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Abstract

The paper introduces a number of propositional
argumentation systems obtained by gradually ex-
tending the underlying language and associated
monotonic logics. An assumption-based argumen-
tation framework[Bondarenkoet al., 1997] will
constitute a special case of this construction. In
addition, a stronger argumentation system in a full
classical language will be shown to be equivalent
to a system of causal reasoning[Giunchigliaet al.,
2004]. The implications of this correspondence for
the respective nonmonotonic theories of argumen-
tation and causal reasoning are discussed.

1 Introduction
In this study we will demonstrate, among other things, that
two relatively recent approaches to nonmonotonic reasoning,
namely argumentation theory[Dung, 1995b; Bondarenko
et al., 1997] and a theory of causal nonmonotonic reason-
ing [McCain and Turner, 1997; Giunchigliaet al., 2004;
Bochman, 2003b; 2004a] are actually ‘two faces of the same
coin’. The common basis of these formalisms is a notion of
explanation, which takes the form of an attack relation in the
argumentation theory, and a causal relation in the theory of
causal reasoning. It will be shown that, at some level of gen-
eralization, these two relations will be directly interdefinable.

Both the argumentation theory and theory of causal non-
monotonic reasoning have proved to be powerful frameworks
for representing different kinds of nonmonotonic reasoning,
including traditional nonmonotonic logics, logic program-
ming, abduction and reasoning about actions and change. The
present study should hopefully provide a basis for clarifying
the representation capabilities of these formalisms, and astep
toward a unified theory of nonmonotonic reasoning.

Another objective of this study consists in a systematic de-
velopment of apropositionalapproach to argumentation, in
which arguments are represented as (special kinds of) propo-
sitions. This approach will naturally lead us to developing
the underlyinglogics of argumentation (cf. [Ches̃nevaret
al., 2000; Prakken and Vreeswijk, 2001]) and their associ-
ated semantics. As will be shown, the resulting argumen-
tation systems will directly represent a number of important
nonmonotonic formalisms.

The plan of the paper is as follows. We introduce first an
abstract argumentation theory, and describe its four-valued
semantics based on acceptance and rejection of arguments.
Adding a ‘global’ negation to this language will give us a
formalism that generalizes the assumption-based argumenta-
tion framework from[Bondarenkoet al., 1997]. Then we
describe an alternative extension of the argumentation theory
to the full classical propositional language. A special case
of the latter formalism will be shown to be equivalent to a
system of causal reasoning. Finally, we will consider the cor-
respondence between argumentation and causal reasoning on
the level of their associated nonmonotonic semantics.

2 Collective argumentation
As a general formal basis of argumentation theory, we will
adopt the formalism of collective argumentation suggestedin
[Bochman, 2003a] as a ‘disjunctive’ generalization of Dung’s
argumentation theory. In this formalism, a primitive attack
relation holds betweensetsof arguments: in the notation in-
troduced below,a →֒ b says that a seta of arguments attacks
a set of argumentsb. This fact implies, of course, that these
two sets arguments are incompatible.a →֒ b says, however,
more than that, namely that the set of argumentsa, being ac-
cepted, provides a reason, or explanation, for rejection ofthe
set of argumentsb. Accordingly, the attack relation will not
in general be symmetric, since acceptance ofb need not give
reasons for rejection ofa. In addition, the attack relation is
not reducible to attacks between individual arguments. For
instance, we can disprove some conclusion jointly supported
by a disputed set of arguments, though no particular argument
in the set, taken alone, could be held responsible for this.

In what follows, a, b, c, . . . will denote finite sets of ar-
guments, whileu, v, w, . . . arbitrary such sets. We will use
the same agreements for the attack relation as for usual con-
sequence relations. Thus,a, a1 →֒ b,B will have the same
meaning asa ∪ a1 →֒ b ∪ {B}, etc.

