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Abstract reasoning problems afe-complete in|.A|. To develop an

Dat lexitof ing in d ivtion logi intuition and to provide a more_d(_atailed account of t_hese re-
ata complexityof reasoning in description logics sults, we compare them with similar results for (varianys of
(DI_.s) estimates the _perform_ance of reasoning al- datalog[Dantsinet al, 2001.
gorithms measured in the size of the ABOX only. Our results are important since they provide a formal justi-
We show that, even for the very expressive DL gaiion for hoping to provide tractable algorithms for very
SHIQ, satisfiability checking is data complete for pressive description logics. Furthermore, H&RZQ sub-
NP. For applications W'.th large ABoxes, this can sumes DL-lite[Calvaneseet al, 2004, a logic aiming to
be a more accurate estimate than the usually con- .o 5re most constructs of ER and UML formalisms, while
sideredcombined complexityvhich is ExPTIME- providing polynomial algorithms for satisfiability cheakj
complete. Furthermore, we |Qent|fy an expressive and conjunctive query answering (assuming an unbounded
fragment, Homs’HZ Q, which is data complete for knowledge base, but a bound on the query size). Horn-
P, thus being very appealing for practical usage. SHZQ additionally allows qualified existential quantifica-
tion, conditional functionality and role inclusions, wial-
1 Introdcution lowing for a reasoning algorithm that runs in time polynomia
Description logics (DLs{Baaderet al, 200 are state-of- me[;gr?ace):frga{glg]ﬁ} the complexity of concept subsump-

the-art knowledge representation formalisms with applicagOn was contrasted with combined and data complexity of
tions in many areas of computer science. Very expressive DLlnstance checking for various fragments4£C. This work

such asSHZQ are interesting mainly due to their high ex- . : .
pressivity combined with the clearly defined model-thdoret pr(‘)gv;ijzesga lower bound for the data complexity of reasoning
in .

semantics and known formal properties, such as the compu-
tational complexity of reasoning. In particular, tbembined . .
complexity of checking satisfiability of aSHZQ knowl- 2 Preliminaries
edge bas& B is EXPTIME-complete in| KB| [Schild, 1991; Description Logics. Given a set of role name®'z, a
Tobies, 2001 SHZQ role is either someR € Ny or aninverse roleR~

ExPTIME-completeness is a rather discouraging resulfor R € Np. A SHZQ RBoxR is a finite set of role inclu-
since|KB| can be large in practice. However, similar to a sion axiomsR C S and transitivity axiomSrans(R), for R
database/K B consists of aschemgpart7, called theTBox  andS SHZQ roles. ForR € N, we setinv(R) = R~ and
and a data or fact pas, called theABox For applications Inv(R™) = R, and assume thdt C S € R (Trans(R) € R)
with a fixed schema but varying data patgta complexity  impliesinv(R) C Inv(S) € R (Trans(Inv(R)) € R). Arole
measured in the size of only, provides a more precise per- R is said to besimpleif Trans(S) ¢ R, for eachS C* R,
formance estimate. whereC* is the reflexive-transitive closure af.

Here, we assume that the ABox &fB is extensionally Given a set otoncept named/¢, the set ofSHZQ con-
reduced i.e. it involves only roles and (possibly negated) cepts is the minimal set such that eathe N¢ is aSHZQ
atomic concepts. Thus, the terminological knowledge isconcept and, fo€ andD SHZ Q conceptsR arole,S a sim-
strictly separated from assertional knowledge|.dpis the  ple role andr a positive integer, thenC, C 11 D, VR.C and
measure of “raw” data. For such/éB, we show that check- > n.S.C are alsaSHZQ concepts. We usé, L, C; U Cs,
ing KB satisfiability is NP-complete in|.4|, and that in- 3R.C, and< n S.C as abbreviations fod L -4, A M A,
stance checking is cdP-complete in|.A|. Since this might —(=C; 1M =Cy), -VR.-~C, and—(> (n+ 1) S.C), respec-
still lead to intractability, we identify Hortl&HZ Q, a frag-  tively. Concepts that are not concept names are calbeat
ment ofSHZ Q analogous to the Horn fragment of first-order plex A literal concept is a possibly negated concept name.
logic. Namely, HornSHZ Q provides existential and univer- A TBox 7 is a finite set of concept inclusion axioms of the
sal quantifiers, but does not provide means to express disjunform C C D. An ABox A is a finite set of axiom&'(a),
tive information. We show that, for Hor8HZ Q, the basic  R(a,b), and (in)equalities ~ b anda % b. A knowledge



