Planning with Loops

Hector J. Levesqué
Dept. of Computer Science
University of Toronto
Toronto, Ont. M5S 3H5
hector@cs.toronto.edu

Abstract about. Stephan and Biundo [1996] say “Plan generation on
) . " this level is an interactive process with non-trivial inferences
Unlike the case for sequential and conditional plan- that in our opinion, which is shared by other authors as well
ning, much of the work on iterative planning (plan- [citations omitted] cannot be carried out in a fully automatic
ning where loops may be needed) leans heavily on way” As far as we can tell, they would say the same today.
theorem-proving. This paper does the following: So is fully automated iterative planning completely hope-

it proposes a different approach where generating |ess? Perhaps. But faced with an intractable reasoning prob-
plans is decoupled from verifying them; describes |em, we can look for compromises. In this paper, we forego
the implementation of an iterative planner based on the strong guarantees of correctness provided by the theorem-
the situation calculus; presents a few examples il- proving approach. We consider a new way of generating
lustrating the sorts of plans that can be generated; jterative plans that does not traffic in loop invariants, non-
shows some of the strengths and weaknesses of the pnegative decreasing expressions, or any of the other items as-
approach; and finally sketches the beginnings of a sociated with proving programs correct. The resulting plans
theory, where validation of plans is done offline. will come with much weaker guarantees; plan validation will
need to be done separately.
. The application we have in mind is the sort of high-level
1 Introduction programming typical otognitive roboticse.g. [Lespgrance
The vast majority of the work in Al planning today deals €t al, 1999. Here we expect users to provide programs that
with sequentiaplanning, generating a sequence of actions tdell @ robot what to do at a very high-level, with considerable
achieve a goal. A smaller community is concerned with- ~ nondeterminism left to the robot to deal with at runtime. Part
ditional planning where plans can be tree-like structures, an@f the nondeterminism can be in the form of declarative goals
an even smaller community is concerned vitérativeplan- to achieve. They will require planning on the part of the robot,
ning, where plans can be graph-like structure with loops. Th&ut the plans are expected to be small relative to the overall
reason for this is clear: sequential planning admits interestingnission of the robot. The main contribution of this paper is a
applications, and yet is already quite difficult, even under thé1ew way of generating small plans with loops in this setting.
assumption of complete knowledge about the initial state. I the rest of this section, we describe a motivating exam-
The bulk of the work on iterative planning is based on ple, define the class of plans we are searchmg for, and present
theorem-proving (selBiundo, 1994 for a survey, but see al- the ger)eral approach. In Section 2, we discuss the imple-
so Section 4 below for some exceptions). From this perspedhentation of a system calledPLANNER and the novel way
tive, plans are viewed as programs, and planning as a kind 9enerates loops. In Section 3, we present three examples
of program synthesi§Manna and Waldinger, 1980 This of KPLANNER in use. In Sgcuon 4, we discuss its Ilmlta_nons
is a notoriously difficult problem, and reasoning about the@nd related work. In Section 5, we present the beginnings of
correctness of programs with loogesg. in terms of partial @ theoretical foundation. In Section 6, we conclude.
correctness and termination, requires mathematical inductio S
and non-trivial algebra. The difficulty, in other words, is not L1 A motivating example
at all like the difficulty with sequential planning where the The problem we wish to consider is that of chopping down
size of the search space for long plans is the main problen tree and putting away the akBardinaet al, 2004. We

even short iterative programs can be quite difficult to reasofave at our disposal two primitive actionshop which hits

- the tree once with the axe, assuming the tree is up and the axe
“This research was done while | was away on sabbatical at Yorks available, angtore which puts the axe away, assuming it

University in Toronto, RWTH in Aachen, Universita di Roma La g gvailable. We observe the following:

Sapienza, the University of New South Wales in Sydney, and Simon) o .] o

Fraser University in Vancouver. | am very grateful to my hosts at 1. With no additional information, the problem is insolu-

these institutions for providing me with a wonderful environment ble. There is no way to know when or if the tree will go

for not doing teaching and administration. Sabbaticals rock! down, and when to put away the axe.

