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Abstract

Max-SAT is an optimization version of the well-
known SAT problem. Itis of great importance from
both a theoretical and a practical point of view. In
recent years, there has been considerable interest
in finding efficient solving techniquellsinet et

al., 2003; Xing and Zhang, 2004; Shen and Zhang,
2004; de Givryet al, 2003. Most of this work
focus on the computation of good quality lower
bounds to be used within a branch and bound algo-
rithm. Unfortunately, lower bounds are described
in a procedural way. Because of that, it is difficult
to realize thdogic that is behind.

In this paper we introduce a logical framework for
Max-SAT solving. Using this framework, we in-
troduce an extension of the Davis-Putnam algo-
rithm (that we call Max-DPLL) and the resolution
rule. Our framework has the advantage of nicely
integrating branch and bound concepts such as the
lower and upper bound, as well as hiding away
implementation details. We show that Max-DPLL
augmented with a restricted form of resolution at
each branching point is an effective solving strat-
egy. We also show that the resulting algorithm is
closely related with some local consistency proper-
ties developed for weighted constraint satisfaction
problems.

Introduction

Since the eighties, bothoolean satisfiabilityand constraint

satisfactionhave been the topic of intense algorithmic re-
search. In both areas, the goal is to assign values to variabl
in such a way that no forbidden combination of values appe
in the solution. In satisfiability, forbidden combinations are
specified by means afauses In constraint satisfaction they

are specified by means of arbitrargnstraints Given its sim-

ilarity, it is hardly a surprise that both research communitie

have developed closely related techniques.

In both fields, the original decision problem (SAT and
CSP, respectively) has been augmented to deal with unfe

that best respects the clauses/constraints. Two well-known
examples are Max-SAfHansen and Jaumard, 199and
weightedCSP (WCSP]Bistarelli et al, 1999, where most

of recent algorithmic work has focused. In both cases the
importance of the clauses/constraints is given byeight

and the goal is to minimize the sum of weights associated
with the clauses/constraints violated by the assignment. It is
known that Max-SAT instances can be translated into WCSP
instances and vice verfde Givryet al, 2009. In both cases

the main solving technique are enumeration algorithms based
on branch and bound search.

In the CSP side, several local consistency properties have
been recently generalized to the WCSP framew@&oper,
2003; Larrosa and Schiex, 2004; 2003; de Gistyl., 2009.

As a result, a new family of algorithms have been proposed.

Besides being efficient, these algorithms have a highly desir-

able property: they can be neatly described as a basic back-
tracking search in which certain local consistency property is

enforced at every search state.

In [de Givryet al, 2003, it was shown that Max-SAT in-
stances could be efficiently solved by translating them into
equivalent WCSP instances and later using a WCSP solver.
The level of local consistency maintained by the WCSP
solver was fundamental in the efficiency of the algorithm.

In this paper we analyze the interpretation of WCSP lo-
cal consistency properties and related algorithms when ap-
plied to Max-SAT instances. To facilitate the connection, we
start by providing a reformulation of Max-SAT in which it
is possible to explicitly express a lower and an upper bound
of the optimal cost (Section 3). Such reformulation makes
possible an elegant extension of DPLL in which each branch-
ing point is just a Max-SAT instance, similarly to what hap-
pens with DPLL in SAT (Section 4). In Section 5 we present

ur main contribution: a generalization of the resolution rule

VA xV B = AvB) and the proof that neighborhood reso-
ution (i.e., a restricted form of resolution) suffices to enforce
(weighted) node and arc consistency. In Section 6 we put our
approach in context with other Max-SAT algorithms. Finally,

é'n Section 7 we provide conclusions and directions of future
W

£ Preliminaries

sible problems (namely, not all the clauses or constraint$n the sequeX = {xi,...,xs} will denote a set of boolean

can be satisfied).