Table 1: Semantics &HZ Q by Mapping to FOL

Translating Concepts to FOL

(A4, X) = A(X)
TI'y(CHD,X) = ﬂ—y(CaX) /\ﬂ—y(D7X)
ﬂ-y(_'C?X) = —my(C, X)
™y (VR.C, X) =Vy : R(X,y) — m:(C,y)
my(>nS.C,X) =
i,y

tASXyi) AN T (Coyi) AN yi %y

Translating Axioms to FOL
7(CCE D) =Vz:7,(C,z) — my(D, z)
m(RC S) =Va,y: R(z,y) — S(z,y)
m(Trans(R)) = Vz,y,z : R(z,y) A R(y, z) — R(z, z)
7(C(a)) = ,(C.a)
m(R(a,b)) = R(a,d)
m(aob) =aobforo e {~, %}

TranslatingK' B to FOL

w(R) =Vz,y : R(z,y) < R (y,x)
m(KB) = /\RENR m(R) A Naerurua (@)

X is a meta variable and is substituted by the actual variable.
7 IS obtained fromr, by simultaneously substituting in the

definitionx ;) for all y,), respectively, and, for 7.

baseKB is a triple(R,7,.A). KB is extensionally reduced
if all ABox axioms of KB contain only literal concepts.

The semantics oK B is given by translating it into first-
order logic by the operatar from Table 1. The main infer-
ence problem is checking B satisfiability, i.e. determining
if a first-order model ofr(KB) exists. An individuala is
aninstanceof a concepC w.r.t. KB if 7(KB) = m,(C,a),

which is the case ifk B U {—C(a)} is unsatisfiable.

The logicALCHZ Q is obtained by disallowing transitivity
axioms inSHZ Q RBoxes, andd LC is obtained by disallow-
ing RBoxes, inverse roles and number restrictions. A ldyic
is betweerlogics £; and L, if it contains at least the primi-

tives from£; and at most the primitives fromis,.

We measure thsizeof concepts by their length, and as-
sumeunary coding of numberse.|< n R.C| = n+1+|C]|,

and uséR(a, b)| = |(~)A(a)| = 3.

Disjunctive Datalog. A datalog termis a constant or a
variable, and alatalog atomhas the formA(t4,...,t,) or

t1 = to, Wheret; are datalog terms. Alisjunctive datalog
program with equalityP is a finite set of rules of the form
AV ...V A, « By,.., B, whereA; and B; are datalog
atoms. Each rule is required to bafe i.e. each variable oc-

Table 2: Types ofALCHZ Q-clauses

~R(z,y) VInv(R)(y, )

~R(z,y) vV 5(z,y)

P'(z) v R(, f(x))

P'(z) v R(f(x), )

P1(z) VP, (f(z)) VV filx)~lE [, (x)

P, (2) V P2(g() V Ps(E(g(2)) V V LAl
wheret; andt¢; are of the formf(g(z)) orz

P1(z) VV -R(z,y:)) VP2(y) VVyi 2 y;
R(a,b) VP(t) vV V tix/t,

wheret ;) are a constarit or a functional terny;(a)

OO BWIN -

oo

positive disjunctive datalog program with equali¥y (K B)
which is equisatisfiable witlik B.

A minor obstacle in computin@D(KB) are the transi-
tivity axioms which, in their clausal form, do not contain a
literal in which all variables of a clause occur. Such clause
are known to be difficult to handle, siiB is preprocessed
into an equisatisfiableALCHZ Q knowledge bas&)(KB).
Roughly speaking, a transitivity axioffrans(.S) is replaced
with axioms of the formvR.C C VS.(vS.C), for eachR
with S C* R andC a concept occurring if{B. This trans-
formation is polynomial, so in the rest of this paper w.l.o.g
we assumes B to be anALCHZ Q knowledge base.

