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Abstract 

Resource allocation is a key problem in autonomic 
computing. In this paper we use a data center sce­
nario to motivate the need for decentralization and 
cooperative negotiation, and describe a promising 
approach that employs preference elicitation. 

1 Resource Allocation in an Autonomic 
Computing System 

An autonomic computing system is designed to drastically re­
duce the role of human administrators by automating most of 
the managerial decision making [Kephart and Chess, 2003]. 
Automated resource allocation is necessary for an autonomic 
computing system to optimize its performance. In the large, 
distributed autonomic computing systems we would expect 
in big businesses, resource allocation will occur at multiple 
scales. Local allocation decisions will be made within indi­
vidual elements (servers, databases, storage units, etc.) and 
small clusters of elements. Local clusters wil l contend for 
pools of resources in the larger domain, or across adminis­
trative domains. Although we can generally assume that ele­
ments in an autonomic computing system of a single corpo­
ration wil l be cooperative, sharing the common goal of op­
timizing total business value, the complexity of local infor­
mation will often preclude centralized allocation across the 
entire system. Cooperative negotiation, using preference elic­
itation techniques, can be an effective approach to decentral­
ization. 

To motivate the problem, consider the problem of resource 
allocation within a data center. The data center provides 
information technology resources to multiple organizations, 
each in a separate domain governed by a workload manager 
(WLM). Each WLM decides how to allocate resources in its 
domain to maintain quality of service (QoS) for each of a set 
of n classes of transactions. 

The QoS specification for a transaction class c includes 
terms describing monetary payments or penalties as a func­
tion of the measured attributes of the service provided to that 
class by the data center. For simplicity, we shall consider here 
just a single attribute, the response time tc for class c. We de­
note the revenue function for class c (including all rewards 
and penalties) by rc(tc). 

In a real system, a WLM can adjust various parameters / 
for multiple resources. Here, we assume a single resource, 
with quantity L. Given fixed and class demand vector 

and assuming that the resources have no incremental costs, 
the expected total revenue is then: 

(1) 

A WLVTs internal resource optimization problem is to find a 
feasible that maximizes Eq. (1). 

To handle fluctuations in client demand, a single provi-
sioncr at the data center periodically reallocates resources 
among the WLMs. Denoting an individual WLM by i, the 
resource allocation problem for the provisioner is to compute: 

(3) 

The provisioner can compute (2) centrally if it has a good 
model of the internal operation of each WLM and can ob­
tain all relevant state information. In a real system however, 
the model and data necessary to compute Pr(tc) may be com­
plex and large. Moreover, in a system with transient, hetero­
geneous components (e.g., differently configured WLMs or 
different components altogether), the internal models of the 
components may simply not be available to the provisioner. 
In these cases, it is necessary to decentralize the resource al­
location problem. That is, WLMs would perform local com­
putations and send summary information to the provisioner. 

A natural division of labor is to have each WLM send its 
entire Ui curve, so that the provisioner can compute Eq. (2). 
Figure 1 shows an example of curves from two WLMs, each 
with two transaction classes.1 The provisioner wishes to find 
the peaks of the aggregate curve, also shown. 

2 Cooperative Negotiation 
To compute its full Ut curve, a WLM must solve Eq. (3) for 
each feasible L1. If each rc is in a computationally manage­
able form (e.g., piecewise linear or quadratic) and we have a 

1 We computed the utility curves assuming a simple M/M/l queue 
model for each tc. I is the total service rate available, and the fc 
component of indicates the fraction of L given to class c. 
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Figure 1: Maximum system utility as a function of alloca­
tion, with total resources L — 20. Curve "WLM A" indicates 
maximum utility to A as a function of LA. Curve "WLM B" 
indicates maximum utility to B as a function of LB. Curve 
"Total" indicates total utility as a function of LA provided to 
A (with L-LA provided to B). 

