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Abstract

This paper investigates the effect of predefining
semantics in modelling the evolution of composi-
tional languages versus allowing agents to develop
these semantics in parallel with the development of
language. The study is done using a multi-agent
model of language evolution that is based on the
Talking Heads experiment. The experiments show
that when allowing a co-evolution of semantics
with language, compositional languages develop
faster than when the semantics are predefined, but
compositionality appears more stable in the latter
case. The paper concludes that conclusions drawn
from simulations with predefined meanings, which
most studies use, may need revision.

1 Introduction
The field of evolutionary linguistics is a rapidly growing field
in contemporary cognitive science. Many studies are based
on computational modelling, where the researchers typically
study aspects of language evolution using models that inte-
grate AI techniques such as multi-agent systems, evolutionary
computation, machine learning, natural language processing
and robotics. See [Cangelosi and Parisi, 2002] for an exten-
sive overview.

One of the most prominent aspects of human language that
is researched concerns the origins and evolution of gram-
matical structures, such as compositionality. Composition-
ality refers to representations (typically utterances in lan-
guages) in which the meaning of the whole is a function of
the meaning of its parts. Studies into the origins and evo-
lution of compositionality have yielded models that can suc-
cessfully explain how compositionality may emerge. Most
models have semantic structures built in, so the agents only
have to acquire a mapping from signals to these mean-
ings, together with their syntactic structures [Brighton, 2002;
Kirby, 2002; Smith et al., 2003]. Only few models have con-
sidered how compositional structures can arise through a co-
evolution between syntax and semantics, where the semantics
are grounded through interactions with the world and develop
from scratch [Steels, 2004; Vogt, 2005].

Naturally, the two approaches yield different results.
Whereas in [Brighton, 2002; Kirby, 2002; Smith et al., 2003]

it takes a number of generations until compositionality arises,
in studies where the syntax co-develops with the seman-
tics compositionality arises from the first generation [Steels,
2004; Vogt, 2005]. Why is this difference? In this paper, the
answer is sought by starting off with an implementation of
Vogt’s model, which was based on Kirby’s model, but without
predefined semantics, and then comparing this with a model
in which the semantics is predefined, as in Kirby’s model.

The next section presents some background relating to
Kirby’s and Vogt’s model. Section 3 presents the model
which is our starting point. The results are presented in Sec-
tion 4 and discussed in Section 5.

2 Background
In the context of this paper, compositionality is defined as a
representation of which the meaning of the whole can be de-
scribed as a function of the meaning of its parts. For instance,
the meaning of the expression “red apple” is a function of the
meaning of “red” and the meaning of “apple”. As a conse-
quence, it is possible to substitute one part with another to
form a new meaning as in the expression “green apple”. In
contrast, there are holistic representations in which the mean-
ing of the whole cannot be described as a function of the
meaning of its parts. For instance, the expression “kick the
bucket” in the meaning of dying is a holistic phrase.

It has been repeatedly shown that compositional structures
can arise from initially holistic structures (i.e. structures with
no compositionality) using the iterated learning model (ILM)
[Brighton, 2002; Kirby, 2002; Smith et al., 2003]. In the ILM
the population at any time consists of adults and children.1

The children learn from the linguistic behaviour of adults.
After a learning episode (or iteration), the adults are removed
from the population, the children becomes new adults and
new children enter the population and the process repeats.
Kirby and others have shown that, given an induction mech-
anism that can induce compositional structures, an initially
holistic language can change into a compositional one after
a number of iterations, provided the language is transmitted
through a bottleneck.

The transmission bottleneck entails that children only ob-
serve a part of the expressible meanings of the language. As-
suming the children are equipped with a learning mechanism

1In most ILMs there is only one adult and one child.



to discover and store compositional structures whenever pos-
sible, these structures tend to remain in the language because
they allow an agent to communicate about previously unseen
meanings. Suppose, for instance, you only have observed
the expressions “ab”, “ad” and “cb” meaning p(m), q(m)
and p(n) resp.. If you have no way to discover a composi-
tional structure, you would not be able to express the mean-
ing q(n). However, if you have the ability to acquire com-
positional structures such as S -> A/x B/y, where A/m
-> a or A/n -> c, and B/p(x) -> b or B/q(x) ->
d, you would be able to form the sentence “cd” to express
the meaning q(n). If an agent has acquired the language
through a bottleneck, it may have to produce expressions
about previously unseen meanings when it has become an
adult. If there is no bottleneck, the children are expected to
have learnt the entire language, so no compositionality is re-
quired and typically does not evolve.