Definition 2.1. Let A be a set ofarguments. A (collective)
attack relationis a relation֒→ on finite sets of arguments sat-
isfying the following postulate:

Monotonicity If a →֒ b, thena, a1 →֒ b, b1.

Though defined primarily on finite sets of arguments, the
attack relation will be extended to arbitrary such sets by im-
posing the compactness requirement: for anyu, v ⊆ A,



(Compactness) u →֒ v if and only if a →֒ b, for some finite
a ⊆ u, b ⊆ v.

The original Dung’s argumentation theory[Dung, 1995b]
can be seen as a special case of collective argumentation that
satisfies additional properties (cf.[Kakas and Toni, 1999]):

Definition 2.2. An attack relation isnormal if no set of argu-
ments attacks∅, and the following condition is satisfied:

(Locality ) If a →֒ b, b1, then eithera →֒ b, or a →֒ b1.

For a normal attack,a →֒ b holds iff a →֒A, for someA∈b.
As was shown in[Bochman, 2003a], the resulting argumen-
tation theory coincides with that given in[Dung, 1995a].

By anargument theorywe will mean an arbitrary set of at-
tacksa →֒ b between sets of arguments. Any argument theory
∆ generates a unique least attack relation that we will denote
by →֒∆. The latter can be described directly as follows:

u →֒∆ v iff a →֒ b ∈ ∆, for somea ⊆ u, b ⊆ v.

It can be easily verified that an attack relation is normal if
and only if it is generated in this sense by an argument theory
consisting only of attack rules of the forma →֒A.

2.1 Four-valued semantics

Collective argumentation can be given a four-valued seman-
tics that will be instructive in describing the meaning of the
attack relation. This semantics stems from the following un-
derstanding of an attacka →֒ b:

If all arguments ina are accepted, then at least one
of the arguments inb should be rejected.

The argumentation theory does not impose, however, the
classical constraints on acceptance and rejection of argu-
ments, so an argument can be both accepted and rejected, or
neither accepted, nor rejected. Such an understanding can be
captured formally by assigning any argument asubsetof the
set {t, f}, wheret denotes acceptance (truth), whilef de-
notes rejection (falsity). This is nothing other than the well-
knownBelnap’s interpretationof four-valued logic (see[Bel-
nap, 1977]). As a result, collective argumentation acquires a
natural four-valued semantics described below.

Definition 2.3. An attacka →֒ b will be said tohold in a four-
valued interpretationν of arguments, if eithert /∈ ν(A), for
someA ∈ a, or f ∈ ν(B), for someB ∈ b.

An interpretationν will be called amodelof an argument
theory∆ if every attack from∆ holds inν.

Since an attack relation can be seen as a special kind of
an argument theory, the above definition determines also the
notion of a model for an attack relation.

For a setI of four-valued interpretations, we will denote
by →֒I the set of all attacks that hold in each interpretation
from I. Then the following result is actually a representation
theorem showing that the four-valued semantics is adequate
for collective argumentation (see[Bochman, 2003a]).

Theorem 2.1. →֒ is an attack relation iff it coincides with
→֒I , for some set of four-valued interpretationsI.

2.2 Assumption-based argumentation
The notion of an argument is often taken as primitive in ar-
gumentation theory, which allows for a possibility of consid-
ering arguments that are not propositional in character (e.g.,
arguments as inference rules, or derivations). As has been
shown in[Bondarenkoet al., 1997], however, a powerful ver-
sion of argumentation theory can be obtained by identifying
arguments with propositions of a special kind calledassump-
tions1. This representation can be refined further to a full-
fledged theory ofpropositional argumentation in a certain
well-defined propositional language.

Let us extend the language of arguments with a negation
connective∼ having the following semantic interpretation:

∼A is accepted iffA is rejected

∼A is rejected iffA is accepted.