The next step is to translaf® K B) into clausal first-order
logic. Assumingr is defined as in Table 7 (Q(KB)) is
transformed into a set of claus& KB) using structural
transformationto avoid an exponential blowuNonnengart
and Weidenbach, 2001 Roughly speaking, the structural
transformation introduces a new name for each complex sub-
formula ofr(Q(KB)). A specialized version of the structural
transformation is presented in detail in Section 4.

A core property of£(KB) is that it only contains clauses
of one of the forms given in Table 2; such clauses are called
ALCHIQ-clauses. For a ter) P(¢) denotes a disjunction
of the form(—) Py () V...V (=) P,(t), andP(f(z)) denotes
a disjunction of the fornP; (f1(z)) V...V Pu(fm(z)) (NO-
tice that this allows eaclP;(f;(z)) to contain positive and
negative literals).

Next, the RBox and TBox clauses &f KB) are saturated
by basic superpositiofBachmairet al., 1995; Nieuwenhuis
and Rubio, 1995—a clausal equational theorem proving cal-
culus. Due to space limitations, we are unable to present the
rules of basic superposition; it can be considered to be an op
timized version of the well-known paramodulation calculus

curring in the rule must occur in at least one body atom. ALet I be the saturated set of clauses. In this key step, all
factis a rule withm = 0. For the semantics, we take a rule to non-ground consequences B are computed. IfiHustadt

be equivalentto a clausé, V...V A, V-ByV...V-B,,. We
consider only Herbrand models, and say that a madeif P
is minimalif there is no modeM’ of P such that\/’ C M. A
ground literalA is acautious answeof P (written P =, A)
if Aistrue inall minimal models oP. First-order entailment
coincides with cautious entailment for positive grounchato

Reducing KB to Disjunctive Datalog. The results in this
paper are based on our algorithm frfifustadtet al.,, 20044.

et al, 20044, we have shown the following key property:
(#) an application of a basic superposition inference rule to
ALCHZQ-clauses produces ah.CHZ Q-clause. The proof
examines all inference rules and clause types.

Furthermore, by examining the types of clauses from Ta-
ble 2, one can show the following propertyd) for a finite
KB, the number ofALCHZ Q-clauses unique up to variable
renaming is exponential ifKB|. The proof is a straightfor-
ward counting exercise since the number of variables and the

Each inference step can be carried out in polynomial time,



so by @) and &), after at most exponentially many steps, all complexity of checking satisfiability of a positive disjuive

ALCHT Q-clauses are derived, and saturation terminates.

Satisfiability of Z(KB) can be decided by further satu-
ratingI" U =(A) by basic superposition. Sindé contains
all non-ground consequences®fKB), all remaining infer-

ences will produce only ground clauses, and will not involve
clauses of type 4 and 6. These inferences can be simulatél

in a disjunctive datalog program by transformifiginto a

datalog program, and is thusINP. Intuitively, this is due to
nice property ofSHZ Q that TBox and RBox reasoning does
not “interfere” with ABox reasoning, i.e. all non-groundrco
sequences oK B can be computed without taking the ABox
into account. Notice that this result holds even for binary
mber coding.

Lemma 1 (Membership) For KB an extensionally reduced

function-free clause set, and by introducing new constant§HZ Q knowledge base, satisfiability &5 can be decided

playing the role of ground functional terms, as described.ne
We define an operatdrtransformingl” as follows: () each
functional termf(a) is replaced with a new, globally unique
constantuy; (ii) each termf(z) is replaced with a new, glob-
ally unique variablec¢; (iii) for each variable in a clause in-
troduced in stepii), A appends a literahS¢(z,z ), where
Sy is a new predicate unique for the function sympp(iv) if
some variable: occurs in a positive, but not in a negative lit-
eral in a clause, then the literalHU(x) is appended to the
clause; ¥) for each function symbof and each constart
from Z(KB), the factsSy(a,as), HU(a) and HU (ay) are

added. The set of (function-free) clauses obtained by appl

ing AtoI" U Z(A) is denoted wittFF(KB). An example of
applying\ to a clause of type 5 is shown below.