In Kirby’s model, all agents (adults and children alike) are
equipped with the same predefined predicate argument se-
mantics. Naturally this is unrealistic, since it is widely ac-
knowledged that human children are born without innate se-
mantics. The question is therefore: to what extent does pre-
defining the agents’ semantics influence the results of such
simulations?

To investigate this question, Vogt [2005] implemented a
simulation based on Kirby’s model, but without predefining
the semantics. In Vogt’s model (described below), the seman-
tics of individual agents develop in parallel with the language
learning. This way, the semantics of adult agents differ from
the children’s.

Vogt [2005] showed that, even without a bottleneck, rela-
tively high levels of compositionality developed very early in
the simulation. It was hypothesised that this rapid emergence
of compositionality has to do with the statistical nature of the
input given to the agents (both from the environment and sig-
nals). Furthermore, it was shown that under certain condi-
tions, e.g., when a bottleneck on transmission was absent,
this compositionality was unstable. In those cases, the lan-
guages gradually (though sometimes suddenly) transformed
into holistic languages. One possible explanation for such
a transition was based on the ontogenetical development of
meaning.

The study in this paper investigates the effect of predefin-
ing the semantics as opposed to semantic development with
respect to the rapid development of compositionality and to
the stability of the compositional structures. More concrete, a
number of simulations will be presented in which the model
is gradually changed from the model reported by Vogt [2005]
to a model with predefined semantics as reported in Kirby
[2002]. The aim is to verify the two possible explanations
mentioned.

3 The model
The model is implemented in Vogt’s Talking Heads simula-
tor THSim [Vogt, 2003].2 In this simulation, a population of
agents can develop a language that allows them to commu-
nicate about a set of geometrical coloured objects that form

2Available at http://www.ling.ed.ac.uk/˜paulv/thsim.html.

action result
1 sensing the environment context
2 select topic topic
3 discrimination game meaning
4 decoding expression
5 encoding topic
6 evaluate success feedback
7 induction grammar

Table 1: A brief outline of the guessing game. Step 2 and 4
are performed only by the speaker, steps 5 and 7 only by the
hearer, and all other steps by both agents.

the agents’ world. Language development is controlled by
agents playing a series of guessing games, cf. [Steels, 1997].
The description of the model provided below lacks many de-
tails and motivations. Unfortunately this is unavoidable due
to the lack of space in this paper. For further details, consult
[Vogt, 2005].

The guessing game (GG) is briefly outlined in Table 1. The
game is played by two agents: a speaker and a hearer. Both
agents sense the situation (or context) of the game. The con-
text

�
consists of a given number of geometrical coloured

objects. For each object ��� , the agents extract a feature vec-
tor � �����
	���
�	
��
�	���
�	���� , where 	�� are features in a specified
quality dimension [Gärdenfors, 2000]. These dimensions re-
late to a sensed quality, which in the current implementation
is one of the components of the rgb colour space ( 	 � 
�	 � 
�	 � )
or a shape feature 	�� indicating the shape of the object.

The speaker selects one object from the context as the topic
�
� of the game (step 2, Table 1) and plays a discrimination
game [Steels, 1997] to find a category that distinguishes the
topic � � from the other objects in the context �
��� ��� � � � �
(step 3). To this aim, each individual agent constructs an on-
tology containing categorical features (CF), which are points� � � in some quality dimension ! . Each feature 	�� is cate-
gorised with that categorical feature � � � such that the distance" 	��$# � �%� "

is smallest.
Combining the CFs of each quality dimension constructs a

category & � for object � � . The category & � is a point in a ' -
dimensional space. If the category for the topic ��� is different
from the categories of all other objects in the context, the DG
succeeds. If no distinctive category is found, then each fea-
ture 	�� of the topic’s feature vector �(� is used as an exemplar
to form new CFs � � � , which are added to the ontology. This
way, the ontology is built up from scratch.