The connective∼ will be called aglobal negation, since
it switches the evaluation contexts between acceptance and
rejection. An axiomatization of this connective in argumen-
tation theory can be obtained by imposing the following rules
on the attack relation (see[Bochman, 2003a]):

A →֒∼A ∼A →֒A

If a →֒A, b anda,∼A →֒ b, thena →֒ b (AN)

If a,A →֒ b anda →֒ b,∼A, thena →֒ b

Attack relations satisfying the above postulates will be
calledN-attack relations. It turns out that the latter are in-
terdefinable with certain consequence relations.

A Belnap consequence relationin a propositional language
with a global negation∼ is a Scott (multiple-conclusion) con-
sequence relation
 satisfying the postulates

(Reflexivity) A 
 A;

(Monotonicity) If a 
 b anda ⊆ a′, b ⊆ b′, thena′

 b′;

(Cut) If a 
 b, A anda,A 
 b, thena 
 b,

as well as the following Double Negation rules for∼:

A 
 ∼∼A ∼∼A 
 A.

For any setu of propositions, we will denote by∼u the set
{∼A | A ∈ u}. Now, for a given N-attack relation, we can
define the following consequence relation:

a 
 b ≡ a →֒∼b (CA)

Similarly, for any Belnap consequence relation we can de-
fine the corresponding attack relation as follows:

a →֒ b ≡ a 
 ∼b (AC)

As has been shown in[Bochman, 2003a], the above def-
initions establish an exact equivalence between N-attack re-
lations and Belnap consequence relations. This correspon-
dence allows us to represent an assumption-based argumen-
tation framework from[Bondarenkoet al., 1997] entirely in
the framework of attack relations.

Slightly changing the definitions from[Bondarenkoet al.,
1997], an assumption-based argumentation framework can

1See also[Kowalski and Toni, 1996].



defined as a triple consisting of an underlying deductive sys-
tem (including the current set of beliefs), a distinguishedsub-
set of propositionsAb called assumptions, and a mapping
from Ab to the set of all propositions of the language that
determines thecontraryA of any assumptionA.

Now, the underlying deductive system can be expressed
directly in the framework of N-attack relations by identify-
ing deductive rulesa ⊢ A with attacks of the forma →֒∼A.
Furthermore, the global negation∼ can serve as a faithful
logical formalization of the operation of taking the contrary.
More precisely, given an arbitrary languageL that does not
contain∼, we candefineassumptions as propositions of the
form∼A, whereA ∈ L. Then, since∼ satisfies double nega-
tion, a negation of an assumption will be a proposition from
L. Moreover, such a ‘negative’ representation of assumptions
will agree with the applications of the argumentation theory
to other nonmonotonic formalisms, described in[Bondarenko
et al., 1997]. Accordingly, N-attack relations can be seen as
a proper generalization of the assumption-based framework.

3 Classical propositional argumentation
Taking seriously the idea of propositional argumentation,it is
only natural to make a further step and extend the underlying
language of arguments to a full classical propositional lan-
guage. The latter step should be coordinated, however, with
the inherently four-valued nature of an attack relation. And
the way to do this amounts to requiring that the relevant clas-
sical connectives should behave in a usual classical way with
respect to both acceptance and rejection of arguments.

As a first connective of this kind, we introduce thecon-
junctionconnective∧ on arguments that is determined by the
following familiar semantic conditions:

A ∧B is accepted iffA is accepted andB is accepted

A ∧B is rejected iffA is rejected orB is rejected

As can be seen,∧ behaves as an ordinary classical conjunc-
tion with respect to acceptance and rejection of arguments.
On the other hand, it is a four-valued connective, since the
above conditions determine a four-valued truth-table for con-
junction in the Belnap’s interpretation of four-valued logic
(see[Belnap, 1977]). The following postulates provide a syn-
tactic characterization of this connective for attack relations:

a,A ∧B →֒ b iff a,A,B →֒ b

a →֒A ∧B, b iff a →֒A,B, b (A∧)

Collective attack relations satisfying these postulates will
be calledconjunctive. The next result shows that they give a
complete description of the four-valued conjunction.