2. Ifwe are told that the tree will go down if it is hit 3 times, A formal definition of the execution of robot programs in the
the problem is solved with the following sequential plan: situation calculus is given ifLevesque, 1996 The example
chop ; chop ; chop ; store plans shown earlier, includinkC, are pretty-printed versions
of robot programs. Although quite limited in form (no recur-
sion, no logical expressions, no fluents, no variables), there
is a precise sense in which robot programs (with the inclu-
sion of five special primitive actions) armiversal[Lin and
Levesque, 1998 So for us, planning is this: given a goal,
find a robot program that achieves it.

3. If we are told that the tree will go down if it is hét
most2 times, the problem is again insoluble. But if we
are given a third actioripok, which is asensing action
[Reiter, 200] telling us whether the tree is down or up,
then the problem can be solved with the following con-

ditional plan:
CASE look OF 1.3 The planning approach
-down: store . . .
-up: chop ; We are going to try to solve planning problems like the tree
CASE look OF chopping where some unknown quantity must be dealt with.
-down: store Specifically, we assume that among the fluents we are dealing
-up: chop ; store with, there will be a single distinguished one, which we will
ENDC call theplanning parameteithat has the following properties:
ENDC (1) its value is not known or even bounded at plan time, and

4. If all we are told is that the tree witiventuallygo down (2) no loops would be required to achieve the goal if its value
if it is hit repeatedly, and we have theok action, the =~ Were known. In other words, loops are required (if at all) only

problem can be solved with the following iterative plan: t© deal with an unknown and unbounded planning parameter.
For tree chopping, the planning parameter is the number of

LOS:SE | chops needed to fell the tree.
ook OF - . N .
_down: EXIT Given an application domain with a planning paraméter
-up: chop ; rather than generating a plan and proving that it works for
NEXT all values ofF’ (e.g. by using partial correctness and termi-
ENDC nation), we will work with two bounds o#” and try to find
ENDL ; plans with loops using these bounds. In particular, we assume
store the following:
Let us call this plariT C (TreeChop) for reference. e the user will provide a constanf; (called thegenerat-
So in the most general case where the goal is achievable, an ing bound and wegeneratea plan (possibly containing
iterative plan likeTCis necessary to achieve it. MoreovEeg, some number of loops) that is provably correct under the

is general in that it handles all the cases where a conditional assumption that’ < Ny;

plan would be sufficient too. « the user will provide a second larger constat(called
thetesting bounyland wetestthat the plan generated in

1.2 Robot programs - .
. .) the first step is also provably correct under the assump-
Once we move beyond simple sequential plans, it becomes o thatF < N,.

necessary to specify exactly what we mean by a plan. Itis .

convenient here to use a variant of trebot programsof So the o.nly guarantee we get out of this is that _thg plan we
[Levesque, 1996or this purpose. Assume we are given a set’®turn will be correct assuming th@t < N. This is far

of primitive actions, some of which may be sensing actionsTom foolproof. For example, the conditional plan for tree
each having a finite set of possible sensing results. Robd&hopping presented above works correctly #r = 1 and
programs and their execution are defined by the following: V2 = 2, but fails whenF" > 3. Suppose, however, that the

1 nili b d by doi hina: user had specified/; = 1 and N, = 100. Then the small-
- Nil Is a robot program executed by doing nothing; est conditional plan that satisfies both bounds would have

2. for any primitive actionA and robot programP, 3 x 100 + 1 actions in it. If we generate plans usidg
seq A4, P) is a robot program executed by first perform- only, andwe consider smaller plans before larger one®
ing A, ignoring any result, and then executiRg will generate desired iterative plans well before we encounter
3. for any primitive actionA with possible sensing re- undesired conditional ones (and see the theory in Section 5).

sults Ry to Ry, and for any robot programB; to Py,
cas€A, [if (R, P1),...,if(Rg, P)]) isarobotprogram 2 The planner
executed by first performingl, and then on obtaining
the sensing resulk;, continuing by executind’;

4. if P and(are robot programs, ang is the result of
replacing inP some of the occurrencesmif by exit and

So the planning setup, then, is the following:

e the user provides problem specificatiomlefined by a
list of primitive actions and fluents, and formulas char-

the rest bynext, thenloop(B, @) is a robot program,
executed by repeatedly executing the bdglyntil the

execution terminates witkxit (rather thannext), and

then going on by executing the continuatign

acterizing the initial and goal states, and for each action,
its preconditions, effects, and sensing results;

