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Abstract 
This poster shows an artificial neural network ca­
pable of learning a temporal sequence. Directly 
inspired from a hippocampus model [Banquet et 
al, 1998], this architecture allows an autonomous 
robot to learn how to imitate a sequence of move­
ments wi th the correct t iming. 

1 Introduct ion 
This article considers the problem of learning to predict 
events, i.e. to forecast the future behavior of a system us­
ing past experience. This problem has often been viewed 
and formalized in neural network theory as so-called tempo­
ral sequence learning. Studying such sequences is a topic 
of research in several domains such as robotic trajectory 
planning, speech or vision processing. For most of these, 
neural networks provide two distinct mechanisms: one for 
spatial information and the other for temporal information. 
The main mechanism stores the sequence events regardless 
of the temporal dependences between them. In parallel, or 
later, the second mechanism, the so-called short time mem­
ory (STM), extracts and learns the temporal relationships be­
tween the events. Moreover, we have shown in previous 
works [Gaussier and Moga, 1998; Andry et al, 2001] that 
the capability of learning a temporal sequence is one of most 
important features of a learning by imitation system. As a 
capability of learning by observation, imitation is a strong 
learning paradigm for autonomous systems. Imitation can 
improve and accelerate the learning of sensory/motor associ­
ations. In our work, oriented to the design of a neural network 
architecture al lowing learning by imitation, we are involved 
in the first level of imitation [Whiten and Ham, 1992]. This 
"proto- imitat ion" level plays a key role in understanding the 
principles of the perception/action mechanisms necessary to 
perform higher order behaviors and it is l ikely that the proto-
imitation is triggered by a perception ambiguity. In our ap­
proach, the starting point for an ' ' imitating behavior" imple­
mentation is the capability of learning temporal sequences of 
movements. 

2 Temporal sequence learning model 
Almost all neural models of sequence learning use a discrete 
temporal dimension by sampling the continuous time at reg­

ular intervals. In these models, time proceeds by intervals of 
At, and the interval between 2 items of a sequence is con­
sidered as a few units of At (usually less than 10). In this 
section, we introduce the model1 for t iming sequence learn­
ing with a variable and a long range time interval and we 
evaluate it. Our model (Fig. 1 -left) is based on the idea that a 
prediction (P-type) neuron learns the t iming between 2 items, 
or, to be more precise, learns to predict the end of this time in­
terval. This time interval starts with the firing of a derivation 
(D-type) neuron and ends wi th the firing of an input (E-type) 
neuron. The P-type neuron learns this interval using the ac­
tivity of the granular (G-type) group of neurons. 

Figure 1: Left : The overview of the neural model allowing 
time prediction. The Gi are time base neurons, P is the pre­
diction neuron, D and E are formal neurons. R igh t : detailed 
activity of the P-type neuron. The P neuron firing predict the 
learned time interval. 

Let us consider a simple example: we present the first item 
and, one second later, we present the second item. The length 
of the interval to be learned is T0 = l.s. The first item forces 
the D neuron to fire. The firing of the D neuron resets all 
the activity of the G neurons. Starting at this instant, the G 
neuron's activity is expressed by Eq. 1 . One second later, 
the second item forces the E neuron to fire. The firing of the 
E neuron enables the update of the weight between the P and 
the G neurons i.e. enables the learning of the To interval. 
Finally, when the first item is presented again the D neuron 
fires again. 920 milliseconds later, i.e. 80 milliseconds before 

1The model is inspired by the functions of two brain structures 
involved in memory and time learning: the cerebellum and the hip­
pocampus (see [Banquet et al. 
erences) 

1998] for further neurobioiogical rcf-
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To, the P neuron fires (Fig. 1-right) and predicts an imminent 
firing of the E neuron. 

(1) 
i - position of the neuron in the group (the ith cell of the battery); 

and - time constant and the standard deviation associated with 
the ith neuron; - instant of the last reset of the battery. 

3 Sequence learning architecture 
Timing learning models are currently used by neurobiologist 
modelers for conditioning simulation iBullock et al, 1994; 
Grossberg and Merrill, 1992]. Alternatively, the proposed 
model permits the temporal sequence of events to be learned 
and predicted. In our context, a simple sequence is defined 
as an enumeration of events with the associated timing (eg. 
"A,B,C) and a cyclic sequence as periodic simple sequence 
(eg. "A,B,C,A,B,C,A,... ) with the associated timing. The 
main idea is to use several batteries of G neurons for learning 
the timing between two consecutive events and a group of P 
type neurons for learning the eveni sequencing. The global 
architecture is shown in Fig. 2. The input group (CC) can be 
viewed as the input interface. Any neuron of this group repre­
sents a sequence event and it is ON while the corresponding 
input event is present; otherwise it is OFF. Each CC neuron is 
one-to-one linked with EC group of neurons. The EC group 
is made up of D-type neurons. Each EC neuron is linked 
with unconditional links to all neurons of a battery in the DG 
group. In the same way, an EC neuron is connected with un­
conditional links to all neurons of the corresponding column 
of the CA3 group. The DG group integrates several batteries 

Figure 2: Detailed connectivity of the event prediction net­
work. The circle size in DG is associated with the time con­
stants (mi) of the G type neurons. 

of G-type neurons. A DG battery is equivalent to a Gi group 
of neurons shown in section 2. Each DG neuron is connected 
via conditional links to all neurons of the corresponding row 
in the CA3 group. The size of the CC group (respectively EC) 
is constrained by the maximum length of sequences. Alterna­
tively, the size of a DG battery is a function of the prediction 
precision of the time interval between two events of the se­
quence. This architecture can learn all event combinations, in 

other words, all possibles sequences. Consequently, the size 
of the CA3 group is the square of the input group (CC). The 
output group (RO) is a Winner Take Al l neurons group. A 
neuron of the RO group has the same signification as a CC 
neuron. The RO outputs are connected to the EC inputs via 
one-to-one secondary unconditional links. 

The architecture allows the learning of all kind of simple 
or cyclic sequences. The size of learned sequences is limited 
only by the system memory capacity. 

4 Conclusion 
The timing learning model and the associated neural net­
works were successfully utilized in [Gaussier and Moga, 
1998; Moga, 2000] to teach an autonomous robot different 
"dances". The proposed model allows the correct timing to 
be predicted and it concords with Weber's law. Even if We­
ber's law concordance is not a prerequisite, it corresponds to 
a strong constraint of neurobiological inspired models of per­
ception and learning: if the prediction precision is constant 
then it is not possible to have reinforcement due to repetitive 
experiments. In addition, this model was successfully em­
ployed [Andry et ai, 2001] to build a learning model based 
on the prediction of rhythms as a reward signal and for spatio-
temporal transition learning in autonomous robot navigation. 
These results prove that the proposed neural network archi­
tecture can serve both as a starting point for understanding 
imitation mechanisms, and as an effective learning algorithm 
for autonomous robotics. 
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