Corollary 3.1. An attack relation is conjunctive if and only
if it coincides with→֒I , for some set of four-valued interpre-
tationsI in a language with a four-valued conjunction∧.

An immediate benefit of introducing conjunction into the
language of argumentation is that any finite set of arguments
a becomes reducible to a single argument

∧
a:

a →֒ b iff
∧

a →֒
∧

b.

As a result, the collective attack relation in this languageis
reducible to an attack relation between individual arguments,
as suggested already in[Dung, 1995b].

Having a conjunction at our disposal, we only have to add
a classical negation¬ in order to obtain a classical language.
Moreover, since sets of arguments are reducible to their con-
junctions, we can represent the resulting argumentation the-
ory using just a binary attack relation on classical formulas.

As a basic condition on argumentation in the classical
propositional language, we will require only that the attack
relation should respect the classical entailment� in the pre-
cise sense of being monotonic with respect to� on both sides.

Definition 3.1. A propositional attack relationis a relation
→֒ on the set of classical propositions satisfying the following
postulates:

(Left Strengthening) If A � B andB →֒C, thenA →֒C;

(Right Strengthening) If A →֒B andC � B, thenA →֒C;

(Truth) t →֒ f ;

(Falsity) f →֒ t.

Left Strengthening says that logically stronger arguments
should attack any argument that is attacked already by a log-
ically weaker argument, and similarly for Right Strengthen-
ing. Truth and Falsity postulates characterize the limit cases
of argumentation by stipulating that any tautological argu-
ment attacks any contradictory one, and vice versa.

There exists a simple definitional way of extending the
above attack relation to a collective attack relation between
arbitrary sets of propositions. Namely, for any setsu, v of
propositions, we can defineu →֒ v as follows:

u →֒ v ≡
∧

a →֒
∧

b, for some finitea ⊆ u andb ⊆ v

The resulting attack relation will satisfy the properties of
collective argumentation, as well as the postulates (A∧) for
conjunction.

Finally, in order to acquire full expressive capabilities of
an argumentation theory, we can add the global negation∼
to the language. Actually, a rather simple characterization of
the resulting collective argumentation theory can be obtained
by accepting the postulates AN for∼, plus the following rule
that permits the use of classical entailment in attacks:

Classicality If a � A, thena →֒∼A and∼A →֒ a.

It can be verified that the resulting system satisfies all the
postulates for propositional argumentation. The system will
be used later for a direct representation of default logic.

3.1 Semantics
A semantic interpretation of propositional attack relations
can be obtained by generalizing four-valued interpretations to
pairs(u, v) of deductively closed theories, whereu is the set
of accepted propositions, whilev the set of propositions that
are not rejected. Such pairs will be calledbimodels, while a
set of bimodels will be called abinary semantics.

Definition 3.2. An attackA →֒B will be said to bevalid in a
binary semanticsB if there is no bimodel(u, v) from B such
thatA ∈ u andB ∈ v.



We will denote by֒→B the set of attacks that are valid in
a semanticsB. This set forms a propositional attack relation.
Moreover, the following result shows that propositional at-
tack relations are actually complete for the binary semantics.

Theorem 3.2. →֒ is a propositional attack relation if and
only if it coincides with֒→B, for some binary semanticsB.

3.2 Probative and causal argumentation
We will introduce now some stronger propositional attack re-
lations that will be shown to correspond to systems of causal
inference. These stronger attack relations are obtained by
adding the following quite reasonable postulates:

(Left Or) If A →֒C andB →֒C, thenA ∨B →֒C;

(Right Or) If A →֒B andA →֒C, thenA →֒B ∨ C;

(Self-Defeat) If A →֒A, thent →֒A.

Definition 3.3. A propositional attack relation will be called
probativeif it satisfies Left Or,basic, if it also satisfies Right
Or, andcausal, if it is basic and satisfies Self-Defeat.

