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1 Introduction 
Previous research in Web search has mainly targeted perfor­
mance of search engines from the user's point of view. Pa­
rameters such as precision, recall, and freshness of returned 
results were optimised. On the other hand, a provider of 
search services is rather interested in parameters like the num­
ber of queries processed versus the amount of resources used 
to process them. We focus on performance optimisation of 
search engines from the service provider's point of view. 

An important factor that affects the search engine perfor­
mance is competition with other independently controlled 
search engines. When there are many engines available, users 
want to send queries to those that provide the best possible 
results. Thus, the service offered by one search engine influ­
ences queries received by others. 

Competition is even more important in heterogeneous 
search environments consisting of many specialised search 
engines (which provide access to the so-called "deep" or " in­
visible" Web). Each specialised engine in such environment 
indexes only a subset of all documents (e.g. on a particular 
topic). Each user query is only sent to a small number of 
the engines which can return the best results. Selection be­
tween specialised search engines is done (semi)automatically 
by meta-searchers, which rank engines for each user query. 
Thus, parameters of specialised engines automatically affect 
their ranking and, hence, the queries they receive, and ulti­
mately their profit. 

We are examining the problem of performance-maximising 
behaviour for non-cooperative specialised search engines in 
heterogeneous search environments. In particular, we analyse 
how specialised search engines can select on which topic(s) 
to specialise and how many documents to index on that topic. 
We provide a game-theoretic analysis of a simplified ver­
sion of the problem and motivate the use of the concept of 
"bounded rationality". Bounded rationality assumes that 
decision makers are unable to act optimally in the game-
theoretic sense due to incomplete information about the en­
vironment and/or limited computational resources. We then 
cast our problem as a reinforcement learning task, where the 
goal of a specialised search engine is to exploit sub-optimal 
behaviour of its competitors to improve own performance. 

*This research was funded by Science Foundation Ireland and 
the US Office of Naval Research. 

2 Problem Formalisation 
Performance metric. We adopt an economic view on search 
engine performance. Performance is a difference between the 
value of the search service provided (income) and the cost of 
the resources used to provide the service. In our simplified 
version of the problem we only take into account the cost 
of resources involved in processing search queries. Under 
these assumptions, engine performance can be expressed as 
follows:  

where Q is the number of queries received in a given time 
interval, D is the number of documents in the search engine 
index, and are constants. 

represents the service value: if the price of processing 
one search request for a user is then would be the total 
income from service provisioning. represents the cost 
of processing search requests. If x amount of resources is suf­
ficient to process Q queries, then we need 2x to process twice 
as many queries in the same time. Similarly, twice as many 
resources are needed to search twice as many documents in 
the same time. Thus, the amount of resources (and, hence, the 
cost) is proportional to both Q and D, and so can be expressed 
as where reflects the resource costs. The example of 
the FAST search engine confirms that our cost function is not 
that far from reality [Risvik and Michelsen, 2002]. 

Environment model. Let us assume that users issue 
queries on just a single topic, e.g. "cars". We will see later 
how this extends to multiple topics. It is reasonable to as­
sume that users would like to send queries to search engines 
that contain the most relevant documents on the topic, and 
the more of them, the better. Suppose that search engines 
have "ideal" Web robots which for a given D can find the D 
most relevant documents on the topic. In this case, the user 
would simply have to send queries to the engine containing 
the largest number of documents on the topic. 

This model can be extended to multiple topics, if the state 
of a search engine is represented by the number of documents 

that engine i indexes for each topic t (a query on topic t 
would be sent to the engine i with the largest Of course, 
such extension ignores possible overlaps between topics in 
both queries and documents. On the other hand, if we asso­
ciate each topic with a search term, the whole engine selec­
tion model would closely reflect how some real-life engine 
selection algorithms work [Callan et al, 1995]. 
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Decision making process. For each time interval, the 
search engines simultaneously and independently decide on 
how many documents to index and allocate resources to pro­
cess expected search queries (thus incurring the correspond­
ing costs). As search engines cannot have unlimited crawling 
resources, we presume that they can only do incremental ad­
justments to their index contents that require the same time 
for all engines. The user queries are allocated to the engines 
based on their index parameters as described above. 