simple model for tc (e.g., M/M/l queue), then computing each 
U,(Lj) point may be tractable. However, in typical real sys­
tems the dependency of the service attributes upon resources 
and demand is likely to be sufficiently complex as to require a 
combination of optimization and simulation to compute each 
U,(L,) point. Moreover, WLMs wil l often have substitutable 
and complementary preferences over different quantities of 
multiple goods, giving rise to large, expensive-to-compute, 
multidimensional U, curves. Such complexities would make 
it in feasible for a WLM to send its entire U, to the provisioned 

Instead, we propose to model the resource allocation prob­
lem as cooperative negotiation. In the context of auto­
nomic computing, cooperative negotiation is not simply non-
cooperative negotiation with the simplifying assumption that 
agents are non-strategic. Rather, the objective is to achieve 
the right balance between global optimization and negoti­
ation time. We are developing preference elicitation tech­
niques [Boutilier, 2002] to address this problem. We can view 
the negotiation for resources between the WLMs and the pro-
visioner as involving computation or "elicitation" of relevant 
parts of the U, curves. 

Partial elicitation may be feasible in the case of negotiation 
among WLMs for different resource levels. It will often be 
possible to identify the region of Z-space in which the opti­
mal allocation lies without complete knowledge of these util­
ity functions. The provisioner could be given a small number 
of samples of the utility functions U,(L1) for WLMs /. Mak­
ing simple monotonicity assumptions, the provisioner could 
determine the region of allocation space in which the opti­
mal allocation lies.2 For instance, having samples of the two 
(lower) curves in Figure 1 at points Lx — {10,15,20} for 
/ = A,B, is sufficient to determine that the optimal allocation 
lies somewhere in the region [10,15]. 

We are currently developing incremental utility elicitation 

2Monotonicity of Ui seems natural, corresponding to a "free dis­
posal" assumption. 

procedures in which the provisioner gradually narrows down 
the region in which the optimal allocation lies until a decision 
which is guaranteed to be e-optimal is found. A rough sketch 
of one such procedure is presented here. Assume that each 
WLM has provided evaluations of its utility function U, at a 
set of m sample points we assume that is 
the maximum value of L, and bounds U, under any allocation. 
With this small set of samples, the provisioner is assured that 

Armed with 
this information, it is reasonably straightforward to determine 
the maximum regret of any allocation L. Furthermore, we can 
also determine the allocation that has minimax regret given 
this incomplete knowledge of the utility function: 

Here ut ranges over the set of utility functions U, consistent 
with the bounds above. Minimax regret is a reasonable er­
ror criterion, and the minimax-optimal allocation L* can be 
determined using a tractable scries of linear programs. 

Incremental elicitation arises when the minimax-optimal 
allocation has a max-regret level that is too high, say, greater 
than E. In this case, the provisioner does not have enough 
information about the Ut curves to determine an allocation 
whose worst-case error is less than this necessitates addi­
tional samples of the U, curves. We have developed intelli­
gent query strategies that efficiently determine points L, for 
which knowledge of 17,(L,) will "quickly" reduce minimax 
regret. Once sufficiently many points have been evaluated, 
minimax regret will reach an acceptable level and an allo­
cation whose error is bounded by e can be offered. Wc do 
recognize that the procedure becomes more complicated with 
multidimensional U, curves. 

This procedure obviates the need for WLMs to compute 
their entire utility curves. The complex optimization required 
to determine U,(L) need only be applied by WLM / at a small 
collection of points; and these points are determined by the 
provisioner based on information about the utility functions 
of other WLMs. In this sense, such incremental elicitation 
techniques can truly be viewed as a form of collective nego­
tiation between WLMs and the provisioner. 

We are exploring error criteria other than minimax regret 
in our general model. Optimization w.r.t. specific utility con­
straints, and determining queries that reduce error, would 
both require tailoring to the specific criterion adopted; but 
the same incremental framework still applies. For instance, 
if distributional information over the (J, curves is available, 
Bayesian decision criteria could be used (e.g., an allocation 
that maximizes expected utility w.r.t. Pr(w)). 
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