
Planning with Loops

Hector J. Levesque�

Dept. of Computer Science
University of Toronto

Toronto, Ont. M5S 3H5
hector@cs.toronto.edu

Abstract

Unlike the case for sequential and conditional plan-
ning, much of the work on iterative planning (plan-
ning where loops may be needed) leans heavily on
theorem-proving. This paper does the following:
it proposes a different approach where generating
plans is decoupled from verifying them; describes
the implementation of an iterative planner based on
the situation calculus; presents a few examples il-
lustrating the sorts of plans that can be generated;
shows some of the strengths and weaknesses of the
approach; and finally sketches the beginnings of a
theory, where validation of plans is done offline.

1 Introduction
The vast majority of the work in AI planning today deals
with sequentialplanning, generating a sequence of actions to
achieve a goal. A smaller community is concerned withcon-
ditional planning where plans can be tree-like structures, and
an even smaller community is concerned withiterativeplan-
ning, where plans can be graph-like structure with loops. The
reason for this is clear: sequential planning admits interesting
applications, and yet is already quite difficult, even under the
assumption of complete knowledge about the initial state.

The bulk of the work on iterative planning is based on
theorem-proving (see[Biundo, 1994] for a survey, but see al-
so Section 4 below for some exceptions). From this perspec-
tive, plans are viewed as programs, and planning as a kind
of program synthesis[Manna and Waldinger, 1980]. This
is a notoriously difficult problem, and reasoning about the
correctness of programs with loops,e.g. in terms of partial
correctness and termination, requires mathematical induction
and non-trivial algebra. The difficulty, in other words, is not
at all like the difficulty with sequential planning where the
size of the search space for long plans is the main problem;
even short iterative programs can be quite difficult to reason

�This research was done while I was away on sabbatical at York
University in Toronto, RWTH in Aachen, Universita di Roma La
Sapienza, the University of New South Wales in Sydney, and Simon
Fraser University in Vancouver. I am very grateful to my hosts at
these institutions for providing me with a wonderful environment
for not doing teaching and administration. Sabbaticals rock!

about. Stephan and Biundo [1996] say “Plan generation on
this level is an interactive process with non-trivial inferences
that in our opinion, which is shared by other authors as well
[citations omitted], cannot be carried out in a fully automatic
way.” As far as we can tell, they would say the same today.

So is fully automated iterative planning completely hope-
less? Perhaps. But faced with an intractable reasoning prob-
lem, we can look for compromises. In this paper, we forego
the strong guarantees of correctness provided by the theorem-
proving approach. We consider a new way of generating
iterative plans that does not traffic in loop invariants, non-
negative decreasing expressions, or any of the other items as-
sociated with proving programs correct. The resulting plans
will come with much weaker guarantees; plan validation will
need to be done separately.

The application we have in mind is the sort of high-level
programming typical ofcognitive robotics, e.g. [Lespérance
et al., 1999]. Here we expect users to provide programs that
tell a robot what to do at a very high-level, with considerable
nondeterminism left to the robot to deal with at runtime. Part
of the nondeterminism can be in the form of declarative goals
to achieve. They will require planning on the part of the robot,
but the plans are expected to be small relative to the overall
mission of the robot. The main contribution of this paper is a
new way of generating small plans with loops in this setting.

In the rest of this section, we describe a motivating exam-
ple, define the class of plans we are searching for, and present
the general approach. In Section 2, we discuss the imple-
mentation of a system calledKPLANNER and the novel way
it generates loops. In Section 3, we present three examples
of KPLANNER in use. In Section 4, we discuss its limitations
and related work. In Section 5, we present the beginnings of
a theoretical foundation. In Section 6, we conclude.

1.1 A motivating example
The problem we wish to consider is that of chopping down
a tree and putting away the axe[Sardinaet al., 2004]. We
have at our disposal two primitive actions:chop, which hits
the tree once with the axe, assuming the tree is up and the axe
is available, andstore, which puts the axe away, assuming it
is available. We observe the following:

1. With no additional information, the problem is insolu-
ble. There is no way to know when or if the tree will go
down, and when to put away the axe.

