — a utilitarian optimal WLO 
solution would be given by BC — 1 and CD = 9, but 
will still return the solution where BC and CD are both 5. 

We can summarize the position taken in this paper by say­
ing that utilitarian strategies, while attractive in many ways, 
are apparently intractable. The approach provides 
some of the same benefit at lower cost. For example, non-
competing constraints are fully optimized by For 
competing constraints, tends to divide the preferences 
as equally as possible. In some applications, this might be 
more desirable than a utilitarian allocation. 

5 Existence of Weakest Links 
In this section we show that under suitable conditions, a 
weakest link constraint always exists. This involves a 
stronger requirement than for WLO: the preference functions 
must be convex, not merely semi-convex. This would include 
linear functions, cycloids, and upward-pointing parabolas, for 
example, but not Gaussian curves, or step functions. (Later 
on, we will see this requirement can be relaxed somewhat so 
that Gaussians can be permitted.) 

Before proceeding, we note that while a solution .s of an 

STP P is defined in terms of an assignment to each variable, it 
also determines a value for each edge e, given by = 

where X and Y are the start and end variables 
of r, respectively. We will use this notation in what follows. 

Now consider any consistent STP P. The minimal net-
work [Dechter et al., 1991]corresponding to P is another STP 
P'. The constraints between any two points X and Y in P' are 
formed by intersecting the constraints induced by all possible 
paths between X and Y in P. 

In the following, a preference function / is said to be con-
vex if is a convex set. The claim of the 
existence of weakest links can be stated as follows: 

Theorem 2 Let P be an STPP with continuous domains and 
convex preference functions. Then there will he at least one 
weakest link constraint for the WLO optimal set of solutions. 

Proof: 
Consider the (minimal) STP that corresponds to the 

optimal chopping level for P (as described in the WLO algo­
rithm). Suppose there is no weakest link constraint. Then for 
each edge constraint c there is a solution to such that 

where / is the preference function for the 
edge.2 

Let s be the average of all the sc solutions, i.e. 

The operations in the WLO+ algorithm preserve the con­
vexity property of the preference functions. Each stage of 

repeats a WLO calculation. Thus, theorem 2 implies 

Corollary 2.1 Suppose P is an STPP with continuous do-
mains and convex preference functions. Then a weakest link 
is found at each iteration of  

An example of why the existence result does not apply more 
generally to semi-convex functions is found in figure 6. The 

2To avoid excessive subscripting, we suppress the implied e sub­
script on / here and in what follows. In all cases, the applicable 
preference function will be clear from the context. 
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Figure 6: An STPP with no weakest link 

STPP in the figure contains two semi-convex step-like func­
tions with optimal preference values associated with dura­
tions t and t'. Assume the STPP is minimal, and that the 
assignment e = t, e' = t' is inconsistent. Then the highest 
possible chop point is p, and no weakest link exists, i.e., for 
neither e nor e' is it the case that, for every solution s, p is the 
value returned by the preference function associated with that 
constraint for the duration assigned by s. 

6 Discussion and Related Work 
An examination of the proof of theorem 2 shows that the 
weakest link constraint exists under a somewhat less restric­
tive condition than convexity: it is enough, assuming semi-
convexity, to require that plateaus (subintervals of non-zero 
length where the preference function is constant) can only oc­
cur at the global maximum of the preference function. This 
means, for example, that the theorem is applicable in princi­
ple to any semi-convex smooth function such as a Gaussian 
curve. 

However, in the practical setting of a computer program 
where numbers are computed to a finite precision and contin­
uous curves are approximated, some adjustments may need 
to be made. Note that a representation as a discretized step 
function does not satisfy the no-plateau condition. An alter­
native is to treat a discretized function as corresponding to a 
piecewise linear function where the linear segments join suc­
cessive points on the discretized graph. Even there, the long 
tails of a Gaussian curve may get approximated by horizontal 
segments. However, generally we can trim the domain of the 
curve to eliminate the flat tails without excluding all the so­
lutions. In that case, the discretized Gaussian is acceptable. 
(Note that figure 6 could be simulated by an example involv­
ing extreme Gaussians where the tails are essential for the 
solution.) 

Note that preferences such as longest or shortest durations, 
or closest to a fixed time, which appear to be the most useful 
in practice, can be easily modeled within this framework. 

WLO+ has been implemented and tested on randomly gen­
erated problems, where each semi-convex preference func­
tion is a quadratic with randomly selected pa­
rameters and a 0. We compared the best solution found 
after applying WLO+ with the quality of the earliest solution 
found using the chop solver, using the utilitarian measure of 
quality (i.e., summing preference values). An average im­
provement of between 6 and 10% was observed, depending 
on constraint density (more improvement on lower density 
problems). Future research wil l focus on the application of 
WLO+ to the rover science planning domain. 

The results described here are clearly relevant to any effort 
whose objective is representing and reasoning about prefer­
ences and utility. A detailed survey of this vast literature is 
clearly beyond our scope; here we provide pointers to work 
that exhibits significant overlap. First, the idea of extending 
CSPs to solve multi-criteria optimization problems is pro­
posed in [Torrens and Faltings , 2002]; this work also uses 
Pareto-optimaiity as a criterion for ordering solutions. Sec­
ond, the idea of applying the notion of degrees of satisfac­
tion to solving temporal reasoning problems has been applied 
previously [Dubois and Prade , 1989]. Third, a number of 
graphical-based representations of local preferences have ap­
peared; in [Bacchus and Grove , 1995], for example, an ap­
proach is taken based on drawing connections between pref­
erences and probabilities, as expressed in a Bayesian network. 
Finally, for a survey of Al-based approaches to preferences 
and utility, with an emphasis on qualitative approaches, the 
reader is referred to [Doyle and Thomason , 1999]. 

7 Summary 
This paper has presented a reformulation of problems in the 
optimization of temporal preferences using a generalization 
of Temporal CSPs. The practical context from which this 
effort arose is temporal decision-making in planning, where 
associated with domains representing temporal distances be­
tween events is a function expressing preferences for some 
temporal values over others. The work here extends previous 
work by overcoming limitations in the approach that arose 
when considerations of efficiency in reasoning with prefer­
ences resulted in coarseness in the evaluation procedure for 
global temporal assignments. 
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