The new goal is to find an assignmeniariables. They take values over the §ef}, which stands



for true andfalse respectively. Aliteral | is either a variable Example 1 Consider the formula {(x,1),(y,5),(Xx V

X or its negatiorx. | stands for the negation of y,2),(xVy,4)}, with T = 5. The second clause is hard. The
If variablex is instantiated td, notedx < t literal x is sat-  assignment x= f,y = f is not a model because its cost is

isfied and literak is falsified. Similarly, ifx is instantiatedto 1@®4 = T. The assignmentx-t,y < f is a (optimal) model

f, Xis satisfied and is falsified. Anassignmenis an instanti-  with cost2.

ation of a subset of the variables. The assignmetniisplete Note that in Max-SAT truth tables are tables with a cost

if it instantiates all the variables i (otherwise it is partial). associated to each truth assignments. A brute-force solving

An assignment satisfies a clause (i.e., a disjunction of litermethod consists in computing the truth table of the input for-

als)C iff it satisfies one or more of its literals. It satisfies a setmula and finding the minimal cost model. For instance, the

of clauses¥ iff it satisfies all its clauses. A satisfying com- truth-table of the previous formula is,

plete assignment is callednaodel Given a boolean formula

encoded by a set of clausgs the SAT problem consists in xy| cost
determining whether there is any model for it or not. ft | 1led4=T
We will use the symbolD to denote theempty clause ft |1eT=T
which, obviously, cannot be satisfied. Whene & we say tf 2
that there is an explicitontradiction tt T

When there is no model for the formula, one may be

: e : : - It is worth mentioning the role of the empty clause, w).
interested in finding the complete assignment with minimumc. . 9 X )
number of violated clauses. This problem is known as Ma>TS'ncelIt cgnnc:ﬁt be s:atlsﬂew,le_nl! lbe added to t?ehcost of a'?y
SAT. model. Thereforewis an explicittower bouncdof the optimal

model. When the lower bound and the upper bound have the
same value (i.e(d,T) € F) the formula does not have any

3 An equivalent reformulation of Max-SAT model and we call this situation an explictintradiction

There is aveightedversion of Max-SAT in which (weighted)
clauses are paif€, w) such thaC is a classical clause and o
is the cost of iter‘aIsif)ication. In weight@dax-SATY is a set 4 Generalization of DPLL to Max-SAT

of \{veighted clauses. The cost _of an _a_ssignment is t_he sum of 1 Max-SAT Basic Simplification Rules

weights of all the clauses that it falsifies. The goal is to find

complete assignments with minimal cost. We make the usudbAT solvers take advantage from some equivalence rules that
assumption of weights being natural numbers. are used to simplify the CNF formula without changing its set

It is easy to see that Max-SAT and weighted Max-SAT of models. Not all of these formulas can be applied directly to
have exactly the same expressive power. A Max-SAT in‘Max-SAT. In this Section we state some useful Max-SAT spe-
stance can be rewritten as a weighted instance replacing egific rules. We use the notatidR, ...,Q] = [R,...,§, where
ery clauseC by a weighted clauséC,1). A weighted Max- PQ,... are weighted clauses. It means that if there are in
SAT instance can be rewritten as a Max-SAT instance replac¥ weighted clauses matching wifR . .., Q], they can be re-
ing every weighted clauséC,w) by w copies of clause€. placed by[R,...,§. A andB are arbitrary disjunctions of
Clearly, weighted Max-SAT encodings may be exponentiallyliterals.
more compact than Max-SAT. Thus, in the following, we will )
assume, without loss of generality, weighted Max-SAT. e BRL (A T),(AVB,W)] = [(A T)]

Following previous work in weighted constraint satisfac- e BR2: [(A,w), (A u)] = [(A,w® U)]
tion [Larrosa and Schiex, 20D4ve assume the existence of
a known upper bount of the optimal solution. This is also ~ ® BR3: If W@ u =T) then [(Aw),(AV B,u)] =
done without loss of generality because, if a tight upper bound [(A W), (AVB, T)]
isi not known,k can be set to the sum of weights of all the ¢ BR4: [(A,0)] =[]
clauses.