2. If we are told that the tree will go down if it is hit 3 times,
the problem is solved with the following sequential plan:

chop ; chop ; chop ; store

3. If we are told that the tree will go down if it is hitat
most2 times, the problem is again insoluble. But if we
are given a third action,look, which is asensing action
[Reiter, 2001] telling us whether the tree is down or up,
then the problem can be solved with the following con-
ditional plan:

CASE look OF
-down: store
-up: chop ;

CASE look OF
-down: store
-up: chop ; store

ENDC
ENDC

4. If all we are told is that the tree willeventuallygo down
if it is hit repeatedly, and we have thelook action, the
problem can be solved with the following iterative plan:

LOOP
CASE look OF

-down: EXIT
-up: chop ;

NEXT
ENDC

ENDL ;
store

Let us call this planTC (TreeChop) for reference.

So in the most general case where the goal is achievable, an
iterative plan likeTC is necessary to achieve it. Moreover,TC
is general, in that it handles all the cases where a conditional
plan would be sufficient too.

1.2 Robot programs
Once we move beyond simple sequential plans, it becomes
necessary to specify exactly what we mean by a plan. It is
convenient here to use a variant of therobot programsof
[Levesque, 1996] for this purpose. Assume we are given a set
of primitive actions, some of which may be sensing actions
each having a finite set of possible sensing results. Robot
programs and their execution are defined by the following:

1. nil is a robot program executed by doing nothing;

2. for any primitive actionA and robot programP;
seq(A;P) is a robot program executed by first perform-
ingA; ignoring any result, and then executingP ;

3. for any primitive actionA with possible sensing re-
sultsR1 to Rk; and for any robot programsP1 to Pk;
case(A; [if(R1; P1); : : : ; if(Rk ; Pk)]) is a robot program
executed by first performingA; and then on obtaining
the sensing resultRi; continuing by executingPi;

4. if P andQ are robot programs, andB is the result of
replacing inP some of the occurrences ofnil by exit and
the rest bynext; then loop(B;Q) is a robot program,
executed by repeatedly executing the bodyB until the
execution terminates withexit (rather thannext), and
then going on by executing the continuationQ:

A formal definition of the execution of robot programs in the
situation calculus is given in[Levesque, 1996]. The example
plans shown earlier, includingTC; are pretty-printed versions
of robot programs. Although quite limited in form (no recur-
sion, no logical expressions, no fluents, no variables), there
is a precise sense in which robot programs (with the inclu-
sion of five special primitive actions) areuniversal[Lin and
Levesque, 1998]. So for us, planning is this: given a goal,
find a robot program that achieves it.

1.3 The planning approach
We are going to try to solve planning problems like the tree
chopping where some unknown quantity must be dealt with.
Specifically, we assume that among the fluents we are dealing
with, there will be a single distinguished one, which we will
call theplanning parameter, that has the following properties:
(1) its value is not known or even bounded at plan time, and
(2) no loops would be required to achieve the goal if its value
were known. In other words, loops are required (if at all) only
to deal with an unknown and unbounded planning parameter.
For tree chopping, the planning parameter is the number of
chops needed to fell the tree.

Given an application domain with a planning parameterF;
rather than generating a plan and proving that it works for
all values ofF (e.g. by using partial correctness and termi-
nation), we will work with two bounds onF and try to find
plans with loops using these bounds. In particular, we assume
the following:

� the user will provide a constantN1 (called thegenerat-
ing bound) and wegeneratea plan (possibly containing
some number of loops) that is provably correct under the
assumption thatF � N1;

� the user will provide a second larger constantN2 (called
the testing bound) and wetestthat the plan generated in
the first step is also provably correct under the assump-
tion thatF � N2:

So the only guarantee we get out of this is that the plan we
return will be correct assuming thatF � N2: This is far
from foolproof. For example, the conditional plan for tree
chopping presented above works correctly forN1 = 1 and
N2 = 2; but fails whenF � 3: Suppose, however, that the
user had specifiedN1 = 1 andN2 = 100: Then the small-
est conditional plan that satisfies both bounds would have
3 � 100 + 1 actions in it. If we generate plans usingN1

only, andwe consider smaller plans before larger ones, we
will generate desired iterative plans well before we encounter
undesired conditional ones (and see the theory in Section 5).