Since a search engine cannot know the number of queries 
that users will submit, it may allocate less query processing 
resources than the number of queries it wil l receive. We as­
sume that excess queries are discarded and the search engine 
does not benefit from them. Then, performance of engine / 
over a given time interval can be represented as 

where is the expected number of queries 
across all topics for which the search engine is trying to com­
pete (i.e. index at least one d o c u m e n t ) , i s the 
total number of indexed documents, is the total 
number of queries actually received by engine i, and 

is the share of queries in topic / received by engine i, and Qt 

is the number of queries users submitted on topic t. 

3 Analysis and Solution Approach 
The decision-making process can be modelled as a multi­
stage game. At each stage, a matrix game is played, where 
players are search engines, actions are values of (Dt), and 
player i receives payoff Pi (as above). If player ,• knew the 
actions of its opponents at a future stage k, it could calculate 
the optimal response as the one maximising its payoff Pi(k) 
at that stage. For example, in case of a single topic and a con­
stant query stream it should play  
if otherwise (sim­
ply put, outperform opponents by 1 document if profitable, 
and do not incur any costs otherwise). 

In reality, the players do not know the future. One possible 
way around this would be to agree on (supposedly, mutually 
beneficial) actions in advance. To avoid deception, players 
would have to agree on playing a Nash equilibrium of the 
game, since only then there wil l be no incentive for them to 
not follow the agreement. Agreeing to play a Nash equilib­
rium, however, becomes problematic when the game has mul­
tiple such equilibria. Players would be willing to agree on 
a Nash equilibrium yielding to them the highest (expected) 
payoffs, but the task of characterising all Nash equilibria of a 
game is NP-hard even given complete information about the 
game (as follows from [Conitzer and Sandholm, 2002]). 

NP-hardness results and the possibility that players may 
not have complete information about the game lead to the 
idea of "bounded rationality", when players may not use the 
optimal strategies in the game-theoretic sense. Our proposal 
is to cast the problem of optimal behaviour in the game as a 

learning task, where the player would have to learn a strategy 
that performs well against its sub-optimal opponents. 

Learning in repeated games has been studied extensively in 
game theory and machine learning. Examples include fictious 
play and opponent modelling [Robinson, 1951; Carmel and 
Markovitch, 1996]. We apply a more recent algorithm from 
reinforcement learning called GAPS [Peshkin et al, 2000]. 
In GAPS, the learner plays a parameterised strategy repre­
sented by a finite state automaton, where the parameters are 
the probabilities of actions and state transitions. GAPS im­
plements stochastic gradient ascent in the space of policy pa­
rameters. After each learning trial, parameters of the policy 
are updated by following the payoff gradient. 

GAPS has a number of advantages important for our do­
main. It works in partially observable games. It also scales 
well to multiple topics by modelling decision-making as a 
game with factored actions (where action components corre­
spond to topics). The action space in such games is the prod­
uct of factor spaces for each action component. GAPS, how­
ever, allows us to reduce the learning complexity: rather than 
learning in the product action space, separate GAPS learners 
can be used for each action component. It has been shown 
that such distributed learning is equivalent to learning in the 
product action space. We call a search engine that uses the 
proposed approach COUGAR, which stands for Competitor 
Using GAPS Against Rivals. 

