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Abstract The plan of the paper is as follows. We introduce first an
abstract argumentation theory, and describe its foureehlu

. . semantics based on acceptance and rejection of arguments.
argumentation systems obtained by gradually ex- »qqing a ‘global’ negation to this language will give us a
tending 'ghe u.nderlylng Iangugge and associated formalism that generalizes the assumption-based argament
monotonic logics. An assumption-based argumen- 45 framework from[Bondarenkoet al, 1997. Then we
tation framework[Bondarenkoet al, 1997 wil describe an alternative extension of the argumentaticsryhe
constitute a special case of th|'s construction. In to the full classical propositional language. A specialecas
addition, a stronger argumentation systeminafull - ¢ yhe |atter formalism will be shown to be equivalent to a
classical language will be shown to be equivalent gy o of causal reasoning. Finally, we will consider the co

tzoog jyitﬁm. of ?autsal rea]cstc;]n|[tg|unch|gllacljet al, f respondence between argumentation and causal reasoning on
- 'he Implications ot IS COrréspondence 1or - ¢ |eyg| of their associated nonmonotonic semantics.
the respective nonmonotonic theories of argumen-

tation and causal reasoning are discussed.

The paper introduces a number of propositional

2 Collective argumentation

. As a general formal basis of argumentation theory, we will

1 Introduction adopt the formalism of collective argumentation suggested
In this study we will demonstrate, among other things, tha{Bochman, 2003eas a ‘disjunctive’ generalization of Dung'’s
two relatively recent approaches to nonmonotonic reagpnin argumentation theory. In this formalism, a primitive aktac
namely argumentation theorjDung, 1995b; Bondarenko relation holds betweesetsof arguments: in the notation in-
et al, 1997 and a theory of causal nonmonotonic reason-troduced belowg < b says that a set of arguments attacks
ing [McCain and Turner, 1997; Giunchigliat al, 2004; a set of arguments This fact implies, of course, that these
Bochman, 2003b; 2004are actually ‘two faces of the same two sets arguments are incompatibles— b says, however,
coin’. The common basis of these formalisms is a notion ofmore than that, namely that the set of argumentseing ac-
explanation, which takes the form of an attack relation & th cepted, provides a reason, or explanation, for rejectidhef
argumentation theory, and a causal relation in the theory ofet of arguments. Accordingly, the attack relation will not
causal reasoning. It will be shown that, at some level of genin general be symmetric, since acceptancé wéed not give
eralization, these two relations will be directly interdefdle.  reasons for rejection of. In addition, the attack relation is

Both the argumentation theory and theory of causal nonnot reducible to attacks between individual arguments. For
monotonic reasoning have proved to be powerful frameworkénstance, we can disprove some conclusion jointly supdorte
for representing different kinds of nonmonotonic reasgnin by a disputed set of arguments, though no particular argtimen
including traditional nonmonotonic logics, logic program in the set, taken alone, could be held responsible for this.
ming, abduction and reasoning about actions and change. Theln what follows, a, b, c, ... will denote finite sets of ar-
present study should hopefully provide a basis for clanfyi guments, whileu, v, w,... arbitrary such sets. We will use
the representation capabilities of these formalisms, astd@ the same agreements for the attack relation as for usual con-
toward a unified theory of nonmonotonic reasoning. sequence relations. Thug,a; < b, B will have the same

Another objective of this study consists in a systematic demeaning aa U a; — b U { B}, etc

velopment of gpropositionalapproach to argumentation, in pefinition 2.1. Let .4 be a set ofirguments A (collective)

which arguments are represented as (special kinds of) propQta ck relatioris a relation— on finite sets of arguments sat-
sitions. This approach will naturally lead us to developlngisfying the following postulate:

the underlyinglogics of argumentation (cf. [Chesievar et .

al., 2000; Prakken and Vreeswijk, 209Jand their associ- Monotonicity  If a—b, thena, a, — b, b.