2 The planner
So the planning setup, then, is the following:

� the user provides aproblem specificationdefined by a
list of primitive actions and fluents, and formulas char-
acterizing the initial and goal states, and for each action,
its preconditions, effects, and sensing results;

� the user also identifies the parameterF and supplies the
two numbersN1 andN2;

� we generate a plan that is correct forF � N1; be-
causeN1 is small, this search can be done reasonably
efficiently, as we will see;

� we test the plan to see if it is correct forF � N2; be-
cause this involves only testing a given plan, this can
also be done reasonably efficiently, even for largeN2:

In practice, and on the examples considered to date, even for
very smallN1 and for very largeN2; almost all of the time is
spent finding a plan that works forF � N1:

The planner, calledKPLANNER, is written in Prolog, and
consists of three main modules: a plan tester, a plan generator,
and a formula evaluator used by the other two modules.1

We will describe the formula evaluator in more detail when
we look at some examples below. For now, it suffices to note
that we need to be able to handle both theprojectiontask (de-
termining if a formula is true after a sequence of actions) and
the legality task (determining if an action can be executed).
We use regression for both[Reiter, 2001]. Moreover, we need
to be able to incorporate the putative results of sensing, and
use them in the evaluation. So instead of just keeping track of
a sequence of actions performed to date, we maintain ahis-
tory consisting of pairs of actions and sensing results. (For
actions without sensing results, we useok as the result.) Fi-
nally, we need to be able to determine when a sensing result
cannot occur based on the history to date. For example, for
tree chopping where we know thatF � 2; the look action
cannot produce a sensing result ofup in a history that con-
tains two legal chop actions.

2.1 Testing plans
Given a planP and a testing boundN; we need to determine
if P correctly achieves the goal assuming thatF � N: Since
we have a bound onF; we do not need to prove a theorem,
but can simulate the execution ofP for all possible results of
the sensing actions and confirm that the goal is satisfied in all
cases. We have the following: A planP achieves a goalG
starting in historyH (initially empty) if

1. P = nil andG holds in historyH ;

2. P = seq(A;P 0); the precondition ofA holds inH; and
P 0 achievesG in historyH �(A; ok);

3. P = case(A;L); the precondition ofA holds inH; and
for eachif(Ri; Pi) 2 L such thatRi is a possible sensing
result forA given thatF � N; Pi achievesG in history
H �(A;Ri);

4. P is a loop that unwinds toQ; andQ achievesG in
historyH:

The unwinding ofloop(B;C) isB but with all occurrences of
exit replaced byC and with all occurrences ofnext replaced
by loop(B;C) itself.2 Observe that unwinding a loop pro-
duces a plan that executes the same way as the original loop.
This will be significant when it comes to generating plans.

1The code forKPLANNER and a number of examples can be
found athttp://www.cs.toronto.edu/cogrobo .

2To guard against loops that run forever, such asloop(next; nil);
we also need an upper bound on the total number of unwindings that
will be performed.

2.2 Generating plans
Given a generating boundN; we use a variant ofprogressive
planning to produce a plan that correctly achieves the goal
assuming thatF � N: We have the following: To find a plan
that achieves a goalG starting in historyH (initially empty),

1. if G holds inH; returnnil ;

2. otherwise, select a primitive actionA whose precondi-
tion is satisfied inH (and maybe other criteria too);

3. if A has no sensing results, do the following:

(a) find a planP that achievesG starting inH�(A; ok);
(b) return the planseq(A;P);

if A has sensing results, then do the following:

(a) for each sensing resultRi that is possible inH
given thatF � N; find a planPi that achievesG
starting in historyH �(A;Ri);

(b) return the plancase(A;L); whereL is the list of
if (Ri; Pi) for theRi andPi from the previous step
(the remaining sensing resultsRi are impossible,
and so the correspondingPi are “don’t care”);

4. if the plan in the previous step is the unwinding of a loop,
return the loop as well (as described below).

2.3 Generating loops
The key question is this: Where are plans with loops going
to come from, if not from the proof of a general, universal
theorem? As we suggested in the generation procedure above,
they can come from sequential and conditional plans that have
already been generated.