¢ the user also identifies the parameteand supplies the
two numbersV; and Ns;

e we generate a plan that is correct fBr < Ny; be-

2.2 Generating plans

causeN; is small, this search can be done reasonablysjyen a generating bount, we use a variant girogressive

efficiently, as we will see;
e we test the plan to see if it is correct fér < N; be-

planningto produce a plan that correctly achieves the goal
assuming thak’ < N. We have the following: To find a plan

cause this involves only testing a given plan, this canthat achieves a go&l starting in historyH (initially empty),

also be done reasonably efficiently, even for laige 1

In practice, and on the examples considered to date, even fory_
very smalllV; and for very largeV,, almost all of the time is
spent finding a plan that works fét < IV, .

The planner, calle@PLANNER, is written in Prolog, and 3.
consists of three main modules: a plan tester, a plan generator,
and a formula evaluator used by the other two modtiles.

We will describe the formula evaluator in more detail when
we look at some examples below. For now, it suffices to note
that we need to be able to handle bothpihgectiontask (de-
termining if a formula is true after a sequence of actions) and
the legality task (determining if an action can be executed).
We use regression for botReiter, 2001. Moreover, we need
to be able to incorporate the putative results of sensing, and
use them in the evaluation. So instead of just keeping track of

. if G holds inH, returnnil;

otherwise, select a primitive actioh whose precondi-
tion is satisfied in (and maybe other criteria too);

if A has no sensing results, do the following:

(a) find a planP that achieve§? starting inH-(A, ok);

(b) return the plarseq 4, P);

if A has sensing results, then do the following:

(a) for each sensing resuR; that is possible inH
given thatF' < N, find a planP; that achieve&r
starting in historyH - (A4, R;);

(b) return the plarcas€ A, L), where L is the list of

if (R;, P;) for the R; and P; from the previous step
(the remaining sensing resulf; are impossible,

a sequence of actions performed to date, we mainthis-a

tory consisting of pairs of actions and sensing results. (For

actions without sensing results, we useas the result.) Fi-

nally, we need to be able to determine when a sensing result

and so the correspondirfg are “don’t care™);

4. ifthe planinthe previous step is the unwinding of a loop,
return the loop as well (as described below).

cannot occur based on the history to date. For example, foy 3 Generating loops

tree chopping where we know that < 2, the look action
cannot produce a sensing resultugfin a history that con-
tains two legal chop actions.

2.1 Testing plans

Given a planP and a testing bount¥, we need to determine
if P correctly achieves the goal assuming thatl N. Since

we have a bound o#’, we do not need to prove a theorem,

but can simulate the execution Bffor all possible results of

the sensing actions and confirm that the goal is satisfied in all

cases. We have the following: A pldn achieves a goalf
starting in historyH (initially empty) if
1. P = nil andG holds in historyH;
2. P =seq A, P'), the precondition ofd holds inH, and
P’ achieveg? in history H- (A, ok);

3. P =casé€A, L), the precondition ofd holds inH, and
for eachif(R;, P;) € L suchthatR; is a possible sensing
result for A given thatF" < N, P; achievesZ in history

4. P is a loop that unwinds t@, and) achievesG in
history H.

The unwinding ofoop(B, C') is B but with all occurrences of
exit replaced byC' and with all occurrences afext replaced

The key question is this: Where are plans with loops going
to come from, if not from the proof of a general, universal
theorem? As we suggested in the generation procedure above,
they can come from sequential and conditional plans that have
already been generated.

To see how this works, consider two conditional plans that
are correct for tree chopping given that< 1:

CASE look OF CASE look OF

-down: store -down: store
-up: chop ; -up: chop ;
store CASE look OF
ENDC -down: store
-up: don't care
ENDC
ENDC

The one on the right does a sensing action that is not needed
since thatup sensing result is impossible fét < 1. More-

over, that plan remains correct f6r < 1 for any substitution

of the “don’t care.” The key observation here is that there is
a substitution for which that plan becomes the unwinding of
a loop: if we replace the “don’t care” by the robot program
seqchop TC) whereTCis the plan above, then the program
that obtains is an unwinding GfC.2 The conclusionTC is

also correct foif” < 1 and can be returned as a potential plan

by loop(B, C) itself2 Observe that unwinding a loop pro- 10 be tested for the larger bound (in this case, successfully).
duces a plan that executes the same way as the original loop.But for this idea to be practical, it must be possible to