ated semantics. As will be shown, the resulting argumen- Though defined primarily on finite sets of arguments, the
tation systems will directly represent a number of impdrtan attack relation will be extended to arbitrary such sets by im
nonmonotonic formalisms. posing the compactness requirement: for any C A,



(Compactnes$ u — v if and only if  — b, for some finite 2.2 Assumption-based argumentation
aCubCuw. The notion of an argument is often taken as primitive in ar-

The original Dung's argumentation thedpung, 1995b  gumentation theory, which allows for a possibility of cahsi
can be seen as a special case of collective argumentation tH{ing arguments that are not propositional in charactey,(e.

satisfies additional properties (¢Kakas and Toni, 199%: arguments as inference rules, or derivations). As has been
shown in[Bondarenkeet al,, 1997, however, a powerful ver-

Definition 2.2. An attack relation isiormalif no set of argu-  sjon of argumentation theory can be obtained by identifying
ments attack®, and the following condition is satisfied: arguments with propositions of a special kind catesump-
(Locality) If a < b, by, then either < b, or a < b. tionst. This representation can be refined further to a full-
fledged theory ofpropositional argumentation in a certain
For a normal attacky — b holds iff a — A, for someAe&b. well-defined propositional language.
As was shown ifBochman, 2003athe resulting argumen- et us extend the language of arguments with a negation
tation theory coincides with that given ibung, 19954 connective~ having the following semantic interpretation:
By anargument theoryve will mean an arbitrary set of at- i L
tacksa — b between sets of arguments. Any argument theory ~A is accepted iffA is rejected
A generates a unique least attack relation that we will denote ~A is rejected iffA is accepted

by <. The latter can be described directly as follows: The connective~ will be called aglobal negation since

w—av iff a=be A, for somea C u,b C v. it switches the evaluation contexts between acceptance and
rejection. An axiomatization of this connective in argumen
It can be easily verified that an attack relation is normal iftation theory can be obtained by imposing the following sule
and only if it is generated in this sense by an argument theorgn the attack relation (s¢Bochman, 2003:
consisting only of attack rules of the foray— A. A oA A A

2.1 Four-valued semantics If a— A,banda,~A b, thena— b (AN)

Collective argumentation can be given a four-valued seman- If a, A—~banda—b,~A, thena—b

tics that will be instructive in describing the meaning ofth  Attack relations satisfying the above postulates will be
attack relation. This semantics stems from the following un called N-attack relations It turns out that the latter are in-
derstanding of an attack— b: terdefinable with certain consequence relations.

If all arguments inz are accepted, then at least one /A Belnap consequence relationa propositional language
of the arguments in should be rejected with a global negation- is a Scott (multiple-conclusion) con-

_ _ sequence relatioh satisfying the postulates

Thg argumentation theory does not impose, h_owever, th eflexivity) A I A;
classical constraints on acceptance and rejection of argu-
ments, S0 an argument can be both accepted and rejected,(dfonotonicity) If a IFbanda C o', b C V', thena' I b/
neither accepted, nor rejected. Such an understandingecan fcut) If a I b, A anda, A I+ b, thena I+ b,
captured formally by assigning any argumerstudoseif the
set{t, f}, wheret denotes acceptance (truth), whifede-
notes rejection (falsity). This is nothing other than thdlwe AlF ~~A ~~A A,
knownBelnap’s interpretatiorof four-valued logic (seBel- . .
nap, 197%). As a result, collective argumentation acquires a_ FOr any set: of propositions, we will denote by the set

natural four-valued semantics described below. {~A | A € u}. Now, for a given N-attack relation, we can
define the following consequence relation:

as well as the following Double Negation rules for

Definition 2.3. An attacka — b will be said tohold in a four-
valued interpretatiow of arguments, if eithet ¢ v/(A), for alFb= a—~b (CA)
someA € a, or f € v(B), for someB € b.

An interpretatiornv will be called amodelof an argument
theoryA if every attack fromA holds inv.