Probative argumentation allows for reasoning by cases. Its
semantic interpretation can be obtained by restricting bimod-
els to pairs(α, v), whereα is a world (maximal classically
consistent set). The corresponding binary semantics will also
be calledprobative. Similarly, the semantics for basic argu-
mentation is obtained by restricting bimodels to world pairs
(α, β); such a binary semantics will be calledbasic. Finally,
thecausalbinary semantics is obtained from the basic seman-
tics by requiring further that(α, β) is a bimodel only if(β, β)
is also a bimodel.

Corollary 3.3. A propositional attack relation is probative
[basic, causal] iff it is determined by a probative [resp. basic,
causal] binary semantics.

Basic propositional argumentation can already be given a
purely four-valued semantic interpretation, in which the clas-
sical negation¬ has the following semantic description2:

¬A is accepted iffA is not accepted

¬A is rejected iffA is not rejected

A syntactic characterization of this connective in collective
argumentation can be obtained by imposing the rules

A,¬A →֒ →֒A,¬A

If a,A →֒ b anda,¬A →֒ b thena →֒ b (A¬)

If a →֒ b, A anda →֒ b,¬A thena →֒ b

Then a basic propositional attack relation can be alterna-
tively described as a collective attack relation satisfying the
rules (A∧) and (A¬). Moreover, the global negation∼ can be
added to this system just by adding the corresponding postu-
lates (AN). It turns out, however, that the global negation is
eliminablein this setting via to the following reductions:

a,∼A →֒ b ≡ a →֒ b,¬A a →֒∼A, b ≡ a,¬A →֒ b

a,¬∼A →֒ b ≡ a →֒ b, A a →֒¬∼A, b ≡ a,A →֒ b
(R∼)

2This connective coincides with the local four-valued negation
from [Bochman, 1998].

As a result, the basic attack relation can be safely restricted
to an attack relation in a classical language.

Finally, the rule Self-Defeat of causal argumentation gives
a formal representation for an often expressed desideratum
that self-conflicting arguments should not participate in de-
feating other arguments (see, e.g.,[Bondarenkoet al., 1997]).
This aim is achieved in our setting by requiring that such ar-
guments are attacked even by tautologies, and hence by any
argument whatsoever.

3.3 Argumentation vs. causal inference
Probative attack relations will now be shown to be equivalent
to general production inference relations from[Bochman,
2003b; 2004a], a variant of input-output logics from[Makin-
son and van der Torre, 2000].

A production inference relationis a relation⇒ on the set
of classical propositions satisfying the following rules:
(Strengthening) If A � B andB⇒C, thenA⇒C;

(Weakening) If A⇒B andB � C, thenA⇒C;

(And) If A⇒B andA⇒C, thenA⇒B ∧ C;

(Truth) t⇒ t;

(Falsity) f⇒ f .
A production ruleA⇒B can be informally interpreted as

saying thatA produces, or explainsB. A characteristic prop-
erty of production inference is that reflexivityA⇒A does not
hold for it. Production rules are extended to rules with setsof
propositions in premises by requiring thatu⇒A holds for a
setu of propositions iff

∧
a⇒A, for some finitea ⊆ u. C(u)

will denote the set of propositions produced byu:

C(u) = {A | u⇒A}

The production operatorC plays much the same role as the
usual derivability operator for consequence relations.

A production inference relation is calledbasic, if it satisfies
(Or) If A⇒C andB⇒C, thenA ∨B⇒C.
andcausal, if it is basic and satisfies, in addition
(Coherence) If A⇒¬A, thenA⇒ f .

It has been shown in[Bochman, 2003b] that causal infer-
ence relations provide a complete description of the underly-
ing logic of causal theories from[McCain and Turner, 1997]
(see also[Giunchigliaet al., 2004]).

It turns out that the binary semantics, introduced earlier,is
appropriate also for interpreting production inference:
Definition 3.4. A rule A⇒B is valid in a binary semantics
B if, for any bimodel(u, v) ∈ B, A ∈ u only if B ∈ v.