~C(z) v D(f(x)) =* =Sy (z,25) V 2C(x) V D(ay)

Now each remaining ground inference by basic superpos
tioninT"UZ(.A) can be simulated by a sound inference step i

FF(KB), and vice versgHustadtet al, 20044, so KB and
FF(KB) are equisatisfiable. Sind¢ (K B) does not contain

functional terms and all its clauses are safe, each clause ¢

be rewritten into a positive disjunctive rule; IBD(KB) be

the resulting set of rules. The following theorem summarize

the properties oDD(KB):

Theorem 1([Hustadtet al., 20048). For KB an ACCHZQ
knowledge base, the following claims hold) KB is un-
satisfiable iff DD(KB) is unsatisfiable; i{) KB | « iff
DD(KB) [E. «, for a of the formA(a) or S(a,b), A a
concept name, and a simple role; (i) KB = C(a) iff
DD(KBU{C C @Q}) . Q(a), for C acomplex concept, and
@ a new concept hameiv( the number of rules IDD(KB)

is at most exponential if){ B|, the number of literals in each
rule is at most polynomial inKB|, andDD( K B) can be com-
puted in time exponential ifKB].

3 Data Complexity of Reasoning inSHZ Q
For an extensionally reduc&tHZ Q knowledge bas& B, an

upper bound for the data complexity follows from the reduc-]cr

tion of KB to DD(KB). Before presenting the details, we
first discuss the intuition behind this result.
By Theorem 1|DD(KB)| is exponential in KB|. How-

ever, a closer inspection of the reduction algorithm reveal
that the exponential blowup is caused by the rules obtaineﬂ1

by saturatingA LCHZ Q-clauses of types 1 — 7, which corre-

in non-deterministic polynomial time jod|.

Proof. Let ¢ be the number of constantg, the number of
function symbols in the signature &{ KB), ands the num-
ber of facts inZ(KB) (which is equal to the number of
facts in.A). By definition of A, the number of constants in
DD(KB) is bounded by; = ¢ + ¢f (¢f accounts for con-
stants of the formu ), and the number of facts iDD(KB)

is bounded bys = s + ¢ + 2¢f (c accounts for facts of the
form HU (a), onec f accounts for facts of the foriis (a, a ),
and the othet f accounts for facts of the forHU (a)). All

)junction symbols are introduced by skolemizing TBox con-

ceptsIR.C and> n R.C. Since|T| and|R| are constantf

is also a constant, so both and/, are linear in|A|.
Hence,|DD(KB)| can be exponential inKB| only be-

cause the non-ground rules DD(KB) are obtained from

I@xponentially many clauses of types 1 — 7. Since these clause

types do not contain ABox clauses, the number of clauses ob-

Nained after saturation is obviously exponentia|dr| + |R|

only. Since we assume that the latter is constant, both the
umber of rules iINDD(KB) and their length are bounded
y constants, stDD(KB)| is polynomial in|.4|, and can be
computed fromK'B in time polynomial in|.A|.

As KB and DD(KB) are equisatisfiable, the data com-
plexity of checking satisfiability ofKB follows from the
data complexity of checking satisfiability D ( KB), which
is NP-complete[Dantsinet al, 2001: assumingDD(KB)
containsr rules and at most variables in a rule, the num-
ber of literals in a ground instantiatioground(DD(KB))
is bounded byr - ¢ + ¢5 (in each rule, each variable can
be replaced irY; possible ways). Assuming and v are
constants,p = |ground(DD(KB))| is polynomial in|A|.
Satisfiability ofground(DD(KB)) can be checked by non-
deterministically generating an interpretation of sizenaist
p, and then checking whether it is a model. Both tasks can
be performed in polynomial time, so the overall algorithm is
obviously non-deterministically polynomial {t4. O

The hardness of the satisfiability checking problem follows
om [Schaerf, 1994, Lemma 4.2.7 Actually, the lemma
shows coNP-hardness of instance checking, by a reduction
of satisfiability of 2-2-CNF propositional formulae. The re
duction produces an extensionally reduced ABox and a single
TBox axiom, so it applies in our case as well. Hence, we im-
ediately obtain the following result:

Spond to TBox and RBOX, but not to ABox clauses. HenceTheorem 2. Let KB be an extensiona”y reduced knOWIedge

the size of the rules ddD(KB) is exponential in the size of
TBox and RBox; however, the size of the factsDib (K B)

base in any logic betweed£C and SHZQ. Then {) de-

ciding KB satisfiability is data complete faXP and (i) de-

is linear in the size of the ABox. Therefore, data complex-ciding whetherKB = (—)C(a) with |[C| bounded is data

ity of checking satisfiability oDD(KB) corresponds to data

complete for caNP.