This will be significant when it comes to generating plans.

quickly check if a plan matches the unwinding of a loop (or
the unwinding of an unwindingtc). How can we do this

'The code forkPLANNER and a number of examples can be without just guessing at the loop? Here is where using Pro-

found athttp://www.cs.toronto.edu/cogrobo .
2To guard against loops that run forever, suctoap(next, nil),

we also need an upper bound on the total number of unwindings th

will be performed.

log as our implementation language pays off: we can write

anunwind predicate, so thatnwind (P, @) holds if loop
at

3More precisely, it is the unwinding of an unwinding BE.

% P is a loop that unwinds to Q. prim_fluent(axe).
unw(P,Q) :- P=loop(B,C), sub(B,P,C,Q). prim_fluent(tree).
prim_fluent(chops_max).
% sub(B,X,Y,Q) holds when Q is the result

% of replacing in B each 'exit’ by Y and prim_action(chop,[okK]).

% each 'next’ by an unwinding of X prim_action(look,[down,up]).
sub(_,_,_,Q) :- var(Q), ! prim_action(store,[0K]).
sub(exit,X,Y,Q) :-not X=loop(exit,), Q=Y.
sub(next,X,_,Q) :-not X=loop(next,), unw(X,Q). poss(chop,and(axe=out,tree=up)).
sub(seq(A,P),X,Y,seq(A,Q)) :-sub(P,X,Y,Q). poss(look,true).
sub(case(A,U),X,Y,case(A,V)) :-subl(U,X,Y,V). poss(store,axe=out).

sub(loop(G,P),X,Y,loop(G,Q)) :-sub(P,X,Y,Q).

init(axe,out).
subl([],_._.[D)- init(tree,up).
subl([if(R,P)|U]X,Y [if(R,Q)[V]) :- init(tree,down).

sub(P,X,Y,Q), subl(U,X,Y,V).

Figure 1: Prolog code for an unwind predicate g23zgzEi:]o()rs:ﬁzg”zf\:ﬁt’mg'
causes(chop,tree,up,true).
causes(chop,chops_max,X,X is chops_max-1).

P unwinds toQ, but then call it by passing it@ and having
it return ap. Sl_mpllﬁed code for QOlng this is in Figure 1. It settles(look, X, tree, X,true).
is easy to confirm that when tlg is the conditional plan on rejects(look,up,chops_max,0,true).
the right above (with a Prolog variable as the “don’t care”), setties(look,down,chops_max,0,true).
the firstP it returns is the desired iterative plaic.

This method of generating loops has turned out to be sigparm_fluent(chops_max).
nificant. The alternative of enumerating all possible plansnit_parm(generate,chops_max,1).
containing loops is not practical even for very small plans. init_parm(test,chops_max,100).

) . Figure 2: A problem specification for tree chopping
3 The planner in action

We are now ready to considBPLANNER in action on some e poSs (a, c), ¢ is the precondition foe;
problem specifications provided by the user. The repre-
sentation we use is a variant of the one INDIGOLOG

e init (f,v),vis apossible initial value fof;

[de Giacomo and Levesque, 1999; Sardataal, 2004 e causes (a,r, f,v,c), whenc holds,a causesf to get
based on the situation calcullcCarthy and Hayes, 1981; value v; more precisely, any for which ¢ is possible
Reiter, 2001 The user supplies the definition of nine predi- becomes a possible value ff (ther is optional)

cates in Prolog, which we describe belbw.

