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Abstract 
This paper proposes a dynamic model supporting 
multimodal state space probability distributions 
and presents the application of the model in dealing 
with visual occlusions when tracking multiple 
objects jointly. For a set of hypotheses, multiple 
measurements are acquired at each time instant. 
The model switches among a set of hypothesized 
measurements during the propagation. Two 
computationally efficient filtering algorithms are 
derived for online joint tracking. Both the 
occlusion relationship and state of the objects are 
recursively estimated from the history of 
measurement data. The switching hypothesized 
measurements (SHM) model is generally 
applicable to describe various dynamic processes 
with multiple alternative measurement methods. 

1 Introduction 
Visual tracking is important in such application areas as 
human-computer interaction, surveillance, and visual 
reconstruction. Given a sequence of images containing the 
objects that are represented with a parametric motion model, 
parameters of the motion model are required to be estimated 
in successive frames. Tracking could be difficult due to the 
potential variability such as partial or full occlusions of 
objects, appearance changes caused by the variation of 
object poses or illumination conditions, as well as 
distractions from background clutter. 

One principle challenge for visual tracking is to develop 
an accurate and effective model representation. The 
variability in visual environments usually results in a 
multimodal state space probability distribution. The Kalman 
filter [Brown, 1983; Rohr, 1994], a classical choice 
employed in tracking work, is restricted to representing 
unimodal probability distributions. Switching linear 
dynamic systems (SLDS) [Pavlovic and Rehg, 2000] and 
their equivalents [Shumway and Stoffer, 1991; Kim, 1994] 
have been used to describe dynamic processes. Intuitively, a 
complex dynamic system is represented with a set of linear 
models controlled by a switching variable. Joint 
probabilistic data association (JPDA) [Bar-Shalom and 

Fortmann, 1988] and multiple hypothesis tracking (MHT) 
[Cox and Hingorani, 1996] techniques, which represent 
multimodal distributions by constructing data association 
hypotheses, can be cast in the framework of SLDS as well. 
Moreover, Monte Carlo methods such as the Condensation 
algorithm [Isard and Blake, 1996] support multimodal 
probability densities with sample based representation. By 
retaining only the peaks of the probability density, relatively 
fewer samples are required in the work of Cham and Rehg 
[1999]. A switching model framework of the Condensation 
algorithm is also proposed by Isard and Blake [1998]. 

On the other hand, the measurement process is another 
essential issue to deal with the potential variability. 
Measurements are not readily available from image 
sequences in visual tracking. Even an accurate tracking 
model may have a poor performance if the measurements 
are too noisy. Parametric models can be used to characterize 
appearance changes of target regions [Hager and 
Belhumeur, 1998]. In the work of Galvin et al. [1999], two 
virtual snakes, a background and a foreground snake for 
each object, are generated to resolve the occlusion when two 
objects intersect. Rasmussen and Hager [2001] describe a 
joint measurement process for tracking multiple objects 
enumerating all possible occlusion relationships. The 
measurement with respect to the most possible occlusion 
relationship is determined from the current frame. 
Moreover, layered approach [Wang and Adelson, 1994; 
Ayer and Sawhney, 1995; Jojic and Frey, 2001; Tao et al., 
2002] is an efficient way to represent multiple moving 
objects. A moving object is characterized by a coherent 
motion model over its support region. 

In this paper, the idea of switching hypothesized 
measurements (SHM), which results in a SHM model 
supporting multimodal distributions, is proposed to handle 
the potential variability in visual tracking. The approach 
acquires a set of hypothesized measurements for different 
occlusion hypotheses at each time instant. Comparing with 
the above mentioned state space models, the SHM approach 
switches among a set of hypothesized measurements rather 
than switches among a set of models. Two computationally 
efficient filtering algorithms are derived for jointly tracking 
multiple objects. Both the occlusion relationship and state of 
the objects are estimated from the history of measurements. 
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2 Model 
2.1 Hypothesized Measurement 
For a hidden state sequence the objective of 
online tracking is to recursively estimate from the set of 
all available measurements up to time For a 
certain complex system, the estimation may be influenced 
by a mode or switching state sequence {sk} as well, with  

Specifically, the mode switching 
originates from the measurement process in our work. The 
notion of a measurement is extended to a set of L 
hypothesized measurements at each 
time instant. Each is called a hypothesized 
measurement since it is obtained by assuming that the 
switching state is at time  

To illustrate the idea of hypothesized measurement, 
consider the measurement process for jointly tracking two 
objects, e.g. a rectangle and a circle, in an image sequence 

To deal with occlusions between the two objects when 
measuring the kih frame gK, the switching state sk is 
introduced to describe the depth ordering at time 
2}, where sk equals 1 if the rectangle is in front of the circle, 
and 2 if the circle is in front of the rectangle. The 
hypothesized measurement is denoted as 

where is the measurement for the 

rectangle, and is the measurement for the circle under 

theyth hypothesis. 
Under the hypothesis of = 1 , i.e. the circle is occluded 

by the rectangle at time the rectangle should be measured 
first to acquire Then the observed rectangle is masked 

in the image. The occluded area of the circle is ignored and 
only the visible region is matched normally to get  

Similarly, under the hypothesis of = 2, i.e. the rectangle is 
occluded by the circle, the circle should be matched first to 
get then the masked image is used to measure  

Thus, the occlusion will not affect the measurement result. It 
is obvious that both hypothesized measurements support the 
condition of nonocclusion since different depth orderings of 
nonoverlapping objects are visually equivalent. The 
probabilities of the hypotheses should be equal in the case 
of nonocclusion. 