The distinctive category resulting from the DG serves as
the ‘whole meaning’ of � � , where the whole meaning can
be considered as a holistic semantic category. Semantic cat-
egories are represented by conceptual spaces [Gärdenfors,
2000]. A conceptual space is spanned by ' quality dimen-
sions and contain ' -dimensional categories &�� formed from
' CFs � � . The holistic semantic category is spanned by
all 4 quality dimensions. Other semantic categories include
any possible configuration of quality dimensions, such as a
colour conceptual space (spanned by the rgb qualities), a
1-dimensional shape space and a ‘redgreen’ space spanned
by the r and g components of the rgb space. The whole



���
S -> greycircle/ ��� ��� 
 � ��� 
 � � � 
 � ���	���

S -> A/rgb B/s���
A -> red/ ��
 ��
	��� 
�� � ����
B -> square/ ��

������
B -> triangle/ � ����
 ��
�
 � �

Table 2: A constructed example grammar. In the example S,
A and B are non-terminals.

� �
is a holistic rule that rewrites to

an expressiongreycirclewith meaning ����� ��
 ��� ��
 ��� ��
 � � � � .��

is a compositional rule that rewrites to non-terminals A

and B that form linguistic categories associated with the se-
mantic categories indicated by the quality dimensions rgb
(for the colour space) and s (for the shape space). Each non-
terminal rewrites to another expression and meaning. (Note
that an expression can be associated with more than one
meaning as in

���
.)

meaning can thus be formed by a holistic category, of by a
combination of more lower dimensional categories. There are
two constraints in the current model: (1) All quality dimen-
sions should be used exactly once. (2) Only combinations of
2 semantic categories are allowed. During their development,
agents learn (or discover) which semantic categories are use-
ful to form a compositional language. (In one experiment,
though, these are predefined.)

A composition � � � may be of only one holistic rule (e.g.,� � � � ���
in Table 2), or of several rules, such as � � � ���
���������� �
, which combines a colour with shape (note that

the operator
�

is used to connect terminal rules (
���

and
� �

)
with compositional rules such as

� 

). Each rule

� � has a rule
weight � � and – for the terminal rules – each possible mean-
ing of a rule has the weight weight � � , both indicating the
effectiveness of a rule and meaning.3 These weights are used
to compute a score �
� indicating the effectiveness of the rule
based on past experiences. If the rule

� � is a terminal rule,� � � � � � � ; if
� � is a compositional rule (such as

��

), � � � � � .

Given the composition � � � , one can calculate the composi-
tion score �� !� � �#" �%$'&)(+* � � . When a rule/meaning pair is
used successfully in the guessing game, the weights � � and � �
are increased, while the weights of competing rules/meanings
are inhibited. The score �� #� � � " is used to select among com-
peting compositions.

When the speaker obtained a distinctive category from the
DG, it tries to decode an expression (step 4, Table 1). To
this aim, the speaker searches its grammar , for composi-
tions of rules that match the distinctive category (or meaning).
So, the meaning ������� 
 ����� 
 ����� 
 � � �	� can be decoded into the ex-
pression greycircle using

���
and meaning �-

� 
	� � 
�� � 
 
��	�

into redsquare using
��
.�����.��� �

. (Note that elements
such as 
 � and 
 � are CFs with value 1 and dimension r and
s respectively.) If there is more than one composition that
can decode a meaning, the composition with the highest score�� #� � �!" is selected. This implements a selection mechanism
favouring effective compositions.

If there is no composition that decodes the meaning, a new
rule is constructed that either decodes a part of the meaning,

3The actual implementation of /10 is more complex, but for the
purpose of this paper, the current explanation suffices.

or that decodes the meaning holistically. The former case
is true if the speaker wanted to decode, for instance, mean-
ing �-
�� 
�� � 
	� � 
 � � �	� using the grammar of Table 2. The part��
�� 
�� � 
	� ��� can be decoded using composition

� 
 ��� � �3254
,

where
254

is the undecoded part. A new rule of the form B ->
circle/ �-� � � � is then constructed to fill in

264
. In the model,

expressions are constructed at random from a limited alpha-
bet 7 of size

" 7 " � 
8� and with length 9 , where :<;%9=;%> ,
with a frequency distribution ?@ A9 "CB � D

to implement a bias
toward short strings.