As in INDIGOLOG, all fluents inkPLANNER are functional.
Unlike INDIGOLOG, fluents are interpreteepistemically in
that we take them to have more than one possible value, ac- ® rejects (a,r, f,v,c), whenc is known, after doing:
cording to what is currently knowfVassos, 2004 This al- and getting result, f is known_notto have value.

lows us to reason about sensing without some of the disadrhe final two predicates are not part of the action theory, but

vantages of possible world®emolombe and Parra, 2000 are used to specify the planning parameter, and its possible
The predicates described below take as their argumentg|yes for generating and for testing:

conditionswhich are logical formulas, closed under boolean . ,
operators and quantifiers. The atomic formulas are arbitrary ® Parm-fluent (f), fluentf is the planning parameter;
Prolog goals, except that they may contain fluents. These are e init _parm (w, f,v), wherew is generate ortest |,
evaluated by replacing the fluents by their values and then v is a possible initial value for the planning parameter
calling Prolog on the result. We say that a formulpassibly

true if the goal succeeds for some possible value of the flu3.1 The tree chopping example

ents; the formula iknown to be truef the goal succeeds for |y jts most direct formulation, we would formalize tree chop-

e settles (a,r, f,v,c), whenc is known, after doing:
and getting result, f is known to have value;

every possible value of the fluents. ~ ping using a fluenthopsneededas the planning parameter.
The Prolog predicates defined by the user are (for aetjon Byt then to handle a testing bound of 100 would require us to

fluent f, sensing result, conditionc and arbitrary value): deal with 100 possible values for this fluent. Instead, it is suf-
e prim _fluent (f), declaresf as fluent; ficient to keep track of the maximum of these possible values,

which we callchopsmax
The full problem specification in this language for the tree
chopping example is in Figure 2. Since it is not known
whether the tree is up or down initially, there are two possible
“There are also directives to help control the search, which wdnitial values for thereefluent, and similarly after ahopac-
do not describe further here. tion. (Actions like this are sometimes calledndeterministic

e prim _action (a,[ri,...,r,]), declares: to have the
r; as possible sensing results; whee= 1, the action is
considered to provide no sensing information;

prim_fluent(acc(N)) :- N=1 ; N=2.
prim_fluent(input). % the unknown fluent

prim_action(incr_acc(N),[ok]) :- N=1 ; N=2.
prim_action(test_acc(1),[same,diff]).

poss(incr_acc(_),true).
poss(test_acc(l),true).

causes(incr_acc(N),acc(N),V,V is acc(N)+1).
settles(test_acc(1),same,input,V,V=acc(1)).
rejects(test_acc(1),diff,input,V,V=acc(1)).

init(acc(),0).

parm_fluent(input).
init_parm(generate,input,V) :- V=1 ; V=2.
init_parm(test,input,V) :- V=1 ; V=2; V=3.

Figure 3: A counting example

in the literature.) Théook action is what settles its value. In
addition, iflookreportsup, thenchopsmaxcannot be 0. So if
we know thathopsmaxis 0 (as a result of having performed
somechopactions), thaipresult is impossible. We will show
the output of a run okPLANNER on the next example. For
this one, suffice it to say that it findsCin .11 seconds.

3.2 A counting example

We turn now to a very different example involving some sim-
ple counting. The problem is this: We have two accumulator
and some unknown integer inpkitwherek > 0. The primi-
tive actions areincr_acqn), increment accumulatar (both
start at 0); andestacd1), sense if the first accumulator has
the same value as the input. The goal is to make the seco
accumulator have the val@gé — 1.

The complete problem specification is in Figure 3. There.

are three fluentgcq1), acq2), andinput, the last of which
is the planning parameter. A run RPLANNER with the out-
put it produces is in Figure 4. ®KLANNER works by iterative

The goal: acc(2) is 2 * input - 1
012 34 5xx ... 6XX ... 7TXX ...
A plan is found after 1.42 seconds.

incr_acc(1) ;
LOOP
CASE test_acc(l) OF
-same: EXIT
-diff:
incr_acc(1) ;
incr_acc(2) ;
incr_acc(2) ;
NEXT
ENDC
ENDL ;
incr_acc(2)

Figure 4: Doing the arithmetic

if the current node is a target node, a non-target leaf node, or
a non-target internal node (having left and right children); (2)
pushdownto(z): go down from an internal node to the left
or right, z; and (3)pop.up_from: return from a child node.
A few moments thought should convince the reader that this
problem cannot be solved without additional storage, and so
we assume thatushdownto(z) pushes the direction onto
an internalstack and thatpop.up_from pops the stack and
produces the popped value as a sensing result.

The rest of the specification is too large to display here.