Consider the setF of weighed clauses. We say that a BR1 shows that classical absorption can only be applied
modelis acomplete assignment with cost less tharMax- ~ when the absorbing clause is hard. BR2 generalizes the
SAT is the problem ofinding a model of minimal castf standard idempotency of the conjunction: In Max-SAT the
there is any. weights of the repeated clauses must be added in the result-

Observe that weights > k indicate that the associated ing clause. BR3 is used to harden a soft clause. BR4 indi-
clausemust be necessarily satisfiebhus, we can replace ev- cates that cost-free clause can be eliminated. The correctness
ery weightw > k by k without changing the problem. Thus, of these equivalences is direct and we omit the proof.
without loss of generality we assume all costs in the interva

[0..K] and, accordingly, redefine the sum of costs as ‘Example 2 Consider the formula {(x,1),(x1),(x v

) y,3),(xVyVvz1l}, with T =5 We can apply BR which
a®b=min{a+b,k} produces{(x,2), (xVy,3), (xVyVvz1)}. Now, we can apply

in order to keep the result within the interval. For convenienceBR3, producing{(x,2), (xVy, T), (xVyVvz1)}. Finally, BRL

of notation, we will refer tok as T. We say that a weighted Produces{(x,2),(xVy, T)}. The equivalence between the

clause ishard (or mandatory) iff its weight iS”. Observe that ~ original and _the final formula can be checked by constructing
Max-SAT with T = 1 is equivalent to SAT. and comparing the costs of the two truth-tables.



4.2 Max-DPLL

1
Davis Putnan{DPLL) is the most popular algorithm for SAT,
and the starting point of most state-of-the-art sohi@avis 3
et al, 1964. It takes as input a CNF formulg and de- 4
cides whether or not there exists a model. In this Section, ve
present a natural extension of DPLL to Max-SAT that we céll
Max-DPLL. Let ¥ be a weighted CNF formula andits up- 7
per bound. Max-DPLLS, T) returns the cost of the optimal
model of ¥ if there is such a model, else it returfis The

Function Max-DPLL(F,T) : nat

F :=UP(¥);

if (O,T) € ¥ thenreturn T;

if F =0then return 0;

if & ={(0,w)}thenreturn w,

| :=SelectLit(F);

v:=Max-DPLL(F[1],T);

v:=Max-DPLL(Z[1],v);
|_return v;

following description is inspired by the description of DPLL Algorithm 1: Max-DPLL. ¥ is a set of weighted clauses with

given in[Bacchus, 200R

all weights in the intervalo,..., T]. If the weighted formula

As in classical SAT, Max-DPLL performs basic simplifi- has models, Max-DPLL returns the cost of the optimal one,
cations on its input prior to invoking itself recursively. The else it returnsl

instantiationof a variable by forcing the satisfaction of a lit-

erall, denotedf [I] produces a new formula generated from point is the mean over 10 instances. The results of Max-

F as follows: all clauses containirigare eliminated, and
is removed from all clauses where it appeatit Clause

DPLL are those labelled asP (ignore, for the moment, the
other curves). As can be observe, the performance of the al-

Reduction(UCR) is another simplification rule that selects gorithm degenerates as the number of clauses increases.
a clause(l, T) (namely, a unit hard clause) and instantiates™ \jax-DPLL can be enhanced lominanceules that ex-
the corresponding variable in accordance to the literal in thaﬂoit situations where it is easy to detect that one literal is

clause.Unit Propagation(UP) is the algorithm that performs
UCR and the basic simplification rules BRY until either
(a) a contradiction is achieved, dp)(there are no more pos-
sible simplifications to do.