4 A Horn Fragment of SHZQ
Horn logic is a well-known fragment of first-order logic

where formulae are restricted to clauses containing at mosP

one positive literal. The main limitation of Horn logic isit
inability to represent disjunctive information; howevés

main benefit is the existence of practical refutation proce-_¢
dures. Furthermore, data complexity of query answering injc;

Horn logic without function symbols iB-completel Dantsin
et al, 2001, which makes it appealing for practical usage.
Following this idea, in this section we identify a Horn frag-
ment of SHZ Q, where disjunction is traded far-complete
data complexity. Roughly speaking, in Ho8HZ Q, only
axioms of the fornf | C; C D are allowed, where eacl has
the formA or3dR.A, andD has the form4, 1, 3R.A,VR. A,
>nR.A or <1R. Whereas such a definition succinctly
demonstrates the expressivity of the fragment, in geneisl i
too restricting: e.g., the axiom; 1A, C —Bis not Horn, but
itis equivalent to Horn axiomd,; 1B C L andA;NB C 1.
Similarly, a non-Horn axiomd C 3R.(3R.B) can be trans-
formed into Horn axiomsid C 3R.QQ and@ C 3R.B by in-
troducing a new namé for the subconceptR.B. To avoid

Table 3: Definitions opl™ andpl™

o (D) o (D)
T 0 0
0 0
1 0
pI=(C) pI*(C)
max; sgn(pl* (C) S, sgn(pl (C1))
LI C; >, sen(plT(Cy)) max; sgn(pl—(C;))
JR.C 1 sgn(pl—(C))
VR.C sgn(plt(C)) 1
>nRC 1 M—&—nsgn(pIJr( ))

<nRC U 4 (n 4 Dsgn(pl=(C)) 1

Itis easy to see that, for a conce&ptwithout complex sub-
conceptspl™ (C) yields the maximal number of positive lit-
erals in clauses obtained by clausifying : 7,(C,z). To
clausify a conceptC' containing a complex subconcept at a
position p, one should consider i€’|, occurs inC under
positive or negative polarity. E.g., in(—A N —B) the con-
ceptsA and B occur effectively positive, and is effectively

dependency on such obvious syntactic transformations, we. Hence,pl™(C|,) (pI~(C|,)) counts the number of pos-

give a rather technical definition of Ho®HZ Q.

We first adapt the notions of positions and polarity in first-

order formulae to DL. Apositionp is a finite sequence of
integers; the empty position is denoted withlf a position
p1 is a proper prefix of a positiop,, then ancp, is abovep,,
andp, is belowp, . For a concepdy, the subterm at a position
p, Written ¢, is defined as followsn|. = «; (—D)|1, =
D|p; (D1 o D)|sp = Dy, for o € {Mn,u} andi € {1,2};
al; = Randaly, = D|, fora = OR.D and{ € {3,V}; and
ali = n, als = Randals, = D|, fora = < nR.D and
x € {<, >}. A replacemenbf a subterm ofv at positionp

with a termg is defined in the standard way and is denoted

asa[f],. For a conceptr and a positiorp such thatx|,, is
a concept, theolarity of a|, in «, denoted apol(«, p), is
defined as follows:

pol(C,e) = 1;
pol(Cy o Cy,ip) = poI(CZ,p) foro € {M,u},i € {1,2};
pol(OR.C, 2p) = pol(C, p) for & € {3,V};
pol(> n R.C,3p) = pol(C, p);
pol(=C, 1p) = —pol(C, p);
pol(< n R.C,3p) = —pol(C, p).

Intuitively, pol(«, p) equals 1 ife|,, occurs ina under an even
number of explicit and implicit negations, ard otherwise.

Definition 1. In Table 3, we define two mutually recursive
functionspl™ andpl~, wheresgn(0) = 0 andsgn(n) = 1 for

n > 0. Foraconcept’ and a positiorp of a subconcept ity

let pl(C, p) = pIT(C|,) if pol(C,p) = 1, and letpl(C, p) =
pI™ (Clp) if pol(C,p) = —1.