We use a fluentlepthmaxmuch likechopsmaxso that we

cannot get a node type ofternalwhendepthmaxis 0.
But when do we know that we cannot get a node type of
leaf? This is a bit trickier. The answer is: when there are

A more nodes left to explore! For example, assuming we

search left branches before right ones, then when we are on
the rightmost branch of a tree, we can only get node types of
internalor target This is reflected in the following:

rejects(check_node_type,leaf,stack,S,
all(x,member(x,S),last_dir(x))).

deepening, and there are numbers in the output to indicalgetting a result ofeaf rejects any stack of moves whose
the level. An 'x’ indicates a generated plan that was suffi-members are all for the last direction available. Without this
cient for the generating bound, but that did not work for theconstraint, the problem is insoluble; with it, we get the very
testing bound (many of which were omitted from the figure).nice plan shown in Figure 5. Note thabLANNER generates

Note the multiplication in the goal. Nothing in the speci- 4 nested loop; we believe that this nesting is required here.
fication said anything about multiplication. Although pro-

gressive planning has serious disadvantages, one advantage Discussion and related work

it does have is that all we need to be able to do is test if a goal

condition is satisfied; we do not need to reason about the gog‘ecause of the loops, the three examples presented here are
in a more analytic way. clearly beyond the scope of existing sequential and condi-

tional planners. As far as we know, no planner based on fully
automated theorem-proving can generate the three plans ei-

3.3 Asearching example .
ther. Two other camps not based on theorem-proving have

We now turn to a much more complex example, that ofcqngjdered an interesting special case of iterative planning,
searching an unbounded binary tree for a target iddere

. A . for what might be calledepeated attempiroblems.
precisely the primitive actions are (¢hecknodetype sense First, with probabilities. Consider an actianthat has a

5All runs were done in Eclipse Prolog version 5.7 on a Mac G5NON-zero probability of making son true. If we assume
single 1.6GHz processor with 512MB memory. repetitions ofa have independent outcomes, then an iterative
®This is an abstract variant of the problem of building two copiesPlan like TC will achieve G with probability 1. This is just
of a stack of coloured blocks. right for trying to pick up a blockNgo and Haddawy, 1995

"This can be thought of as a simplified version of searching for 20r to find a good eggBonet and Geffner, 2091 Howev-
file in a Unix directory of arbitrary depth. er, independence is untenable for tree chopping, and it is not

The goal: current = target LOOP

012345 6xxxxx break_next_egg_into_dish ;
A plan is found after 0.07 seconds. CASE sniff dish OF
-good_egg: EXIT
LOOP -bad_egg:
CASE check_node_type OF discard_dish_contents
-target: EXIT NEXT
-leaf: ENDC
LOOP ENDL ;
CASE pop_up_from OF transfer_dish_contents_to_bowl
-left: EXIT . . .
-right: NEXT Figure 6: Getting one good egg into a bowl
ENDC
ENDL ing with th itive roboti lication sketched ab
push_down_to(right) : ing with the cognitive robotics application sketched above.
NEXT - We might say that it is better suited for small but difficult
-internal: problems than for large but easy ones. For example, it quickly
push_down_to(left) ; finds a nice solution to the more general problem of getting
NEXT an arbitrary number of good eggs in the bowl, where a second
ENDC sensing action now determines when there are enough.
ENDL
Figure 5: Searching a binary tree 5 Towards a theory

KPLANNER does a good job of synthesizing small plans with
loops, but without a strong guarantee of correctness. While
ploit probabilities in the counting or search examples above 2Ur @PProach has been to construct a plan in a way that does

not require simultaneously proving its correctness, it would

zo'g‘éels\}ﬁgr:pﬁ;%icig N t?gbrlg?gse l;gii(sltn g?f?n?ttg itt:':é syof course be very useful to know that the plans were nonethe-
' P gp Yess correct. Are there conditions under which a plan that

tems. For tree chopping, if we are willing to ignore the plan- .
ning parameter, this works out perfectly: they would get fourWOrks for values of the planning parameféup to the test-

states and generate (the equivalent B almost instantly. g bound will be guaranteed to work fail values of 2
However, wi%houtthat(infom?ation abt;rtijft)the planning pa?/am-w'tho.“.t looking too hard for a free Ignch, we can sketch a
eter, they are forced to conclude that there is no “strong” soPromising direction for further resear .h' . .
lution to the problem, only a “strong cyclic” one. Indeed they Let W(k’a) stand for the proposition that if we start in
can never generate a strong solution when loops are requiregly initial state wherg” = £, and we perform the action
The counting and search examples above, which depend difduence; we end up in a goal state. Let us call a planning
the planning parameter in a more direct way, would thus approblemsmplewrt action A if it satisfies the following:

pear to be outside their scope as well. 1. Sensing can only tell us whether or not the initial value