Similarly, for any Belnap consequence relation we can de-
fine the corresponding attack relation as follows:

. . o a—b= alk~b (AC)
Since an attack relation can be seen as a special kind of
an argument theory, the above definition determines also the As has been shown ifBochman, 2003a the above def-
notion of a model for an attack relation. initions establish an exact equivalence between N-atte€k r
For a setl of four-valued interpretations, we will denote lations and Belnap consequence relations. This correspon-
by < the set of all attacks that hold in each interpretationdence allows us to represent an assumption-based argumen-
from I. Then the following result is actually a representationtation framework from{Bondarenkeet al,, 1997 entirely in
theorem showing that the four-valued semantics is adequatbe framework of attack relations.
for collective argumentation (s¢Bochman, 2003 Slightly changing the definitions frofBondarenkeet al,,

Theorem 2.1. — is an attack relation iff it coincides with 1991, an assumption-based argumentation framework can

— 7, for some set of four-valued interpretatiohs 1see alsdKowalski and Toni, 1996



defined as a triple consisting of an underlying deductive sys As a result, the collective attack relation in this languesge
tem (including the current set of beliefs), a distinguiskeld-  reducible to an attack relation between individual arguisien
set of propositions4b called assumptionsand a mapping as suggested already[ibung, 1995h.
from Ab to the set of all propositions of the language that Having a conjunction at our disposal, we only have to add
determines theontrary A of any assumptior. a classical negation in order to obtain a classical language.
Now, the underlying deductive system can be expressetfloreover, since sets of arguments are reducible to their con
directly in the framework of N-attack relations by identify junctions, we can represent the resulting argumentatien th
ing deductive rulea - A with attacks of the forna — ~A. ory using just a binary attack relation on classical forraula
Furthermore, the global negation can serve as a faithful As a basic condition on argumentation in the classical
logical formalization of the operation of taking the comyta  propositional language, we will require only that the dttac
More precisely, given an arbitrary languagethat does not relation should respect the classical entailnterin the pre-
contain~, we candefineassumptions as propositions of the cise sense of being monotonic with respedt tn both sides.

form ~ A, whereA € L. Then, since- satisfies double nega- pefinition 3.1. A propositional attack relatioris a relation

tion, a negation of an assumption will be a proposition from._, 4, the set of classical propositions satisfying the foltuyi
L. Moreover, such a ‘negative’ representation of assumptiony ot jates:

will agree with the applications of the argumentation tlyeor i
to other nonmonotonic formalisms, describefBondarenko ~ (Left Strengthening)  If A= BandB — C', thend — C;
et al, 1997. Accordingly, N-attack relations can be seen as(Right Strengthening) If A< B andC £ B, thenA — C;
a proper generalization of the assumption-based framework(Truth) PN

(Falsity) f<—t.

. . . . . Left Strengthening says that logically stronger arguments
Taking seriously the idea of propositional argumentatios, should attack any argument that is attacked already by a log-

only natural to make a further step and_ extend the_gnderlyin%a”y weaker argument, and similarly for Right Strengthen
language of arguments to a full classical propositionat lan; ’

The latter st hould b dinated. h .tglg. Truth and Falsity postulates characterize the limsesa
?huageH etl af ers elp sdou t e c;)or Ir::? ek’ lovt\{evec;,Am f argumentation by stipulating that any tautological argu
€ innerently Tour-valuéd nature of an attack relation.dAn antattacks any contradictory one, and vice versa.
the way to do this amounts to requiring that the relevantclas

ical " hould beh . | classical i There exists a simple definitional way of extending the
sical conneclives should behave in a usual classica wdy wi above attack relation to a collective attack relation betwe
respect to both acceptance and rejection of arguments.

