
Real-Time Strategy Gaines: A New AI Research Challenge 

Michael Buro 
Department of Computing Science, University of Alberta, Edmonton, AB, T6J 2E8, Canada 

email: mburo@cs.ualberta.ca 

Abstract 

This poster motivates AI research in the area of 
real-time strategy (RTS) games and describes the 
current status of a project whose goals are to imple­
ment an RTS game programming environment and 
to build AIs that eventually can outperform human 
experts in this challenging and popular domain. 

1 Real-Time Strategy Games 
Commercial computer games are a growing part of the en­
tertainment industry and simulations are a critical aspect of 
modern military training. The two fields have much in com­
mon, cross-fertilize, and are driving real-time AI research 
[Herz and Macedonia, 2002]. With the advent of fast per­
sonal computers, simulation-based games have become very 
popular. Today, these games constitute a multi-billion dollar 
enterprise. Examples are sports games and real-time strategy 
games. The common elements of simulation games are severe 
time constraints and a strong demand of real-time AI which 
must be capable of solving real-world decision tasks quickly 
and satisfactorily. Popular simulation games are therefore 
ideal test applications for real-time AI research. 

Real-Time-Strategy (RTS) games - such as the million-
sellers Starcraft by Blizzard Entertainment and Age of Em­
pires by Ensemble Studios - can be viewed as simplified 
military simulations. Several players struggle over resources 
scattered over a 2D terrain by setting up an economy, build­
ing armies, and guiding them into battle in real-time. RTS 
games offer a large variety of fundamental AI research prob­
lems, unlike other game genres studied by the AI community 
so far: 
• Resource management. Players start off by gathering local 
resources to build up defenses and attack forces, to upgrade 
weaponry, and to climb up the technology tree. Proper re­
source management is a vital part of any successful strategy. 
• Decision making under uncertainty. Initially, players are 
not aware of the enemies' base locations and intentions. They 
have to gather intelligence by sending out scouts. If no infor­
mation is available yet, the players must form plausible hy­
potheses and act accordingly. 
• Spatial and temporal reasoning. Static and dynamic ter­
rain analysis as well as understanding temporal relations of 
actions is of utmost importance in RTS games - and yet, cur­
rent game AIs largely ignore these issues and fall victim to 
simple common-sense reasoning [Forbus et al., 2002]. 
• Collaboration. In RTS games groups of players can join 
forces and intelligence. How to coordinate actions effec­
tively by communication among the parties is a challenging 
research problem. 

• Opponent modeling, Learning. One of the biggest short­
comings of most (RTS) game AI systems is their inability to 
learn from experience. Human players only need a couple 
of games to spot opponents' weaknesses and to exploit them 
in upcoming games. Current machine learning approaches in 
this area are inadequate. 
• Adversarial real-time planning. In fine-grained simula­
tions, agents cannot afford to think in terms of micro actions. 
Instead, abstractions have to be found which allow a machine 
to conduct forward searches in a manageable abstract space 
and to translate found solutions back. Because the environ­
ment is also dynamic, hostile, and smart - adversarial real-
time planning approaches need to be investigated. 

Playing RTS games is challenging. Even more challeng­
ing is the creation of autonomous real-time systems capable 
of outperforming human experts in this domain. Because 
search space abstraction, real-time planning, and temporal 
and spatial reasoning are central to many other problems, the 
scope of applications seems endless. One example is high-
performance combat simulators which are in large demand 
for training military personnel today and wil l become the core 
of automated battlefield decision-support systems of tomor­
row, [von der Lippe et al., 1999] predicts that 20% of the US 
armed forces wil l be robotic by 2015. 

2 An RTS Game Programming Environment 
The lack of AI interfaces even in upcoming RTS game titles 
makes it hard to conduct real-time AI research in this area and 
to compare the strength of the resulting Al systems with that 
of human experts. In order to solve this problem we launched 
an open source RTS game programming project [Buro, 2002] 
with the following goals: 
• Building a hack-free server-client RTS game system. At 
the core of the system is a simulator to which players con­
nect via UNIX sockets (Fig. 1). The unique system features 
include: server-side simulation - which only sends visi­
ble information to clients thereby rendering common map-
revealing client hacks useless - and an open message proto­
col that allows Al researchers and players to connect what-
ever client software they like. 
• Sparking competition among players and researchers. 
Popular games in which human players still have the upper 
hand are ideal test-domains for AI research. Unlike the con­
fined GUIs of commercial RTS games, our open design al­
lows the construction of hybrid AI systems in which the hu­
man general is aided by Al modules of growing capabilities. 
Competitive game playing on an open Internet RTS game 
server is therefore likely to improve AI performance and er-
gonomic GUI design. 
• Applying planning and machine learning techniques to 
RTS games. Classic game Al methods - such as alpha-

1534 POSTER PAPERS 



beta search - cannot be applied directly in this domain due 
to the large number of game objects, imperfect information, 
and real-time demands. Search space abstraction, hierarchi­
cal planning, and machine learning arc approaches to over­
come these problems. 