Unfortunately, the occlusion relationship is not given 
before hand. The objective of our SHM approach is to 
estimate both the switching state and the hidden state from 
the history of the hypothesized measurements. 

2.2 L inear S H M Mode l fo r Jo in t T rack ing 

For joint tracking of objects in the scene, the 
switching state sk represents the occlusion relationship at 
time ..., and L - We assume the 
switching state follows a first order Markov chain with the 
following transition probability, 

(1) 
with The hidden state is denoted as 

with being the state 

for the mth object at time k. For a linear process with 
Gaussian noise, the hidden state transition model becomes 

(2a) 
(2b) 

where is the state transition matrix, n is a 
zero-mean Gaussian noise with covariance matrix Q, and 

is a Gaussian density with argument z, mean m, 
and covariance z. 

Figure 1: Bayesian network representation of the SHM model 

Given the switching state at time the corresponding 
hypothesized measurement yksi could be considered as a 

proper measurement centering on the hidden state, while 
every other for is an improper measurement 
generated under a wrong assumption. The improper 
measurement should be weakly influenced by the hidden 
state and have a large variance. To simplify the 
computation, we assume a normal distribution for a proper 
measurement and a uniform distribution for an improper 
measurement. The measurement model is simplified as 

(3a) 

(3b) 

where is a zero-mean Gaussian noise with covariance 
matrix and w is a uniformly distributed noise, whose 
density is a small positive constant. For the measurement of 
M objects, is denoted as and  

is written as Given the current state, 

the conditional independence among the hypothesized 
measurements is assumed to make the model 
computationally efficient. 

VISION 1327 



(4) 
The SHM model can be represented by a dynamic Bayesian 
network shown in figure 1. 

3 Method 
3.1 Measurement 
Multiple, occluding objects are modeled using layer 
representation. Layers are indexed by with 
layer 1 being the layer that is closest to the camera and layer 

being behind layer There is one object in 
each layer. The number of all occlusion relationship 
hypotheses (or depth ordering permutations) is Each 
permutation is tagged with a index  

Under each permutation hypothesis, the object in the 
front layer 1 should be measured first from the image gk at 
time Then the object in layer 2 can be matched from the 
masked image, and so on. At last, the object in layer can 
be measured. Occluded points aie not matched when 
measuring the objects. Measurement results of 
nonoverlapping objects should be equivalent for different 
depth ordering permutations. Given the reference image gr 

the measurement is based on minimizing the mean 
of squared intensity differences between the current image 
and the reference region. Under theyth hypothesis, is 

the hypothesized measurement of the Mth object, and is 

the corresponding squared difference mean at time k. The 
vector is written as The 

covariance matrix is obtained by assuming that the 
components of the measurement noise are uncorrelated to 
each other, and the variances is proportional to the 
corresponding squared difference mean. 

3.2 SHM Filter 
From a Bayesian perspective, the online tracking problem is 
to recursively calculate the posterior state space distribution. 
Given the measurement data up to time k, the probability 
density function (pdf) of the state is expressed as 

(5) 
where is denoted as with and 

the conditional density is modeled as a 
normal distribution under each switching 
state hypothesis. Thus the pdf is a mixture of L 
Gaussians. 

At time the set of hypothesized measurements  
becomes available, and it is used to update  

via Bayes' rule. 

(6) 
In principle, the filtering process has three stages: 
prediction, update, and collapsing [Murphy, 1998]. From 
(1), (2), (4) and (6), the approximate inference algorithm 
can be derived in a similar way as that in a Gaussian sum 
filter [Anderson and Moore, 1979]. 

From (7) it can be seen that the computation of the SHM 
filter is slightly more complex than that of multiple Kalman 
filters or Gaussian sum filters. 

3.3 Fast S H M Fi l ter 
When occlusion is the main factor in the potential variability 
of joint tracking, we can assume that the measurement noise 
under the true occlusion hypothesis is small. When the noise 
becomes zero, the measurement model can be simplified as 
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where is the Dirac delta function. Consider the 
minimized mean of squared differences as a part of the 
hypothesized measurement, so that the definition of 
measurement can be generalized as 

(10) 
Assume that is independent on and and the 
posterior density of the squared difference mean is of 
exponential distribution for each object (More accurate 
expression could be derived using the distribution.) under 
the true hypothesis, the pdf of is factorized as 

(l1b) 

(12) 

The result can then be plugged into a Kalman 

filter to achieve improved performance. Such a SHM-
Kalman filter keeps the multimodality of the SHM model 
and has attractive computation requirement. In addition, the 
collapsing stage is not necessary in the fast SHM filter. 