) ' L . arbitrary sets of propositions. Namely, for any sets of
As a first connective of this kind, we introduce then- Y brop 4 y set

. i X X . propositions, we can define— v as follows:
junctionconnectiveA on arguments that is determined by the
following familiar semantic conditions: Uy = /\ s /\ b, for some finitea C u andb C v

AN Bis accepted ifid is accepted and is accepted The resulting attack relation will satisfy the propertids o
A N Bisrejected iffA is rejected o3 is rejected collective argumentation, as well as the postulatég)(for
conjunction.
Finally, in order to acquire full expressive capabilities o
argumentation theory, we can add the global negation
he language. Actually, a rather simple characterinatio
the resulting collective argumentation theory can be olegi
by accepting the postulates AN fer, plus the following rule
that permits the use of classical entailment in attacks:

Classicality If a F A, thena— ~A and~A < a.

a, ANB—b ?ﬁ a,4,B—b It can be verified that the resulting system satisfies all the
a—AANB,biff a— A B,b (Ar)  postulates for propositional argumentation. The systeth wi
be used later for a direct representation of default logic.

3 Classical propositional argumentation

As can be seen\ behaves as an ordinary classical conjunc-
tion with respect to acceptance and rejection of arguments, |
On the other hand, it is a four-valued connective, since th‘?ot
above conditions determine a four-valued truth-table €or-c
junction in the Belnap’s interpretation of four-valued iog
(seelBelnap, 197¥). The following postulates provide a syn-
tactic characterization of this connective for attacktiefss:

Collective attack relations satisfying these postulatds w
be calledconjunctive The next result shows that they give a 3.1  Semantics

complete description of the four-valued conjunction. A semantic interpretation of propositional attack relatio

Corollary 3.1. An attack relation is conjunctive if and only can be obtained by generalizing four-valued interpretatio
if it coincides with—, for some set of four-valued interpre- pairs(u, v) of deductively closed theories, wheuds the set
tations! in a language with a four-valued conjunctign of accepted propositions, whitethe set of propositions that
An immediate benefit of introducing conjunction into the &€ Not rejected. Such pairs will be calleanodels while a
language of argumentation is that any finite set of argument&€t Of bimodels will be called hinary semantics
a becomes reducible to a single argumgni: Definition 3.2. An attackA — B will be said to bevalid in a
binary semantic# if there is no bimode{u, v) from B such
a—b Iff /\ac—>/\b. thatA € wandB € v.



We will denote by—j the set of attacks that are valid in
a semantic#. This set forms a propositional attack relation.
Moreover, the following result shows that propositional at
tack relations are actually complete for the binary sensanti
Theorem 3.2. — is a propositional attack relation if and
only if it coincides with— 3, for some binary semantids

3.2 Probative and causal argumentation
We will introduce now some stronger propositional attack re

As aresult, the basic attack relation can be safely resttict
to an attack relation in a classical language.

Finally, the rule Self-Defeat of causal argumentation give
a formal representation for an often expressed desideratum
that self-conflicting arguments should not participate éa d
feating other arguments (see, e[@ondarenkeet al, 1997).
This aim is achieved in our setting by requiring that such ar-
guments are attacked even by tautologies, and hence by any
argument whatsoever.

inference. These stronger attack relations are obtained
adding the following quite reasonable postulates:

(LeftOr) If A—-CandB—C,thenAv B—C;
(RightOr) If A~ BandA— C,thenA— BV C;
(Self-Defeat) If A— A, thent— A.

Definition 3.3. A propositional attack relation will be called
probativeif it satisfies Left Orbasig if it also satisfies Right
Or, andcausa| if it is basic and satisfies Self-Defeat.

Probative argumentation allows for reasoning by cases. ItAnd)

semantic interpretation can be obtained by restrictingooim
els to pairs(«, v), wherea is a world (maximal classically
consistent set). The corresponding binary semantics isdl a
be calledprobative Similarly, the semantics for basic argu-
mentation is obtained by restricting bimodels to world gair
(e, B); such a binary semantics will be calledsic Finally,
thecausalbinary semantics is obtained from the basic seman
tics by requiring further thaix, 3) is a bimodel only if( 3, 3)

is also a bimodel.

Corollary 3.3. A propositional attack relation is probative
[basic, causal] iff it is determined by a probative [resp.dig
causal] binary semantics.