To see how this works, consider two conditional plans that
are correct for tree chopping given thatF � 1:

CASE look OF CASE look OF
-down: store -down: store
-up: chop ; -up: chop ;

store CASE look OF
ENDC -down: store

-up: don’t care
ENDC

ENDC

The one on the right does a sensing action that is not needed
since thatup sensing result is impossible forF � 1: More-
over, that plan remains correct forF � 1 for any substitution
of the “don’t care.” The key observation here is that there is
a substitution for which that plan becomes the unwinding of
a loop: if we replace the “don’t care” by the robot program
seq(chop;TC) whereTC is the plan above, then the program
that obtains is an unwinding ofTC:3 The conclusion:TC is
also correct forF � 1 and can be returned as a potential plan
to be tested for the larger bound (in this case, successfully).

But for this idea to be practical, it must be possible to
quickly check if a plan matches the unwinding of a loop (or
the unwinding of an unwindingetc.). How can we do this
without just guessing at the loop? Here is where using Pro-
log as our implementation language pays off: we can write
an unwind predicate, so thatunwind (P;Q) holds if loop

3More precisely, it is the unwinding of an unwinding ofTC:

% P is a loop that unwinds to Q.
unw(P,Q) :- P=loop(B,C), sub(B,P,C,Q).

% sub(B,X,Y,Q) holds when Q is the result
% of replacing in B each ’exit’ by Y and
% each ’next’ by an unwinding of X

sub(_,_,_,Q) :- var(Q), !.
sub(exit,X,Y,Q) :-not X=loop(exit,_), Q=Y.
sub(next,X,_,Q) :-not X=loop(next,_), unw(X,Q).
sub(seq(A,P),X,Y,seq(A,Q)) :-sub(P,X,Y,Q).
sub(case(A,U),X,Y,case(A,V)) :-subl(U,X,Y,V).
sub(loop(G,P),X,Y,loop(G,Q)) :-sub(P,X,Y,Q).

subl([],_,_,[]).
subl([if(R,P)|U],X,Y,[if(R,Q)|V]) :-

sub(P,X,Y,Q), subl(U,X,Y,V).

Figure 1: Prolog code for an unwind predicate

P unwinds toQ; but then call it by passing it aQ and having
it return aP: Simplified code for doing this is in Figure 1. It
is easy to confirm that when theQ is the conditional plan on
the right above (with a Prolog variable as the “don’t care”),
the firstP it returns is the desired iterative planTC:

This method of generating loops has turned out to be sig-
nificant. The alternative of enumerating all possible plans
containing loops is not practical even for very small plans.

3 The planner in action
We are now ready to considerKPLANNER in action on some
problem specifications provided by the user. The repre-
sentation we use is a variant of the one inINDIGOLOG
[de Giacomo and Levesque, 1999; Sardinaet al., 2004]
based on the situation calculus[McCarthy and Hayes, 1981;
Reiter, 2001]. The user supplies the definition of nine predi-
cates in Prolog, which we describe below.4

As in INDIGOLOG, all fluents inKPLANNER are functional.
Unlike INDIGOLOG, fluents are interpretedepistemically, in
that we take them to have more than one possible value, ac-
cording to what is currently known[Vassos, 2004]. This al-
lows us to reason about sensing without some of the disad-
vantages of possible worlds[Demolombe and Parra, 2000].

The predicates described below take as their arguments
conditionswhich are logical formulas, closed under boolean
operators and quantifiers. The atomic formulas are arbitrary
Prolog goals, except that they may contain fluents. These are
evaluated by replacing the fluents by their values and then
calling Prolog on the result. We say that a formula ispossibly
true if the goal succeeds for some possible value of the flu-
ents; the formula isknown to be trueif the goal succeeds for
every possible value of the fluents.