KPLANNER has its own limitations, however. In particular, of F' was equal to the number @f actions done so far.

it does not scale at all well as the search space grows, eveny_ |f an action sequence is legal starting in one initial state
for seemingly easy problems. Consider the problem of get- pyt not in another, then at some point in the sequence,
ting some good eggs intog bo{leonet ﬁmd Geflfneir, ZO?IJ(L the sensing results would be different.
For just one egg, we need a plan with a single loop like in
Figure 6. To get three good eggs, we would need a plan con-3- W (k, a-f) andW (k +m, a-o-f) andW (k', a-7),
sisting of three copies of this plan, strung together sequen- Wherek' >k, thenW (k' +m, a0 - 7).
tially. Without an additional sensing action to tells us if we The last condition says that if it was sufficient to agldn
have enough good eggs, there is not a more compact solutiogoing fromk to & + m, then thatr can also be used for any
So with this we can forcePLANNER to generate long plans. largerk’. This ensures that loops depend only on fhe

And how well does it do? Here are some timing results: Both the tree chopping and the counting examples can be
shown to be simple (wrthopandincr_acq1) respectively).

clear what to replace it with. It is even less clear how to ex

Number of Size of plan Numberof Runningtime The search example, on the other hand, is nowhere near sim-
good eggs (unwound) backtracks in seconds ple. We get the following theorem:

1 6 1 .004 Theorem 1 Suppose we have a planning problem that is sim-
2 9 6 .02 ple with respect to actiod, and a robot progran® that con-

3 12 42 1.41 tains IV occurrences ofl. If P is a correct plan for all values

4 15 702 1681. of F < N + 2, thenP is correct for all values of.

5 18 ?????? > 3weeks

This theorem is proved by adapting ideas from the Pumping

As is very clear, unless the search space can be limited ih€Mma of classical automata theory. It suggests a variant

some wayge.g. by forward filtering[Bacchus and Kabanza, ®This is joint work with Patrick Dymond and independently with
200d, KPLANNER is practical only for small plans, in keep- Giuseppe de Giacomo.

of KPLANNER: instead of having the user specify a testing programs with sensing. In H. Levesque and F. Pirri,
bound, wecomputea testing bound once a pldn has been editors,Logical Foundation for Cognitive Agents: Contri-
generated by counting the occurrencesioh P. Then any butions in Honor of Ray Reitepages 86-102. Springer,
plan that passes the test is guaranteed by the theorem to beBerlin, 1999.

correct. This applies to simple planning problems only; butipemolombe and Parra, 200&. Demolombe and M. Pozos
we believe that theorems like the above can be found forless pyq A simple and tractable extension of situation calcu-

restrictive classes of problems. We should not expect to be ;5 1 epistemic logicLecture Notes in Computer Science
able to compute testing bounds in this way &k planning 1932. 2000.
problems however, since armed with suitable primitive ac- ’

tions, robot programs have the power of Turing machines. [Lesprancestal, 1999 Y. Lespérance, H. Levesque, and
R. Reiter. A situation calculus approach to modeling

and programming agents. In A. Rao and M. Wooldridge,

6 Conclusion _) editors, Foundations and Theories of Rational Agency
We have presented a new way of generating a plan with loops Kluwer, 1999.

that is not tied to proving a theorem about its correctness. Th . N
method involves generating a plan that is correct for a givefLevesque, 1996H. Levesque. What is planning in the pres-

9 . S ; ence of sensing? IRrocs. of the 13th National Confer-
bound, determining if the plan is the unwinding of a plan with
loops, and testing if another unwinding of the plan with loops ence, AAAI-9fpages 1139-1146, Portland, Oregon, 1996.