As has been shown in[Bochman, 2004a], the above seman-
tics is adequate for production inference relations. Moreover,
the semantics for basic production inference can be obtained
by restricting bimodels to world pairs(α, β), while the se-
mantics for causal inference is obtained by requiring, in addi-
tion, that(α, β) is a bimodel only if(α, α) is also a bimodel.

Now, the correspondence between probative argumentation
and production inference can be established directly on the
syntactic level using the following definitions:

A⇒B ≡ ¬B →֒A; (PA)

A →֒B ≡ B⇒¬A. (AP)



Under these correspondences, the rules of a probative at-
tack relation correspond precisely to the postulates for pro-
duction relations. Moreover, the correspondence extends also
to a correspondence between basic and causal argumentation,
on the one hand, and basic and causal production inference,
on the other. Hence the following result is straightforward.

Lemma 3.4. If →֒ is a probative [basic, causal] attack rela-
tion, then (PA) determines a [basic, causal] production infer-
ence relation, and vice versa, if⇒ is a [basic, causal] pro-
duction inference relation, then (AP) determines a probative
[basic, causal] attack relation.

Remark.A seemingly more natural correspondence between
propositional argumentation and production inference canbe
obtained using the following definitions:

A⇒B ≡ A →֒¬B A →֒B ≡ A⇒¬B.

By these definitions,A explainsB if it attacks¬B, and
vice versa,A attacksB if it explains¬B. Unfortunately, this
correspondence, though plausible by itself, does not take into
account the intended understanding of arguments as (nega-
tive) assumptions. As a result, it cannot be extended directly
to the correspondence between the associated nonmonotonic
semantics, described below.

4 Nonmonotonic semantics
The correspondence between argumentation and causal rea-
soning has been established above on the level of underlying
logical (monotonic) formalisms. In this section we will de-
scribe how this correspondence can be extended to the asso-
ciated nonmonotonic semantics.

In [Bondarenkoet al., 1997], the assumption-based argu-
mentation framework has beeninstantiatedto capture exist-
ing nonmonotonic formalisms. In other words, it has been
shown how particular nonmonotonic systems can be viewed
as assumption-based frameworks just by defining assump-
tions and their contraries. We will show, however, that the
propositional argumentation theory allows us to give a direct
representation of Reiter’s default logic[Reiter, 1980].

Given a system of propositional argumentation in the clas-
sical language augmented with the global negation∼, we will
interpret Reiter’s default rulea:b/A as an attack

a,∼¬b →֒∼A,

or, equivalently, as a rulea,∼¬b 
 A of the associated Bel-
nap consequence relation. Similarly, an axiomA of a default
theory will be interpreted as an attackt →֒∼A. For a default
theory∆, we will denote bytr(∆) the corresponding argu-
ment theory obtained by this translation.

By our general agreement, byassumptionswe will mean
propositions of the form∼A, whereA is a classical proposi-
tion. For a setu of classical propositions, we will denote by
ũ the set of assumptions{∼A | A /∈ u}. Finally, a setw of
assumptions will be calledstablein an argument theory∆ if,
for any assumptionA, A ∈ w iff w 6֒→∆ A. Then we have

Theorem 4.1. A setu of classical propositions is an exten-
sion of a default theory∆ if and only if ũ is a stable set of
assumptions intr(∆).

The above result is similar to the corresponding representa-
tion result in[Bondarenkoet al., 1997] (Theorem 3.10), but it
is much simpler, and is formulated entirely in the framework
of propositional attack relations. The simpler representation
was made possible due to the fact that propositional attack
relations already embody the deductive capabilities treated as
an additional ingredient in assumption-based frameworks.

As our next result, we will establish a correspondence be-
tween the nonmonotonic semantics of causal inference rela-
tions and that of causal argumentation.