The Prolog predicates defined by the user are (for actiona;
fluentf; sensing resultr; conditionc and arbitrary valuev):

� prim fluent (f); declaresf as fluent;

� prim action (a; [r1; : : : ; rn]); declaresa to have the
ri as possible sensing results; whenn = 1; the action is
considered to provide no sensing information;

4There are also directives to help control the search, which we
do not describe further here.

prim_fluent(axe).
prim_fluent(tree).
prim_fluent(chops_max).

prim_action(chop,[ok]).
prim_action(look,[down,up]).
prim_action(store,[ok]).

poss(chop,and(axe=out,tree=up)).
poss(look,true).
poss(store,axe=out).

init(axe,out).
init(tree,up).
init(tree,down).

causes(store,axe,stored,true).
causes(chop,tree,down,true).
causes(chop,tree,up,true).
causes(chop,chops_max,X,X is chops_max-1).

settles(look,X,tree,X,true).
rejects(look,up,chops_max,0,true).
settles(look,down,chops_max,0,true).

parm_fluent(chops_max).
init_parm(generate,chops_max,1).
init_parm(test,chops_max,100).

Figure 2: A problem specification for tree chopping

� poss (a; c); c is the precondition fora;

� init (f; v); v is a possible initial value forf ;

� causes (a; r; f; v; c); whenc holds,a causesf to get
valuev; more precisely, anyv for which c is possible
becomes a possible value off ; (ther is optional)

� settles (a; r; f; v; c); whenc is known, after doinga
and getting resultr, f is known to have valuev;

� rejects (a; r; f; v; c); whenc is known, after doinga
and getting resultr, f is known notto have valuev:

The final two predicates are not part of the action theory, but
are used to specify the planning parameter, and its possible
values for generating and for testing:

� parm fluent (f); fluentf is the planning parameter;

� init parm (w; f; v); wherew is generate or test ,
v is a possible initial value for the planning parameterf:

3.1 The tree chopping example
In its most direct formulation, we would formalize tree chop-
ping using a fluentchopsneededas the planning parameter.
But then to handle a testing bound of 100 would require us to
deal with 100 possible values for this fluent. Instead, it is suf-
ficient to keep track of the maximum of these possible values,
which we callchopsmax.

The full problem specification in this language for the tree
chopping example is in Figure 2. Since it is not known
whether the tree is up or down initially, there are two possible
initial values for thetreefluent, and similarly after achopac-
tion. (Actions like this are sometimes callednondeterministic

prim_fluent(acc(N)) :- N=1 ; N=2.
prim_fluent(input). % the unknown fluent

prim_action(incr_acc(N),[ok]) :- N=1 ; N=2.
prim_action(test_acc(1),[same,diff]).

poss(incr_acc(_),true).
poss(test_acc(1),true).

causes(incr_acc(N),acc(N),V,V is acc(N)+1).
settles(test_acc(1),same,input,V,V=acc(1)).
rejects(test_acc(1),diff,input,V,V=acc(1)).

init(acc(_),0).
parm_fluent(input).
init_parm(generate,input,V) :- V=1 ; V=2.
init_parm(test,input,V) :- V=1 ; V=2; V=3.

Figure 3: A counting example

in the literature.) Thelook action is what settles its value. In
addition, if lookreportsup, thenchopsmaxcannot be 0. So if
we know thatchopsmaxis 0 (as a result of having performed
somechopactions), theupresult is impossible. We will show
the output of a run ofKPLANNER on the next example. For
this one, suffice it to say that it findsTC in .11 seconds.5

3.2 A counting example
We turn now to a very different example involving some sim-
ple counting. The problem is this: We have two accumulators
and some unknown integer inputk; wherek > 0. The primi-
tive actions are:incr acc(n); increment accumulatorn (both
start at 0); andtest acc(1); sense if the first accumulator has
the same value as the input. The goal is to make the second
accumulator have the value2k � 1:6

The complete problem specification is in Figure 3. There
are three fluents,acc(1); acc(2); andinput, the last of which
is the planning parameter. A run ofKPLANNER with the out-
put it produces is in Figure 4. KPLANNER works by iterative
deepening, and there are numbers in the output to indicate
the level. An ’x’ indicates a generated plan that was suffi-
cient for the generating bound, but that did not work for the
testing bound (many of which were omitted from the figure).
Note the multiplication in the goal. Nothing in the speci-
fication said anything about multiplication. Although pro-
gressive planning has serious disadvantages, one advantage
it does have is that all we need to be able to do is test if a goal
condition is satisfied; we do not need to reason about the goal
in a more analytic way.