A conceptC is a Horn concept ifpl(C,p) < 1 for each
positionp of a subconcept ik (including the empty position
€). An extensionally reduced LCHZ Q knowledge bas& B
is Hornif, for each axionC' C D € KB, the concept:C D
is Horn. An extensionally reduce8iHZ Q knowledge base
KB isHornif Q(KB) is Horn.

itive literals used to clausify’|,, provided thatC'|, occurs

in C' under positive (negative) polarity. The functiegn(-)
takes into account that|, will be replaced inC' by structural
transformation with only one concept name, even if clausifi-
cation of C|, produces more than one positive literal. E.g.,
to clausifyC' = VR.(D; U D), the structural transforma-
tion replacesD, LI D, with an new concept nam@, yielding

C' = VR.Q); then clausifying”’ produces a clause with only
one positive literal. Now a conceptis Horn if the maximal
number of positive literals obtained by clausifying subcon
cepts ofC is at most one.

If a conceptC' has a complex subconcept at positigispe-
cial care has to be taken in introducing a new nanfier C|,,.
Consider the Horn concefgt = VR.D; U VR.—Ds. To ap-
ply structural transformation t6', one might replac& R. D,
andVR.—D, with new concept nameQ; and(@s, yielding
concepts-Qq LUVR.Dy, 7Q2 LUVR.— Dy and@; LI Q2. The
problem with such a straight-forward application of strwat
transformation is that a Horn concéptvas reduced to a non-
Horn concept); U @2, so the structural transformation de-
stroyed Horn-ness. To remedy this, we modify the structural
transformation to replace each, with a literal concepix
such that clausifyingy and C|,, requires the same number
of positive literals. In the above example, this would mean
thatVR.D; should be replaced witf, butvR.—~ D5 should
be replaced with—Q,, yielding concepts-Q, U VR.Dy,

Q2 UVR.—Dy and@y U —Q4, which are all Horn.

Although transitivity axioms are translated hyinto Horn
clauses, recall that the algorithm from Section 2 replaces
them with axioms of the fornrvR.C' T VS.(VS.C). Now
pIT(3R.~C UVS.(VS.C)) = 1+ plT(C), soifpl™(C) > 0,
Q(KB) is not a Horn knowledge base. Hence, the presence
of transitivity axioms can make a knowledge base non-Horn.

Definition 2. LetC be a concept and a function mapping
C to the set of positiong # ¢ of subconcepts af' such that
C|, is not a literal concept and, for all positiongbelowp,



C|, is a literal concept. Theef(C') is defined recursively
as follows, wherex = Q if pl(C,p) > 0, anda = —Q if
pl(C,p) = 0, with@ a new atomic concept, and —Q) = Q:

e Def(C)={C}if A(C)=0,o0r

e if A(C) # 0, then choose somee A(C') and let

~aUCl,} UDef(Cla],) if pol(C,p) = 1
Def(C) = {{—{\a U ﬁcu U D:fgcpa])p) i E&Ec,ﬁ% =-1

Lemma 3. If all premises of an inference by basic super-
position contain at most one positive literal, then infaren
conclusions also contain at most one positive literal.

Proof. (Sketch Consider a resolution inference with clauses
AV Cand-B Vv D, where all literals inC' are negative and
at most one literal inD is positive. Obviously, the number
of positive literals in the conclusiof’sc vV Do is equal to
the number of positive literals i. Similarly, consider a
paramodulation inference from a clausex ¢ Vv C into a

LetCls(y) denote the set of clauses obtained by clausifyingclauseA v D, where all literals inC' and D are negative.

a formulayp in the standard way and let
Cls(C) = Upepef(c) Cls(Vz : my (D, z)).

For an ALCHZ Q knowledge bas& B, =(KB) is the small-
est set of clauses such that) for each role name? € Ng_,
Cls(m(R)) C E(KB); (ii) for each RBox or ABox axiomin
KB, Cls(m(«)) C Z(KB); (iii) for each TBox axion®’ C D
in KB, Cls(-C' U D) C Z(KB).

By [Nonnengart and Weidenbach, 200%z : =, (C, )
and A\ peper(c) V2 1 my(D, ) are equisatisfiable, s8(KB)
andw(KB) are equisatisfiable as well.

Lemma 2. For a Horn-SHZ Q knowledge bas&(B, each
clause fronE( KB) contains at most one positive literal.