Example 3 Consider the application ofUP to the for-
mula {(0,1),(x4),(x1),(%3),(%;1).(X v ¥ v z1)},
with T = 5 Rule BR transforms it into
{(D,l),(X,Tl, (Xa 1)a(y73)7(y7 1)7()( \ y N Z?_l)}' _ UCR
instantiatesX and produces (O, 3), (y,3), (¥,1),(yV z1)}.
Again BR3 produces{(0,3),(y, T),(y,1),(yV z1)}, which
allows UCR to instantiate y{(0,4),(z1)}. Again BR
produces {(0,4),(z,T)}, which UCR to instantiate z
producing the trivial{(O0,4)}. The model of the original

never worse than its negation. A well-known SAT case, also

applicable to Max-SAT, is theure literal rule It says that

if there is a literal such that it appears in the formula and its

negation does not appear, then all clauses mentioning it can
be removed. More sophisticated dominance rules for Max-

SAT and WCSP can be found {iXing and Zhang, 2004;

de Givry, 2004.

5 Resolution for Max-SAT

While DPLL seems to be the best option to find modeds;
olution might be more appropriate to detect contradictions.
[Robinson, 196bshowed that the resolution rule is sound
and complete for SAT, although it is usually too space con-

formula(x,y,z) can be constructed by tracking back the truth gyming. In the SAT context, the performance of DPLL has

assignments made by UCR.

A recursive description of Max-DPLL is given in Algo-

been improved by the addition of limited forms of resolution
at each search nod&elder, 1995; Rish and Dechter, 2000;

rithm 1. First,UP is applied to the input formula (line 1). If Bacchus, 2002; Draket al, 2003 in order to anticipate the

the resulting formula contains a contradiction, the algorithmdetection of dead-ends. In this section we generalize the res-
returnsT and backtracks (line 2). Else, if it does not contain ©lution rule to Max-SAT. Then we show that some local con-

any variable the trivial cost of the optimal model is returnedsSistency techniques used fbarrosa and Schiex, 20D4re

(lines 3 and 4). Otherwise, an arbitrary litefals selected
(line 5). The formula is instantiated withand!l and Max-

just the application of a restricted form of the weighted reso-

lution rule.
First we define theubtractionof weights ©): Leta,b e

DPLL is recursively called with each case (lines 6 and 7).
Observe that the first recursive call is made with thmher-
ited from its parent, but the second call uses the output of the

[0,..., T] be two weights such that> b,

first call. This implements the typical upper bound updating
of branch and bound. Finally, the best value of the two re-
cursive calls is returned (line 8). Note that if Max-DPLL is
executed with a SAT instance (i.€.,= 1) it behaves exactly
as DPLL.

Figure 1 reports some empirical evaluation of Max-DPLL
on 40-variable random instances of Max-2-SAT and Max-3-
SAT generated with th€nfgengeneratot. The horizontal

axis indicates the number of clauses and the vertical axis in-

dicates the search effort as the number of visited nodes. Eac

1A. van Gelder ftp://dimacs.rutgers.edu/
pub/challenge/satisfiability/contributed/UCSC/instances

a—b
T

axT

a@b:{ a=T

Theweighted resolutionule (RES) is defined as,

(AVB,m)

(xVA,ucm)
(xVB,wem)
(xVAVB,m)
(xVAVB,m)

(xVAuU), (XVB,w) =

thereA andB are arbitrary disjunctions of literals amd=
min{u,w}. Variablex is called the clashing variable. Ob-
serve that in thas = w = T case the fourth and fifth new
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well known that in the SAT case (i.g, = 1) the rule is com-
plete (its application suffices to achieve a contradiction). We
are still investigating under which other cases the complete-
ness of RES is guaranteed. One important problem we have
detected is that the fourth and fifth new weighted formulas
(i.e.,(xVAVB,m), (xVAVB,m)) may not be in conjunctive
normal form.