3.3 A searching example
We now turn to a much more complex example, that of
searching an unbounded binary tree for a target node.7 More
precisely the primitive actions are (1)checknodetype: sense

5All runs were done in Eclipse Prolog version 5.7 on a Mac G5
single 1.6GHz processor with 512MB memory.

6This is an abstract variant of the problem of building two copies
of a stack of coloured blocks.

7This can be thought of as a simplified version of searching for a
file in a Unix directory of arbitrary depth.

The goal: acc(2) is 2 * input - 1
0 1 2 3 4 5xx ... 6xx ... 7xx ...
A plan is found after 1.42 seconds.

incr_acc(1) ;
LOOP

CASE test_acc(1) OF
-same: EXIT
-diff:

incr_acc(1) ;
incr_acc(2) ;
incr_acc(2) ;
NEXT

ENDC
ENDL ;
incr_acc(2)

Figure 4: Doing the arithmetic

if the current node is a target node, a non-target leaf node, or
a non-target internal node (having left and right children); (2)
pushdown to(x): go down from an internal node to the left
or right, x; and (3)pop up from: return from a child node.
A few moments thought should convince the reader that this
problem cannot be solved without additional storage, and so
we assume thatpushdownto(x) pushes the directionx onto
an internalstack, and thatpop up from pops the stack and
produces the popped value as a sensing result.

The rest of the specification is too large to display here.
We use a fluentdepthmaxmuch likechopsmaxso that we
cannot get a node type ofinternalwhendepthmaxis 0.

But when do we know that we cannot get a node type of
leaf? This is a bit trickier. The answer is: when there are
no more nodes left to explore! For example, assuming we
search left branches before right ones, then when we are on
the rightmost branch of a tree, we can only get node types of
internalor target. This is reflected in the following:

rejects(check_node_type,leaf,stack,S,
all(x,member(x,S),last_dir(x))).

Getting a result ofleaf rejects any stack of moves whose
members are all for the last direction available. Without this
constraint, the problem is insoluble; with it, we get the very
nice plan shown in Figure 5. Note thatKPLANNER generates
a nested loop; we believe that this nesting is required here.

4 Discussion and related work
Because of the loops, the three examples presented here are
clearly beyond the scope of existing sequential and condi-
tional planners. As far as we know, no planner based on fully
automated theorem-proving can generate the three plans ei-
ther. Two other camps not based on theorem-proving have
considered an interesting special case of iterative planning,
for what might be calledrepeated attemptproblems.

First, with probabilities. Consider an actiona that has a
non-zero probability of making someG true. If we assume
repetitions ofa have independent outcomes, then an iterative
plan like TC will achieveG with probability 1. This is just
right for trying to pick up a block[Ngo and Haddawy, 1995]
or to find a good egg[Bonet and Geffner, 2001]. Howev-
er, independence is untenable for tree chopping, and it is not

The goal: current = target
0 1 2 3 4 5 6xxxxx
A plan is found after 0.07 seconds.

LOOP

CASE check_node_type OF
-target: EXIT
-leaf:

LOOP
CASE pop_up_from OF

-left: EXIT
-right: NEXT

ENDC
ENDL ;
push_down_to(right) ;
NEXT

-internal:
push_down_to(left) ;
NEXT

ENDC
ENDL

Figure 5: Searching a binary tree

clear what to replace it with. It is even less clear how to ex-
ploit probabilities in the counting or search examples above.

A related approach is the model-checking of[Cimattiet al.,
2003], where planning problems are cast as finite state sys-
tems. For tree chopping, if we are willing to ignore the plan-
ning parameter, this works out perfectly: they would get four
states and generate (the equivalent of)TC almost instantly.
However, without that information about the planning param-
eter, they are forced to conclude that there is no “strong” so-
lution to the problem, only a “strong cyclic” one. Indeed they
can never generate a strong solution when loops are required.
The counting and search examples above, which depend on
the planning parameter in a more direct way, would thus ap-
pear to be outside their scope as well.

KPLANNER has its own limitations, however. In particular,
it does not scale at all well as the search space grows, even
for seemingly easy problems. Consider the problem of get-
ting some good eggs into a bowl[Bonet and Geffner, 2001].
For just one egg, we need a plan with a single loop like in
Figure 6. To get three good eggs, we would need a plan con-
sisting of three copies of this plan, strung together sequen-
tially. Without an additional sensing action to tells us if we
have enough good eggs, there is not a more compact solution.
So with this we can forceKPLANNER to generate long plans.