Proof. We first show the following property (*): for a Horn
conceptC, all concepts irDef(C') are Horn concepts. The
proof is by induction on the recursion depthDrf. The in-
duction base foA(C) = 0 is obvious. Consider an applica-
tion of Def(C'), whereC' is a Horn concept ang a position
of a subconcept of’, such thatC|, is not a literal concept
and, for each positiog below p, C|, is a literal concept.
Observe that in all cases, we hap (a) = pl(C,p) and
pl"(ma) = 1 — pl(C,p). We now consider two cases, de-
pending orpol(C, p):

e pol(C,p) = 1. Now we haveplt(-a U C|,) =
pl* (=a) + pI" (Cl,) = pI" (ma) +pl(C,p) = 1. Fur-
thermorepl(C,p) = pl(Cla]p, p), S0Ca], is Horn.

e pol(C,p) = —1. Now we havepl™ (—a L =C|,)
pl™ (=a) + pI~(C|,) = pI" (=) + pI(C,p) = 1. Fur-
thermorepl(C, p) = pl(C[-c],, p), SOC[-a], is Horn.

Hence, each application of the operaff decomposes a
Horn concept into two simpler Horn concepts, so (*) holds.
Furthermore, for eact’|, or -C|, in the definition ofDef,
each immediate subconcept is a literal.

For D € Def(C), by definition ofr from Table 1, it is easy
to see thapl™ (D) gives the maximal number of positive lit-
erals occurring in a clause fro@is(Vz : 7, (D, z)). Thus, if
C'is a Horn concept, all clauses fro@is(C') contain at most
one positive literal. Finally, clauses obtained by tratistp
RBox and ABox axioms of)( KB) also contain at most one
positive literal. O

As stated by the following lemma, a basic superpositio

inference, when applied to Horn premises, produces a Hor

conclusion. The full proof of the lemma is given[iHustadt
et al, 20044.

n

Obviously, the conclusiodo(to], V Co V Do has only one
positive literal. Similar considerations hold for a paratue
lation into a negative literal. O

By Lemma 2 and 3, ifKB is a HornSHZ Q knowledge
base, therDD(KB) is a non-disjunctive program. This is
enough for the following result:

Theorem 3. For KB an extensionally reduced Horn knowl-
edge base in any logic betweehC and SHZ Q, deciding
KB (un)satisfiability, and deciding wheth&fB = (-)C(a)
with |C| bounded, i€-complete in.AJ.

Proof. Membership inP is a consequence of the fact that
DD(KB) is a non-disjunctive program, whose satisfiability
can be checked in polynomial tinfBantsinet al.,, 2001.

For hardness, consider the well-knowrcomplete prob-
lem of deciding whether a path from a node to a node
a, in a graphG exists[Papadimitriou, 1993 For a graph
G, let KB¢ be a knowledge base containing the assertions
edge(a, b) and edge(b, a) for each edgda,b) in G, the ax-
iomsC/(a;y) and—-C/(a,,), and the TBox axion®’ C Vedge.C.
Obviously,a; is reachable froma,, if and only if KB is un-
satisfiable, thus implyind®-completeness of unsatisfiability
checking. The other inference problems can be reduced to
unsatisfiability as usual. O

5 Discussion

To better understand the results from the previous two sec-
tions, we contrast them with well-known results for (digjun
tive) datalog[Dantsinet al,, 200]. Since datalog has been
successfully applied in practice, this analysis givesrege

ing insights into the practical applicability of DLs.

Interestingly, the data complexity of datalog variants ahd
correspondingSHZ Q fragments coincide. Namely, without
disjunctions, & HZ Q knowledge base and a datalog program
always have at most one model, which can be computed in
polynomial time. With disjunctions, several models are-pos
sible, and this must be dealt with using reasoning-by-cases
Intuitively, one needs to “guess” a model, which increases
data complexity taNP.

The key difference between datalog and DLs is revealed
by considering the effects that various parameters havieeon t
complexity. For a datalog prograi and a ground ator,
checking whetheP = « can be performed in timé(|P|"),
wherev is the maximal number of distinct variables in a rule
pf P [Vardi, 1999. Namely, the problem can be solved by
groundingP, i.e. by replacing, in each rule &f, all variables
with individuals fromP in all possible ways. The size of the
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