5.1 Neighborhood Resolution

Neighborhood ResolutidCha and Iwama, 1996s the clas-
sical resolution rule restricted to pairs of clauses that differ
only in the clashing variable. Similarly, in the Max-SAT con-
text we define the neighborhood resolution rule (NRES) as
RES restricted to thA = B case, which simplifies to,

(A,m)
(xVAU), (XVAW) = { (xVA,ucm)
(XVAwem)

whith m = min{u,w}. This rule is specially useful because
it projects toA costs that were implicit in the formula. We
demonstrate the interest of NRES considering its application
to bounded-size clauses. Let NRE&:note NRES restricted

to |A| = k. NRES yields,

0 500 1000 1500 2000 2500 3000
n. of clauses _ (Dv m)
(ou), (w) = ¢ (x,uom)
Figure 1: Experimental results on random Max-2SAT (top) (x,wem)

and Max-3SAT (bottom).

This rule is extremely useful because it produces a direct
increment of the lower bound, which may raise a contradic-

clauses can be removed (by BR1), yielding a rule similar tation, or produce new unit clause reductions.

classical resolution. Observe as well that in the w < T ample 4 Consider the formula
case, the second and third new clauses will have weighthnﬁ< 1),(%2),(v.1),(%:1),(z 1)} with T = 3. UP is un-
can be remov_ed (by BR4). In the;éwcase_, either the sec- gpje 4o S|mpll;°y thé problem. Nevertheless, NRESn
ond or the third new clause will have weight 0 and can be, applled to the first and second clauses producing
removed (by BR4). Recall that in RES, the left-hand clause% v,1),(V:1),(z1)}. Appling NRES to the
are replaced by the right-hand, while in classical resolutlothrd and fourth clz;uses produce$ (0, 2), (X, 1), (z 1)}.

right-hand clauses are just added. Using BR8 we obtain{(0,2), (X, T),(z T)}. The two unit
Theorem 1 The transformation rule RES is sound. Namely,clauses can be reduced, produci{@,Z)}.

it preserves the set of models and their cost. It is interesting to observe that the application of NRES
proof 1 The following table contains in the first columns all is somehow similar to the computation of the lower bound
the truth assignments, in the second column the cost of thef [Alsinet et al., 2003. The practical importance of adding
assignment according to the clauses on the left-hand of thBIRES) to Max-DPLL is illustrated in Figure 1. The lines la-
RES rule, and in the third column the cost of the assignmenibelled UP+NRESO report the efficiency of Max-DPLL when
according to the clauses on the right-hand of the RES ruleup is augmented with NRESuntil quiescence. As it can be
As it can be observed, the costs the are same, so the resultinfpserved NREgproduces huge savings over the very ineffi-

problem is equivalent.

cient Max-DPLL.

x AB | Left Right The rule NRESg s,
fff u m@(u@m) (Lm)
;I]E v m@(g@m) (x\/l,u),(i\/l,w)ﬁ{ (xvI,ucm)
xVI,wem
ftt 0 0 Gevl,wom)
tff w | m®(wom) This rule is also of great interest because it increases the
tft 0 0 weight of a unary clauses, which may allow further appli-
ttf w | m@(wem) cation NREg and UCR.
tet 0 0 Example 5 Consider the formula {(x V y,1),(x V

The interest of RES is that it makes explicit some previ-y, 1), (y,1), (z,
ously hidden connection between variablefiandB. It is

1) with T =2
can simplify the problem.

Neither UP nor NRESg
However, NRE®roduces



{(y,1),(y,1),(z,1)} which allows NRE&to transform the The algorithm to enforce NC* introduced [harrosa and
problem into {(0,1),(z,1)}. We can apply BRto the  Schiex, 2004 proves the following result,

unary clause obtaining (0, 1),(z T). Now, UCR produces Corollary 1 UP +NRESy can be implemented with time

{(®,1)}. complexity @n), where n is the number of variables in the
The practical importance of adding NRESo Max-  formula.