And how well does it do? Here are some timing results:

Number of Size of plan Number of Running time
good eggs (unwound) backtracks in seconds

1 6 1 .004
2 9 6 .02
3 12 42 1.41
4 15 702 1681.
5 18 ?????? > 3 weeks

As is very clear, unless the search space can be limited in
some way,e.g. by forward filtering[Bacchus and Kabanza,
2000], KPLANNER is practical only for small plans, in keep-

LOOP
break_next_egg_into_dish ;
CASE sniff_dish OF

-good_egg: EXIT
-bad_egg:

discard_dish_contents ;
NEXT

ENDC
ENDL ;
transfer_dish_contents_to_bowl

Figure 6: Getting one good egg into a bowl

ing with the cognitive robotics application sketched above.
We might say that it is better suited for small but difficult
problems than for large but easy ones. For example, it quickly
finds a nice solution to the more general problem of getting
an arbitrary number of good eggs in the bowl, where a second
sensing action now determines when there are enough.

5 Towards a theory
KPLANNER does a good job of synthesizing small plans with
loops, but without a strong guarantee of correctness. While
our approach has been to construct a plan in a way that does
not require simultaneously proving its correctness, it would
of course be very useful to know that the plans were nonethe-
less correct. Are there conditions under which a plan that
works for values of the planning parameterF up to the test-
ing bound will be guaranteed to work forall values ofF?
Without looking too hard for a free lunch, we can sketch a
promising direction for further research.8

Let W (k; �) stand for the proposition that if we start in
any initial state whereF = k; and we perform the action
sequence�; we end up in a goal state. Let us call a planning
problemsimplewrt actionA if it satisfies the following:

1. Sensing can only tell us whether or not the initial value
of F was equal to the number ofA actions done so far.

2. If an action sequence is legal starting in one initial state
but not in another, then at some point in the sequence,
the sensing results would be different.

3. If W (k; � ��) andW (k+m; � �� ��) andW (k0; � �
);
wherek0 > k; thenW (k0 +m; � � � �
):

The last condition says that if it was sufficient to add� in
going fromk to k +m; then that� can also be used for any
largerk0: This ensures that loops depend only on theF:

Both the tree chopping and the counting examples can be
shown to be simple (wrtchopandincr acc(1) respectively).
The search example, on the other hand, is nowhere near sim-
ple. We get the following theorem:

Theorem 1 Suppose we have a planning problem that is sim-
ple with respect to actionA; and a robot programP that con-
tainsN occurrences ofA. If P is a correct plan for all values
ofF � N + 2, thenP is correct for all values ofF .

This theorem is proved by adapting ideas from the Pumping
Lemma of classical automata theory. It suggests a variant

8This is joint work with Patrick Dymond and independently with
Giuseppe de Giacomo.

of KPLANNER: instead of having the user specify a testing
bound, wecomputea testing bound once a planP has been
generated by counting the occurrences ofA in P: Then any
plan that passes the test is guaranteed by the theorem to be
correct. This applies to simple planning problems only; but
we believe that theorems like the above can be found for less
restrictive classes of problems. We should not expect to be
able to compute testing bounds in this way forall planning
problems however, since armed with suitable primitive ac-
tions, robot programs have the power of Turing machines.

6 Conclusion
We have presented a new way of generating a plan with loops
that is not tied to proving a theorem about its correctness. The
method involves generating a plan that is correct for a given
bound, determining if the plan is the unwinding of a plan with
loops, and testing if another unwinding of the plan with loops
would also be correct for a larger bound.

Other than the handling of loops, these steps reduce to tra-
ditional non-iterative planning, and would benefit from being
performed by a more efficient conditional planner, such as
the one by Petrick and Bacchus[2004]. Similarly, the wind-
ing and unwinding of loops is performed byKPLANNER in a
fairly obvious way. Anything that would reduce the number
of legal plans considered would speed things up considerably,
since for iterative deepening,all legal plans of one size must
be considered before going on to the next.

