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Abstract 
In this paper we propose a generalisation of the 
k-nearest neighbour (k-NN) retrieval method 
based on an error function using distance metrics 
in the solution and problem space. It is an inter­
polate method which is proposed to be effec­
tive for sparse case bases. The method applies 
equally to nominal, continuous and mixed do­
mains, and does not depend upon an embedding 
n-dimensional space. In continuous Euclidean 
problem domains, the method is shown to be a 
generalisation of the Shepard's Interpolation 
method. We term the retrieval algorithm the 
Generalised Shepurd Nearest Neighbour 
(GSNN) method. A novel aspect of GSNN is 
that it provides a general method for interpola­
tion over nominal solution domains. The per­
formance of the retrieval method is examined 
with reference to the Iris classification problem, 
and to a simulated sparse nominal value test 
problem. The introduction of a solution-space 
metric is shown to out-perform conventional 
nearest neighbours methods on sparse case 
bases. 

1 In t roduct ion 
We present in this study a Case-Based Reasoning (CBR) 
retrieval method that utilises a distance metric imposed 
on solution space. The motivation for such a method is to 
extend a powerful interpolative method, already proven 
in the real domain, so that it applies equally in the do­
main of nominal values. Interpolative methods are well 
studied in the real domain, and can give good results 
from relatively sparse datasets. However, no general in­
terpolative method exists for nominal (discrete) solution 
domains. 

2 An Error Function 
The GSNN method will be applied to a general class of 
problem and solution domains. A distance metric 

is here defined on the problem domain X and 
on the solution domain Y. For the problem 

space, the term in the Shepard's method [1968] 
is generalised to over X. For the solution space 

is used where is the value of y which 
minimizes the error function: 

That this is a minimum follows from the positive definite 

form:  
The function depends only upon the Euclidean dis­

tance over Y = R and X = In order to generalise the 
method completely, we propose the error function: 

a) 
Here, the set are the k nearest neighbours in 

the problem space to the point x. and are 
distance on domains The retrieved value y is 
the value which minimizes the error function /. The 
GSNN algorithm is given as follows: 

3 I l lust rat ive Example 
In this example we illustrate in detail how the method 
works. We choose the Iris data set [Fisher, 1936]. The 
problem space is X and x = is a point in X. 
The solution space Y= {setosa, versicolour, virginica}. 
For the problem space we define distance according to a 
weighted sum of attributes. For the Y space, we define 

by using the distances between cluster centres to 
represent the distance between the classes. These dis­
tances are shown in the following matrix: 
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setosa versicolour virginica 
setosa 0 .35 .49 

versicolour .35 0 .18 
virginica .49 .18 0 

We take two cases, one from setosa and one from virginica: 
Xj= (44 2.9, 1.4, 0.2), y,= setosa 
x2 = (7.2, 3.2, 6, 1.8), y2 = virginica 

We take as target the versicolour iris: 
x = (5.5, 2.3, 4, 1.3),y = ? 

Taking p=l and k = 2, the function l(y) is: 

Since I (versicolour) is minimum, we take 
as the estimated value. This example shows an advantage of 
the interpolation method in situations where cases are 
sparse, in that it can correctly predict nominal values not 
represented in the case base itself. 

4 Test on a Simulated Case Base 
To examine how the GSNN method might work on real 
case bases, we simulated case bases of varying density and 
structure, and used the method to estimate simulated target 
sets. As a basis for the simulation, we adapted the function 
used by Ramos and Enright [2001] (i.e. 

to give 21 nominal values, 

yi,...,y2 i. These 21 nominal values inherited a distance met­
ric from the numeric values:  

Test 6.1 uses regularly spaced cases at various case densi­
ties. This might represent a well organised case base. Test 
6.2 uses randomly selected cases, and is intended to repre­
sent disorganised sparse case bases. Cases are con­
structed in the domain: over a regular square 
lattice, with 102,202,302 points. 

[ Size Methods k=l k=2 k=3 k=4 
100 GSNN 709 501 453 539 100 

k-NN 
709 

769 799 786 
100 

DWNN 

709 

710 706 709 
400 GSNN 501 308 188 215 400 

k-NN 
501 

616 684 652 
400 

DWNN 

501 

499 478 488 
900 GSNN 360 251 181 224 900 

k-NN 
360 

450 471 456 
900 

DWNN 

360 

360 344 344 

Table 1. Errors in estimating a test set of 1000 targets, for 
regular case bases. 

Table 1 shows the result of Test 6.1. These results confirm 
that GSNN with k > 1 can out-perform both k-NN and 
DWNN [Mitchell, 1997] for case bases with regular struc­
ture. Table 2 shows the results of Test 6.2. The results show 
that more errors are recorded for random case bases than for 

regular case bases of equivalent size, whatever the value of 
k. Once again, the results show that GSNN out-performed 
the other nearest neighbour methods. 

[ Size Methods k=l k=2 k=3 k=4 
100 GSNN 734 663 653 678 100 

k-NN 
734 

772 843 843 
100 

DWNN 

734 

733 737 739 
400 GSNN 573 506 511 492 400 

k-NN 
573 

643 695 708 
400 

DWNN 

573 

573 583 591 
900 GSNN 421 356 359 344 900 

k-NN 
421 

486 547 548 
900 

DWNN 

421 

422 435 432 

Table 2. Errors in estimating a test set of 1000 targets, for 
random case bases. 

5 Conclusion 
In this paper, we have proposed a method for interpolation 
over nominal values. The method generalises the Shepard's 
interpolation method by expressing it in terms of the mini­
mization of a function I(y). This function relies only on dis­
tance metrics defined over problem and solution spaces. 
The method has an advantage for CBR in that it is applica­
ble to case bases with nominal values in the problem and 
solution domain where no natural ordering exists. The ex­
amples studied indicate that GSNN could be useful in CBR 
with a sparse set of cases, and particularly where the cases 
can be organised. Tests show that GSNN is more efficient 
as a retrieval engine than other nearest neighbour methods. 
The inclusion of a solution space metric in the GSNN tech­
nique could be useful in two areas of CBR: (i) The selection 
of an optimum case base, (ii) Case based model building, 
from experimental or numerical modeling exercises. Inves­
tigations using numerical models indicate at GSNN would 
appear to be a promising approach for the construction of 
efficient case-based models. 
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