Basic propositional argumentation can already be given a

purely four-valued semantic interpretation, in which thaese
sical negation- has the following semantic descriptfon

—A is accepted iffA is not accepted
- A is rejected iffA is not rejected

A syntactic characterization of this connective in collest
argumentation can be obtained by imposing the rules

A —A— — A, -A
If a, A— banda, A< bthena—b
If a<— b, Aanda— b,—Athena —b

(4-)

Then a basic propositional attack relation can be altern
tively described as a collective attack relation satigjyihe
rules (4,) and (A-). Moreover, the global negation can be

a_

bIéfrobative attack relations will now be shown to be equivalen

to general production inference relations frdBochman,
2003b; 2004k a variant of input-output logics froMakin-
son and van der Torre, 20P0

A production inference relatiors a relation=- on the set
of classical propositions satisfying the following rules:

(Strengthening) If AE BandB = C, thenA=C,
(Weakening) If A= BandBE C, thenA=C,

If A= BandA=C,thenA= B AC;
(Truth)  t=t;

(Falsity) f=f.

A production ruleA = B can be informally interpreted as
saying thatd producesor explainsB. A characteristic prop-
erty of production inference is that reflexivity=- A does not
hold for it. Production rules are extended to rules with séts
propositions in premises by requiring that>- A holds for a
setu of propositions iff\ a = A, for some finitez C u. C(u)
will denote the set of propositions produced:ay

Clu)y={A|u= A}

The production operatdt plays much the same role as the
usual derivability operator for consequence relations.

A production inference relation is call®éasig if it satisfies
Or) IfA=CandB=C,thenAv B=C.

andcausa| if it is basic and satisfies, in addition
(Coherence) If A= —A,thenA=f.

It has been shown itlBochman, 2003bthat causal infer-
ence relations provide a complete description of the ugéderl
ing logic of causal theories frofMcCain and Turner, 1997
(see alsdGiunchigliaet al, 2004).

It turns out that the binary semantics, introduced eaiker,
appropriate also for interpreting production inference:
Definition 3.4. A rule A= B isvalid in a binary semantics
3 if, for any bimodel(u,v) € B, A € wonly if B € v.

As has been shown [Bochman, 2004athe above seman-
tics is adequate for production inference relations. Meeeo

added to this system just by adding the corresponding postﬂihe sem_antics f_or basic production i.nference can be olataine
lates (AN). It turns out, however, that the global negation i PY restricting bimodels to world pairsy, ), while the se-

eliminablein this setting via to the following reductions:

a,~A—=b=a—b-A a—~Ab=a,~A—=b

a,~A—b=a—b A a—-~Ab=a,A—b

(R~)

2This connective coincides with the local four-valued negation
from [Bochman, 1998

mantics for causal inference is obtained by requiring, idi-ad
tion, that(«, 3) is a bimodel only if(«, «) is also a bimodel.

Now, the correspondence between probative argumentation
and production inference can be established directly on the
syntactic level using the following definitions:

A= B = ~B<— A;
A—B B=-A.

(PA)
(AP)



Under these correspondences, the rules of a probative at- The above result is similar to the corresponding representa
tack relation correspond precisely to the postulates for pr tion result in[Bondarenkeet al, 1997 (Theorem 3.10), but it
duction relations. Moreover, the correspondence extelsds a is much simpler, and is formulated entirely in the framework
to a correspondence between basic and causal argumentatiof propositional attack relations. The simpler represi@mnta
on the one hand, and basic and causal production inferenceias made possible due to the fact that propositional attack
on the other. Hence the following result is straightforward relations already embody the deductive capabilitieseébat

Lemma 3.4. If < is a probative [basic, causal] attack rela- 2" additional ingredient in assumption-based frameworks.