4 Preliminary Results 
We evaluated our approach in a number of simulation exper­
iments, which demonstrated COUGAR's ability to compete 
successfully with different opponents. For the sake of brevity, 
we present here results from one such experiment with two 
competing search engines. One search engine was using a 
fixed strategy, called "Bubble", the other one was COUGAR. 
The search engines could increase, decrease (by one), or keep 
the number of documents indexed on each topic. They could 
also observe the size of own index, the relative sizes of oppo­
nents' indices, and the number of user queries Qt submitted 
for each topic (the last two observations can be obtained from 
the meta-searcher). The expected number of queries on topic 
t at future stage A; was calculated as  

The experimental setup consisted of three components: the 
generator of search queries, the metasearcher, and the search 
engines. The state of a search engine's document index is 
represented by a vector of the numbers of documents 
indexed by the search engine for each topic. This is the infor­
mation used by the metasearcher to select search engines. 

To simulate user search queries, we used HTTP logs ob­
tained from a Web proxy of a large ISP. We developed extrac­
tion rules individually for 47 well-known search engines. The 
total number of queries extracted was 657,861 collected over 
a period of 190 days. We associated topics with search terms 
in the logs. To simulate queries for T topics, we extracted the 
T most popular terms from the logs. The number of queries 
generated on topic t for a given day was equal to the number 
of queries with term t in the logs belonging to this day. 

The "Bubble" strategy tries to index as many documents 
as possible without any regard to what competitors are do-
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Figure 2: "Bubble" vs COUGAR: sample trial 

ing. As follows from our performance formula (Section 2), 
such unconstrained growing leads eventually to negative per­
formance. Once the total reward falls below a certain thresh­
old, the "Bubble" search engine goes bankrupt (it shrinks its 
index to 0 documents and retires until the end of the trial). 
This process imitates the situation, in which a search provider 
expands its business without paying attention to costs, and 
eventually runs out of money (or an analogy with the " . com 
bubble"). An intuitively sensible response to the "Bubble" 
strategy would be to wait until the bubble "bursts" and then 
come into the game alone. That is, a competitor should not 
index anything while the "Bubble" grows and should start in­
dexing a minimal number of documents once the "Bubble" 
search engine goes bankrupt. 

Our simulation had two topics, and "Bubble" was increas­
ing (and decreasing) the number of documents indexed for 
each topic simultaneously. First, we trained COUGAR in a 
number of learning trials. Once it reached a steady perfor­
mance level, the resulting strategy was evaluated in a scries 
of testing trials. Each simulation trial consists of 100 days, 
where each day corresponds to one stage of the multi-stage 
game played. The resulting performance in the whole trial is 
calculated as a sum of discounted rewards from each day. 

Figure 1 shows how COUGAR's performance improving 
during learning. Figure 2 visualises a testing trial between 
the "Bubble" and the COUGAR engines by showing the num­
ber of documents indexed by the engines on each day of the 
trial (the top half of Y axis shows the number of documents 
for topic 1, the bottom half shows the number of documents 
for topic 2). Note that COUGAR has learned to wait until 
"Bubble" goes bankrupt, and then to win all queries for both 
topics. 

We also investigated effectiveness of our approach against 
evolving opponents. In particular, we evaluated performance 
of a COUGAR strategy learned in self-play against other 
learners (other COUGARs in our case). We observed that 
while COUGAR's performance can be quite stable against 
equally complex learners, it may still be sub-optimal, in the 
sense that a "cleverer" learner (e.g. a COUGAR with more 
policy states) can outperform it. 

5 Future Work 
We do not claim to provide a complete solution for the 
problem of performance management in heterogeneous Web 
search, but COUGAR is a promising first step. Clearly, we 
have made many strong assumptions in our models. One 
future direction will be to relax these assumptions to make 
our simulations more realistic. Another important direction 
would be to further study performance of the learning algo­
rithm in self-play, as well as against other learners. 

While we are motivated by the optimal behaviour for 
search services over document collections, our approach is 
applicable in more general scenarios involving services that 
must weigh the cost of their inventory of objects against the 
expected inventories of their competitors and the anticipated 
needs of their customers. For example, it would be interest­
ing to apply our ideas to large retail e-commerce sites which 
must decide what products to stock. 
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