On the more theoretical side, we presented a theorem
showing that this method of planning is correct for a cer-
tain class of simple planning problems. It remains to be seen
whether the theorem can be strengthened to include more
complex planning problems for which the planner does ap-
pear to work, such as the search example presented here.

Acknowledgements
Thanks to Gerhard Lakemeyer and Fahiem Bacchus for help-
ful comments on an earlier version of the text.

References
[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza.

Using temporal logics to express search control knowledge
for planning.Artificial Intelligence, 116, 2000.

[Biundo, 1994] S. Biundo. Present-day deductive planning.
In C. Bäckström and E. Sandewell, editors,Procs. of the
2nd European Workshop on Planning (EWSP-93), pages
1–5, Vadstena, Sweeden, 1994. IOS Press (Amsterdam).

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Gpt: a
tool for planning with uncertainty and partial information.
In Proc. IJCAI-01 Workshop on Planning with Uncertainty
and Partial Information, pages 82–87, 2001.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. Weak, strong, and strong cyclic planning via
symbolic model checking.Artificial Intelligence, 147(1-
2):35–84, 2003.

[de Giacomo and Levesque, 1999] G. de Giacomo and
H. Levesque. An incremental interpreter for high-level

programs with sensing. In H. Levesque and F. Pirri,
editors,Logical Foundation for Cognitive Agents: Contri-
butions in Honor of Ray Reiter, pages 86–102. Springer,
Berlin, 1999.

[Demolombe and Parra, 2000] R. Demolombe and M. Pozos
Parra. A simple and tractable extension of situation calcu-
lus to epistemic logic.Lecture Notes in Computer Science,
1932, 2000.

[Lespéranceet al., 1999] Y. Lespérance, H. Levesque, and
R. Reiter. A situation calculus approach to modeling
and programming agents. In A. Rao and M. Wooldridge,
editors, Foundations and Theories of Rational Agency.
Kluwer, 1999.

[Levesque, 1996] H. Levesque. What is planning in the pres-
ence of sensing? InProcs. of the 13th National Confer-
ence, AAAI-96, pages 1139–1146, Portland, Oregon, 1996.

[Lin and Levesque, 1998] F. Lin and H. Levesque. What
robots can do: Robot programs and effective achievabil-
ity. Artificial Intelligence, 101:201–226, 1998.

[Manna and Waldinger, 1980] Z. Manna and R. Waldinger.
A deductive approach to program synthesis.ACM
Transactions on Programming Languages and Systems,
2(1):90–121, 1980.

[McCarthy and Hayes, 1981] J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of ar-
tificial intelligence. In B. Webber and N. Nilsson, editors,
Readings in Artificial Intelligence, pages 431–450. Kauf-
mann, Los Altos, 1981.

[Ngo and Haddawy, 1995] L. Ngo and P. Haddawy. Repre-
senting iterative loops for decision theoretic planning. In
Extending Theories of Action: Papers from the 1995 AAAI
Spring Symposium, pages 151–156. AAAI Press, Menlo
Park, 1995.

[Petrick and Bacchus, 2004] R. Petrick and F. Bacchus. Ex-
tending the knowledge-based approach to planning with
incomplete information and sensing. In Shlomo Zilber-
stein, Jana Koehler, and Sven Koenig, editors,Proceedings
of the International Conference on Automated Planning
and Scheduling (ICAPS-04), pages 2–11, Menlo Park, CA,
June 2004. AAAI Press.

[Reiter, 2001] R. Reiter.Knowledge in Action. Logical Foun-
dations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2001.

[Sardinaet al., 2004] S. Sardina, G. de Giacomo,
Y. Lespérance, and H. Levesque. On the semantics
of deliberation in IndiGolog – from theory to implemen-
tation. Annals of Mathematics and Artificial Intelligence,
41(2–4):259–299, Aug 2004.

[Stephan and Biundo, 1996] W. Stephan and S. Biundo. De-
duction based refinement planning. In B. Drabble, editor,
Procs. of AIPS-96, pages 213–220. AAAI Press, 1996.

[Vassos, 2004] S. Vassos. A feasible approach to disjunctive
knowledge in situation calculus. Master’s thesis, Depart-
ment of Computer Science, University of Toronto, 2004.