DPLL is also illustrated in Figure 1 The lines labelled Definition 3 ¥ is arc-consistent (AC*) iff it is NC* and

UP+NRESO+NRESL1 report the efficiency of Max-DPLL for all pair of variables (x,x;), min{w(ij),w(ij)} = O and

when UP is augmented with NRESand NRES until qui- rall pair ot v A oWy =

escence. As it can be observed, the addition of NR&So min{w(ij),w(ij)} =0

produces huge gains. For the sake of completeness, we al§deorem 4 Let UP +NRESy +NRES; denote the algorithm

evaluate the effect of NRESor k> 1. Obviously, in 2-SAT  that appliesuP, NRES and NRES until quiescence. It en-

it does not have any effect, since the application of NRES forces arc-consistency (AC*).

requires clauses of lengty- 1. In 3-SAT, NRES can only

be applied in the original ternary clauses. Its effect is reporte

in Figure 1 under the label UP+NRES. It can be observed th

roof 4 We only need to proof that the application of
RES guarantees that for all pair of variable$x;,x;),

NRES has a very limited effect. min{w(ij),w(ij)} = 0 andmin{w(ij),w(ij)} = 0. We proof
the first condition (the second is similar). Assume hat
5.2 Neighborhood Resolution and Local w(ij) <w(ij). There are two possible situations. The first
Consistency one is that wij) = T (which implies wij) = T. In that case

: . P . RES will add (x;, T) to the formula. Then, UCR will be
In this Section we relate the simplification rules discusse igger and x will disappear from the formula. The second
along the paper with local consistency properties developeéituation is Wij) < T. Then, the application of NRESvill
for WCSP. In order to do so, we recall that the usual way to, 44 w(ij) to w(i) and replace(x v xj,w(ij)), (% VX w(ij_))
map a Max-SAT instance with a WCSP is to group cIause?) (% VX;,0), (% VX W(ﬂ@W(i.))Jv ) i
mentioning exactly the same set of variables and associa Y VX, 0), 1, W) 1)
them to a cost functiorf defined as follows: Letl/ c F The algorithm to enforce AC* introduced [harrosa and
be the group of clauses over the set of variables X. %/ Schiex, 2004 proofs the following result.

defines a cost functiof with scopeY. Lett be an instanti- Corollary 2 UP +NRES, +NREO can be implemented with

ation of the variables ilY. If t falsifies a claus€C,w) € 7V, e complexity @2). where n is the number of variables in
f(t) =w, elsef(t) = 0. Now it is straightforward to redefine tlhe formuFI)a.Xl y @), w ! . var S|

the WCSP local consistency properties in Max-SAT terms.
In the following consider a boolean formufa wherew(O) . .

denotes the weight of the empty clause(ji) andw(i) the 6 Neighborhood Resolution and

weights of the the unary clausgsandx;, respectively; anal- state-of-the-art Max-SAT lower bounds

ogouslyw(ij), w(ij), w(ij) andw(ij) are the weights of the | the |ast years several algorithms for Max-SAT have been
four possible binary clauses overandx;. If any of these proposed[Alsinet et al, 2003; Xing and Zhang, 2004;

clauses is not ¥ the corresponding weight is 0. Shen and Zhang, 20D4 All these works have in common
Definition 1 7 is node-consistent (NC) iff for all variablg,x ~ & basic branch and bound algorithm. They mainly differ in
w(O) ew(i) < T and WO) dw(i) < T. the lower bound that they uskShen and Zhang, 20D4how

) that their lower bound is better (i.e., higher than or equal) than
Theorem 2 AlgorithmUP enforces the NC property. [Alsinetet al, 2009 and, under some reasonable conditions,

proof 2 Suppose thaf is not NC. Then there is some clause It IS /S0 better thaiiXing and Zhang, 2004 In the follow-

(I,w) € F such that wa) &w = T. Therefore BR can be N9: by means of two examples, we show thi& +NRESo

i i ; i t comparable with them.