tion, then (PA) determines a [basic, causal] productioremf As our next result, we will estal_allsh a corres_pondence be-
ence relation, and vice versa, 4 is a [basic, causal] pro- tween the nonmonotonic semantics of causal inference rela-

duction inference relation, then (AP) determines a proti t|onﬁ and that of causal argument?tlon. lint ati
[basic, causal] attack relation. ~ The nonmonotonic semantics of a causal inference relation
) is a set of itsexact worlds namely worldse such thatoe =
Remark. A seemingly more natural correspondence betwee@(a) (sedBochman, 2004. Such a world satisfies the rules
propositional argumentation and production inferencel®n  of the causal relation, and any proposition that holds is it i
obtained using the following definitions: explained by the causal rules.
A=>B = A-<~—-B AsB = A= —B. A causal theorys an arbitrary set of production rules. By
a nonmonotonic semantics of a causal thednye will mean
By these definitionsA explainsB if it attacks—B, and  the exact worlds of the least causal relation contairing
vice versaA attacksB if it explains—B. Unfortunately, this The correspondence between exact worlds and stable sets
correspondence, though plausible by itself, does not titke i  of assumptions is established in the next theorem.

account the intended understanding of arguments as (N€9@peorem 4.2. If A is a causal theory, and.,, its correspond-

tive) assumptions. As a result, it cannot be_ extended dyjrect ing argument theory given by (AP), then a warlds an exact
to the correspondence between the associated nonmonotoRie|d of A iff & is a stable set of assumptionsdy),.

semantics, described below. . -
The above result shows, in effect, that propositional ar-

. : gumentation subsumes causal reasoning as a special case.
4 Nonmonotonic semantics Moreover, it can be shown that causal attack relations con-
The correspondence between argumentation and causal refitute a strongest argumentation system suitable fokihis
soning has been established above on the level of underlyingf nonmonotonic semantics.
logical (monotonic) formalisms. In this section we will de-  As an application of the above correspondence, we will de-
scribe how this correspondence can be extended to the assseribe now an alternative argumentation-based repreagamta
ciated nonmonotonic semantics. of logic programming.

In [Bondarenkeet al, 1997, the assumption-based argu- A general logic progranil is a set of rules of the form
mentation framework has beémstantiatedto capture exist-
ing nonmonotonic formalisms. In other words, it has been notd,c < a,notb )

shown how particular nonmonotonic systems can be viewegihere q, b, ¢, d are sets of propositional atoms. These are
as assumption-based frameworks just by defining assumpyogram rules of a most general kind that contain disjunc-
tions and their contraries. We will show, however, that thetions and negations as failuret in their heads. As has been
propositional argumentation theory allows us to give adlire shown in[Bochman, 2004k general logic programs are rep-

representation of Reiter's default lodReiter, 1980. resentable as causal theories obtained by translatinggmog
Given a system of propositional argumentation in the clasryles (*) as causal rules

sical language augmented with the global negatipwe will

interpret Reiter’s default rule:b/A as an attack d,—b= /\ a— \/ c,

a,~=b—~A, and adding a formalization of the Closed World Assumption:
or, equivalently, as a rule, ~—b I+ A of the associated Bel- (Default Negation) —p = —p, for any propositional atom.
nap consequence relation. Similarly, an axidrof a default Now, due to the correspondence between causal reasoning

theory will be interpreted as an attatk~ ~A. For adefault  and argumentation, this causal theory can be transfornsed (u

theory A, we will denote bytr(A) the corresponding argu- ing (PA)) into an argument theory that consists of attacks
ment theory obtained by this translation.

By our general agreement, gsumptionsve will mean a,~c— b, d (AL)
propositions of the form-A, whereA is a classical proposi- plus the ‘argumentative’ Closed World Assumption:
tion. For a set: of classical propositions, we will denote by )
@ the set of assumptionsvA | A ¢ u}. Finally, a setw of ~ (Default Assumption)  p— —p, for any atonp.
assumptions will be callestablein an argument theor if, Let ¢r(II) denote the argument theory obtained by this
for any assumptiod!, A € w iff w4, A. Then we have translation from a logic prograii. Then we obtain

Theorem 4.1. A setu of classical propositions is an exten- Theorem 4.3. A setwu of propositional atoms is a stable
sion of a default theonA if and only if is a stable set of model of a logic progranl iff 4 is a stable set of assump-
assumptions inr(A). tions intr(I1).