The nonmonotonic semantics of a causal inference relation
is a set of itsexact worlds, namely worldsα such thatα =
C(α) (see[Bochman, 2004a]). Such a world satisfies the rules
of the causal relation, and any proposition that holds in it is
explained by the causal rules.

A causal theoryis an arbitrary set of production rules. By
a nonmonotonic semantics of a causal theory∆ we will mean
the exact worlds of the least causal relation containing∆.

The correspondence between exact worlds and stable sets
of assumptions is established in the next theorem.

Theorem 4.2. If ∆ is a causal theory, and∆a its correspond-
ing argument theory given by (AP), then a worldα is an exact
world of∆ iff α̃ is a stable set of assumptions in∆a.

The above result shows, in effect, that propositional ar-
gumentation subsumes causal reasoning as a special case.
Moreover, it can be shown that causal attack relations con-
stitute a strongest argumentation system suitable for thiskind
of nonmonotonic semantics.

As an application of the above correspondence, we will de-
scribe now an alternative argumentation-based representation
of logic programming.

A general logic programΠ is a set of rules of the form

not d, c← a,not b (*)

wherea, b, c, d are sets of propositional atoms. These are
program rules of a most general kind that contain disjunc-
tions and negations as failurenot in their heads. As has been
shown in[Bochman, 2004b], general logic programs are rep-
resentable as causal theories obtained by translating program
rules (*) as causal rules

d,¬b⇒
∧

a→
∨

c,

and adding a formalization of the Closed World Assumption:

(Default Negation) ¬p⇒¬p, for any propositional atomp.

Now, due to the correspondence between causal reasoning
and argumentation, this causal theory can be transformed (us-
ing (PA)) into an argument theory that consists of attacks

a,¬c →֒¬b, d (AL)

plus the ‘argumentative’ Closed World Assumption:

(Default Assumption) p →֒¬p, for any atomp.

Let tr(Π) denote the argument theory obtained by this
translation from a logic programΠ. Then we obtain

Theorem 4.3. A set u of propositional atoms is a stable
model of a logic programΠ iff ũ is a stable set of assump-
tions intr(Π).



It is interesting to note that, due to the reduction rules
(R∼) for the global negation∼, described earlier, the
above representation (AL) of program rules is equivalent to
a,∼b →֒∼c, d, and therefore to the inference rules

a,∼b 
 c,∼d

of the associated Belnap consequence relation. For normal
logic programs, this latter representation coincides withthat
given in[Bondarenkoet al., 1997].

5 Conclusions
Two main objectives have been pursued in this study. The
first consisted in showing that propositional argumentation
suggests a viable and useful extension of an abstract argu-
mentation theory that allows us to endow argumentation with
full-fledged logical capabilities. It has been shown, in partic-
ular, that propositional argumentation subsumes assumption-
based frameworks, and provides a direct representation of de-
fault logic, causal reasoning and logic programming. It could
be expected that further development of this propositionalap-
proach to argumentation may bring us additional theoretical
and practical benefits.

The second aim was to demonstrate that causal reason-
ing can be seen as an important kind of argumentation. It
has been shown in this respect that causal inference rela-
tions and their semantics exactly correspond to a special,
quite strong, kind of propositional attack relations and their
associated stable semantics. This correspondence estab-
lished a basic link between argumentation and causal rea-
soning, and it can be extended in both directions. To be-
gin with, the argumentation theory has suggested a num-
ber of weaker semantic models, such as admissible sets
and complete extensions (see[Bondarenkoet al., 1997;
Dung, 1995a]), and it seems worth to inquire whether such
models correspond to reasonable semantics for causal rea-
soning. On the other hand, a number of alternative models
for causal reasoning has been suggested in[Geffner, 1992;
1997] (see also[Darwiche and Pearl, 1994]), and here it
seems plausible to suppose that the correspondence between
causal reasoning and argumentation could be helpful in ana-
lyzing and evaluating such models. These are, however, the
topics for further study.
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