applied replacing clausél,w) by (I, T). It will allow the =~ tNRES1is no m -
icati i il elimi Consider the formul&(xV z,1),(xV z,1),(yV z1),(yV
licat f UCR which will el te the cl . _ : 5 L), L L),

appiication © which Wil eliminate the clause z,1)}. Both[Xing and Zhang, 2004and[Shen and Zhang,

Definition 2 ¥ is starnode-consistent (NC¥) iff it is NC and 2004 would compute a lower bound 0. However, NRES
for all variable x, w(i) = 0orw(i) =0 can be applied twice, producing the equivalent formula

Theorem 3 Let UP +NRESy denote the algorithm that ap- {(z1),(z 1)} and now NRE§would transform the problem

; P * into {(0,1)}, which means a lower bound of 1.
pliesuP and NREg until quiescence. It enforces NC*. Consider now the formul(x, 1. (y, 1), (V¥ 1)}. While

proof 3 We only need to proof that the application of NBES both [Xing and Zhang, 2004and[Shen and Zhang, 2004
guarantees that for all variable;xw(i) = 0 or w(i) = 0. As-  would compute a lower bound of 1, NRES cannot be ap-
sume that0 < w(i) < w(i). There are two possible situa- plied, so the implicit lower bound of our algorithm would
tions. The first one is () = T. In that caseUP will trig- be 0. Nevertheless, it is important to observe that, if we en-
ger UCR and xwill disappear from the formula. The sec- code this problem as a weighted CSP and enforce a stronger
ond situation is Wi) < T. Then, the application of NRgS form of consistency called existential directional arc consis-
will add w(i) to w(O) and replace(x,w(i)), (X, w(i)) by  tency (EDAC*de Givryet al, 2004, we transform the for-
(%i,0), (X, w(i) ow(i)). mula into the equivalen{(O,1),(xVy,1)} which also has



an implicit lower bound of 1. The performance of enforcing [Cooper, 200B M. Cooper. Reductions operations in fuzzy
EDAC* on random Max-SAT instances is also illustrated in  or valued constraint satisfactiofruzzy Sets and Systems
Figure 1. As it can be seen, it clearly provides further im-  134(3):311-342, 2003.

provement over the application of the NRES rule. EXperi'[Daviset al, 1963 M. Davis, G. Logemann, and G. Love-
ments on Max-SAT using weighted CSP technology can beé ' |3nq. A machine program for theorem provinGommu-
performed using the freely availattieolbar solver? nications of the ACM5:394—397, 1962.

. [de Givryet al, 20039 S. de Givry, J. Larrosa, P. Meseguer,
7 Conclusions and Future work and T. Schiex. Solving max-sat as weighted cspProc.
Motivated by the success bde Givryet al, 2003 in solving of the 9" CP, pages 363-376, Kinsale, Ireland, 2003.
Max-SAT instances as weighted CSPs, we have studied the LNCS 2833. Springer Verlag.

interpretation of WCSP local consistency properties within[Ole Givryet al, 2009 S. de Givry, F. Heras, J. Larrosa, and

the Max-SAT context. The result of our work is a logical L . . X :
framework for Max-SAT in which the solving process can be MilZal¥z:ncl:%kr:§i§t)(elf1t§ynit:1a:/v?ari;r??e rgjsfstggc}";ngftg??hgfgr to

seen as a set of transformation rules. Interestingly, our ap- |30 “Einburgh, U.K., August 2005,
proach leads to a natural extension of the Davis-Putnam algo- ™ . _ .
rithm as well as an extension of the resolution rule (RES). Théde Givry, 2004 S. de Givry. Singleton consistency and
application of a limited form of RES, called neighborhood —dominance testing for weighted csp. Rmoc. of the &
resolution (NRES), provides an interesting and effective al- Intl. Workshop on Soft Constraints and Preferengeges
gorithm. We have shown the relation between the application 363-376, Toronto, Canada, 2004.
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