It is interesting to note that, due to the reduction rules[Bochman, 2004aA. Bochman. A causal approach to non-
(R.) for the global negation~, described earlier, the monotonic reasoning. Artificial Intelligence 160:105-
above representation (AL) of program rules is equivalent to 143, 2004.

a,~b— ~c,d, and therefore to the inference rules [Bochman, 2004b A. Bochman. A causal logic of logic pro-
a,~blF ¢, ~d gramming. In D. Dubois, C. Welty, and M.-A. Williams,
editors,Proc. Ninth Conference on Principles of Knowl-

of the associated Belnap consequence relation. For normal edge Representation and Reasoning, KRifdges 427—
logic programs, this latter representation coincides witit 437, Whistler, 2004.

given in[Bondarenkeet al., 1997. [Bondarenkeet al, 1997 A. Bondarenko, P. M. Dung, R. A.

. Kowalski, and F. Toni. An abstract, argumentation-
5 Conclusions theoretic framework for default reasoningprtificial In-
Two main objectives have been pursued in this study. The telligence 93:63-101, 1997.

first consisted in showing that propositional argumentatio LChesﬁevaret al, 200d C.I. Chegievar, A. G. Marguitman

suggests a viable and useful extension of an abstrgct argl- . 4R P. Loui Logical models of argumemCM Com-
mentation theory that allows us to endow argumentation with puting Surveys32:337—383, 2000.

full-fledged logical capabilities. It has been shown, intigar ] _

ular, that propositional argumentation subsumes assompti [Darwiche and Pearl, 1994A. Darwiche and J. Pearl. Sym-
based frameworks, and provides a direct representatiog-of d ~ Polic causal networks. IProceedings AAAI'94pages
fault logic, causal reasoning and logic programming. Itdou ~ 238-244, 1994.

be expected that further development of this propositiapal  [Dung, 1995h P. M. Dung. An argumentation-theoretic
proach to argumentation may bring us additional theoretica  foundation for logic programmingd. of Logic Program-
and practical benefits. ming, 22:151-177, 1995.

The second aim was to demonstrate that causal reasopx .
ing can be seen as an important kind of argumentation. Iﬁbung, 1995p P. M. Dung. On the acceptability of argu-
ments and its fundamental role in non-monotonic reason-

has been shown in this respect that causal inference rela- ing. logic broaramming and n-nersons aamestificial
tions and their semantics exactly correspond to a special, | g,”_ gic p 72_321 3598 1995 P 9 :
quite strong, kind of propositional attack relations aneirth ntelligence 76:321-358, )
associated stable semantics. This correspondence estdeffner, 1992 H. Geffner. Default Reasoning. Causal and
lished a basic link between argumentation and causal rea- Conditional TheoriesMIT Press, 1992.

soning, and it can be extended in both directions. To befGeffner, 1997 H. Geffner. Causality, constraints and the
gin with, the argumentation theory has suggested a num- ngjrect effects of actions. IRroceedings Int. Joint Conf.
ber of weaker semantic models, such as admissible sets gn Artificial Intelligence, IJCAI'97 pages 555-561, 1997.
and complete extensions (s¢Bondarenkoet al, 1997; [Giunchigliaet al, 2004 E. Giunchiglia, J. Lee, V. Lif-

Dung, 19958, and it seems worth to inquire whether such schitz, N. McCain, and H. Turner. Nonmonotonic causal
models correspond to reasonable semantics for causal rea- e e '
P theories.Atrtificial Intelligence 153:49-104, 2004.

soning. On the other hand, a number of alternative models
for causal reasoning has been suggestelGieffner, 1992; [Kakas and Toni, 1999A. C. Kakas and F. Toni. Comput-
1997 (see also[Darwiche and Pearl, 1994 and here it ing argumentation in logic programmindpurnal of Logic
seems plausible to suppose that the correspondence betweenand Computation9:515-562, 1999.

causal reasoning and argumentation could be helpful in angg owalski and Toni, 1996 R. A. Kowalski and F. Toni. Ab-
lyzing and evaluating such models. These are, however, the i 50t argumentation. Artificial Intelligence and Law

topics for further study. 4:275-296, 1996.
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