4 Implementation 
In practice, we use the second order (constant velocity) 
model. The hidden state transition function is 

(16) 

where zk is the tracked entity (e.g. position and orientation). 
The hidden state and state transition matrix can be 
correspondingly defined. The switching state transition 
probability is set as 

(17) 

where is a small positive value (0.1 in this paper) so that 
two successive switching states are more likely to be of the 
same label. At the beginning, the reference image gr is set as 
the initial image go- When there is a high confidence in 
nonocclusion, the reference image can be adaptively 
updated. The objects are assumed to be separated from each 
other in The initial should be equal for 

different j because of nonocclusion.  

The initial mean is set as a zero vector. The initial 
covariance matrix is set as diagonal with small variances 
since the initialization is assumed to be accurate. When an 
object is totally occluded by the other objects, no points of 
the target region wil l be matched. The estimation is based 
on the result of time k using the state transition function 
when no visible region of the object is expected at time £+1. 
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5 Results and Discussion 
Test results of two video sequences are shown in our 
experiments. The state is the position and orientation, and 
the second order model is employed. Fach measurement is a 
translation and rotation. 

Figure 2 shows the tracking of two hands of a person as 
they cross several times in an image sequence. Figure 2a 
shows the three frames of the sequence. Appearance 
variation of the hands due to pose changes can be seen. 
Figure 2b and 2c demonstrate the tracking efficacy of the 
fast SHM filter versus the Kalman filter. The fast SHM filter 
successfully tracks both hands under different occlusion 
relationships. In figure 2b, one hand is drawn in black 
contour when the detected depth order indicates that it is in 
front of the other hand. The Kalman filter has a similar 
performance when occlusions are not severe, but poor under 
heavy occlusions. In figure 2c.3, the distraction from 
background clutter causes the Kalman tracker to fail. The 
normalized posterior distributions for the vertical position of 
the left hand in figure 2a.2 and 2a.3 are shown in figure 2d.l 
and 2d.2. When the occlusion is not severe, measurements 
under the two hypotheses are the same, and the distribution 
is unimodal. Under heavy occlusions, the distribution 
becomes multimodal since the two hypothesized 
measurements tend to be different. The measurement under 
true hypothesis matches the hand correctly, while the 
measurement under false hypothesis is distracted by 
background clutter. Figure 2e shows the probabilities of the 
first occlusion hypothesis (the left hand being in the front) 
over the first 300 frames. The probabilities for the three 
frames in figure 2a are circled. The probabilities of the two 
hypotheses are equal in the nonoverlapping cases, while the 
probability of the true hypothesis becomes dominant under 
occlusions. 

Figure 3 shows the results of jointly tracking the four 
shanks of a man and a woman as they cross. The man's right 
shank has been totally occluded in the sequence. There 

should be totally 4! = 24 hypotheses if we directly apply the 
SHM filter in section 3.2. To reduce the computation, two 
reasonable assumptions are made to prune less plausible 
hypotheses. Firstly, one's legs can not simultaneously 
occlude and be occluded by the other's legs. Secondly, the 
occlusion relationship between the man and woman can be 
determined from their bodies. Thus the whole tracking 
procedure is divided into three trackers. The first one tracks 
the two bodies of the walkers. According to the detected 
occlusion relationship, the two shanks of the person in the 
front are then tracked. At last, the shanks of the other person 
are tracked in the masked image. Figure 3a shows the results 
for the four frames of the sequence (circles are marked on 
the man's body and shanks, and rectangles are marked on 
the woman). Figure 3b shows the posterior distributions for 
the horizontal position of the occluded body in figure 3a. 1-
3a.3. When the two bodies are separated, the density is 
unimodal and of a small variance. The density variance 
increases when occlusions occur. It becomes multimodal 
under heavy occlusions. Figure 3c shows the probabilities of 
the woman's body being in the front. The probabilities for 
the four frames in figure 3a are circled. 

Under realistic environments, it is understandable that 
comparing with the other hypothesized measurements, the 
measurement under the true occlusion hypothesis usually 
shows more regularity and has smaller variances (or squared 
difference means). Thus, the true information (the switching 
state and the hidden state) could be enhanced through the 
propagation. In addition, the acquirement of multiple 
measurements helps decrease the information loss (e.g. 
caused by background clutter) during the measurement 
process. 

6 Conclusion 
This paper proposes a SHM model for state space 
representation of dynamic systems and derives two efficient 
filtering algorithms. Our joint tracking approach explicitly 
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reasons about the occlusion relationships. The occlusion 
relationship is quantitatively analyzed throughout the 
propagation. The information can be used for reference 
update and further analysis. Moreover, experimental results 
show that our method helps handle appearance changes and 
distractions. 

The SHM model discusses the measurement switching in 
dynamic systems. It is complementary to the idea of model 
switching in [Ghahramani and Hinton, 1998]. Our future 
study is to effectively combine these two ideas in visual 
tracking. Furthermore, the SHM model is generally 
applicable to various dynamic processes in which there are 
multiple alternative measurement methods. 

A Inference in Fast SHM Filter 
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