Our initial software release implemented a basic RTS pro­
gramming infrastructure . Recently, we added terrain fea­
tures (water, ground, plateaus, and ramps), view obstruction 
by terrain, and a split-view GUI which allows to watch differ­
ent parts of the playing field simultaneously. In order to main­
tain the high simulation speed, terrain and vision are based on 
tiles (Fig. 2). Soon, the complete source code of our RTS pro­
gramming environment will be released. It is being used in 
two thesis projects dealing with machine learning of low-level 
unit behavior and abstraction, planning, and heuristic search 
in RTS games. We hope to report first results in the RTS 
game AI domain later this year and to spark enough interest to 
be able to organize man-machine and machine-machine RTS 
game tournaments in the near future. For this it will be neces­
sary to define standard game setups including unit properties 
(size,speed,sight and attack ranges,...), technology tree, and 
resources. In contrast to commercial products, the focus here 
will be on simplicity to ease the initial Al development. 

3 Related Work 
The growing literature on Al in commercial games surely 
indicates the demand of smarter game A l . Many articles on 
planning are relevant to this project. Due to space limitation 
we only briefly mention J. Laird's Soar architecture and its 
application to first-person shooter games [Laird, 2001] and 
M. Atkin's work on the GRASP system that is applied to a 
capturc-thc-flag game [Atkin, 1998]. 

Computer soccer pursues similar goals and has become 
quite popular [Stone, 2002]. This domain can be regarded as 
a simplified RTS game with only a few objects, no economy, 
unremarkable terrain features, and more or less complete in-

Figure 1: Server-client RTS game architecture. Clients con­
nect to a central server which sends player views, receives 
actions for all objects, and updates the state of the world. 

formation. Another big difference is that in computer soccer 
a small number of agents are required to compute their ac­
tions autonomously whereas in RTS games a large number of 
objects have to be orchestrated. 

The other body of literature relevant to this project is on 
mil i tary analyses and applications. Research in this area 
spans from mathematical combat models [I lachinski, 1996] 
over computer generated forces - which are used in simula­
tion and training - to decision-support systems that aid com­
manders and troops on the battle-field or even control entire 
weapon systems autonomously. Our project tries to bring 
both research communities together. 

References 
[Atkin, 1998] M.S. Atkin. AFS and HAC: Domain-general agent 

simulation and control. In AAAI Workshop on Software Tools for 
Developing Agents, 1998. 

[Buro, 2002] M. Buro. ORTS: A hack-free RTS game environment. 
In Proceedings of the Third International Conference on Comput­
ers and Games, pages 156 161, 2002. 

[Forbus et al., 2002] K.D. Forbus, J.V. Mahoney, and K. Dil l . How 
qualitative spatial reasoning can improve strategy game AIs. 
IEEE Intelligent Systems, 17(4):25 30, July 2002. 

[Herz and Macedonia, 2002] J.C. Hcrz and M.R. Macedonia. Com­
puter games and the military: Two views. Defense Horizons. 
Center for Technology and National Security Policy, National 
Defense University, 11, April 2002. 

[Ilachinski, 1996] A. Ilachinski. Land warfare and complexity 
CRM 96-68, Center for Naval Analysis Research, 1996. 

[Laird, 2001] J. Laird. Using a computer game to develop advanced 
AI . Computer, 34(7):70-75, July 2001. 

[Stone, 2002] P. Stone. Multiagent competitions and research: 
Lessons from RoboCup and TAC. RoboCup 2002 International 
Symposium, June 2002. 

[von der Lippe et al., 1999] S. von der Lippe et al. A robotic army: 
The future is CGF. In 10th Conference on Computer Generated 
Forces and Behavioral Representation, Florida, USA, 1999. 

Figure 2: a) Motion/col l is ion stress test: hundreds of moving 
ground and air units on hi l ly terrain. A l l units are visible to all 
players, b) Tile-based vision: views are obstructed by hills. 

POSTER PAPERS 1535 