would also be correct for a larger bound. [Lin and Levesque, 1998F. Lin and H. Levesque. What
Other than the handling of loops, these steps reduce to tra- robots can do: Robot programs and effective achievabil-

ditional non-iterative planning, and would benefit from being ity Artificial Intelligencg 101:201-226, 1998.

performed by a more efficient conditional planner, such agmanna and Waldinger, 198@. Manna and R. Waldinger.

the one by Petrick and Bacch[&004. Similarly, the wind- A deductive approach to program synthesisACM

ing and unwinding of loops is performed ByLANNER in a Transactions on Programming Languages and Systems
fairly obvious way. Anything that would reduce the number 3(1):90-121, 1980.

of legal plans considered would speed things up considerabl
since for iterative deepeningll legal plans of one size must YMggﬁ]rteh%g?Odsg;%izl t?gﬁéxscgﬁgh%/h:nsdtaz d‘:).o mta)gfasair-

be considered before going on to the next. tificial intelligence. In B. Webber and N. Nilsson, editors,

On the more theoretical side, we presented a theorem : X gy .
showing that this method of planning is correct for a cer- €adings in Artificial Intelligencepages 431-450. Kauf-
mann, Los Altos, 1981.

tain class of simple planning problems. It remains to be seen
whether the theorem can be strengthened to include morfdNgo and Haddawy, 1995L. Ngo and P. Haddawy. Repre-
complex planning problems for which the planner does ap- senting iterative loops for decision theoretic planning. In
pear to work, such as the search example presented here. Extending Theories of Action: Papers from the 1995 AAAI
Spring Symposiujrpages 151-156. AAAI Press, Menlo

Acknowledgements Park, 1995.
Thanks to Gerhard Lakemeyer and Fahiem Bacchus for helgPetrick and Bacchus, 20D4R. Petrick and F. Bacchus. Ex-
ful comments on an earlier version of the text. tending the knowledge-based approach to planning with

incomplete information and sensing. In Shlomo Zilber-
stein, Jana Koehler, and Sven Koenig, editBreceedings
References of the International Conference on Automated Planning
[Bacchus and Kabanza, 200B. Bacchus and F. Kabanza. and Scheduling ICAPS-04)ages 2—11, Menlo Park, CA,
Using temporal logics to express search control knowledge Jjune 2004. AAAI Press.

_for pIannmg.Artlﬂ_maI Intelligence 116, 2000'_ ~[Reiter, 2001 R. Reiter.Knowledge in Action. Logical Foun-
[Biundo, 1994 S. Biundo. Present-day deductive planning. dations for Specifying and Implementing Dynamical Sys-
In C. Backstom and E. Sandewell, editorBrocs. of the tems MIT Press, 2001.

2nd European Workshop on Planning (EWSP;38)ges . . .
1-5, Vadstena, Sweeden, 1994. |I0OS Press (Amsterdam).[Sﬁd'cgggénzgeoliaﬁd Hsaligi/neaéqueG. Ocrjletheels?a%)iannc:ilcs

[Bonet and Geffner, 2001B. Bonet and H. Geffner. Gpt: @ of deliberation in IndiGolog — from theory to implemen-
tool for planning with uncertainty and partial information. tation. Annals of Mathematics and Atrtificial Intelligence
In Proc. IJCAI-01 Workshop on Planning with Uncertainty 41(2—4):259-299, Aug 2004.

.and I?arnal Informaﬂoq paggs 82__87’ 2001. _ [Stephan and Biundo, 19p6V. Stephan and S. Biundo. De-
[Cimattiet al, 2003 A. Cimatti, M. Pistore, M. Roveri, and duction based refinement planning. In B. Drabble, editor,
P. Traverso. Weak, strong, and strong cyclic planning via Procs. of AIPS-9gpages 213-220. AAAI Press, 1996.

symbolic model checkingArtificial Intelligence 147(1- [Vassos, 2004 S. Vassos. A feasible approach to disjunctive
2)':_)’5_84' 2003. _ knowledge in situation calculus. Master’s thesis, Depart-

[de Giacomo and Levesque, 1998. de Giacomo and ment of Computer Science, University of Toronto, 2004.
H. Levesque. An incremental interpreter for high-level