The decoded expression is uttered to the hearer, which tries
to encode this expression (step 5). The hearer does not know
which object ��� � �

is the topic, and its aim is to guess this
using the verbal hint received. To do this, the hearer first
plays a DG for each individual object � � � �

, thus resulting
in a set of possible meanings for the expression. Then the
hearer searches its grammar for compositions that can parse
the expression and of which the meaning matches one of the
possible meanings. If there are more than one, the hearer
selects the one with highest score �� #� � � " and guesses that
the object of the corresponding meaning is the topic.

This information is passed back to the speaker, who verifies
if the guess is correct and provides the hearer with feedback
regarding to the outcome (step 6). If the game succeeds, the
weights of used rules are increased, while competing ones are
inhibited using the equation E �GF EIHJ �
 #'FK"�L , where E is
a weight ( � � or � � ), and L � 
 if the weight is increased andL��M� if it is inhibited. (Note that a rule is competing if it can
decode an expression for the topic or encode the expression
received. Meanings compete when they belong to the same
used rule, but are not the ones used, see, e.g.,

� �
.) If the

game fails, the speaker provides the hearer with the correct
topic and the hearer will then try to induce new knowledge
(step 7).

Induction proceeds in up to three of the following steps (if
one step succeeds, induction stops):

1. Exploitation. If there is a composition that partially
decodes the expression, the remaining gaps are filled.
For instance, if the hearer hears “redcircle” and the
topic (indicated by the speaker) has distinctive category��
�� 
�� � 
	� � 
 � ���	� , then it can decode the expression par-
tially using composition

� � �N���8�3264
, covering meaning��
 ��
�����
	��� � . In that case, the hearer will add the rule B

-> circle/ �-� � � � to its grammar.

2. Chunking. If exploitation fails, the hearer will investi-
gate whether it can chunk the expression-meaning pair
based on stored (holistic) expression-meaning pairs re-
ceived in the past. (These pairs are stored in an instance
base.) This is done by looking for alignments in the
received expression with stored expressions and align-
ments in the distinctive category with stored meanings.
If more chunks are possible, the chunk that has occurred
most frequently or that has the largest common string is
actually pursued.
For instance, if the instance base contains an entry with
expression-meaning pair “pinkcircle”- ��

� 
 �PO
� 
 �PO�� 
 � � �	�
and the hearer tries to induce knowledge from
receiving the expression-meaning pair “greencircle”-



� ����
 
 ��
	��� 
 � � � � , the following alignment is present:
“greencircle”- � � ��
 
 ��
	��� 
 � � � � .4 Based on this align-
ment the following new rules are added: S ->
C/rgb D/s, C -> pink/ �-
�� 
 ��O�� 
 ��O�� � , C ->
green/ � ���

 
 ��
	� � � and D -> circle/ ��� � � � .

3. Incorporation. If chunking fails too, the hearer
will incorporate the expression-meaning pair holis-
tically. For instance, if the expression-meaning
pair is: “wateva”- � � �

 � : � 
 � : � 
 ��O � � , the rule S ->
wateva/ � ���

 � : � 
 � : � 
 ��O � � is added to the grammar.

At the end of the induction step, a post-operation called
generalise and merge is performed to generalise even further
and to eliminate redundancies. Redundancies can occur when
new rules are created that are basically similar to already ex-
isting ones. The above example of chunking, for instance,
yielded the construction of the rule S -> C/rgb D/swith
additional filler rules. This rule, however, is in essence the
same as rule

���
from Table 2. Therefore, this new rule is re-

moved (merged) and the non-terminals of the additional filler
rules are replaced with the letters A and B. In addition, given a
newly added rule B -> circle/ �-� ��� � and the rules of Ta-
ble 2, rule

� �
can be chunked (generalised) as well, leading

to the new rule A -> grey/ �-��� ��
 � � � 
 � � � � . (Note that the
old rules such as

���
remain in the grammar.)

The language game model is integrated with the iterated
learning model. In this model, the population contains

�

adults and
�

children. Whenever a GG is played, the speaker
is selected from the adult population and the hearer from the
child population. After a given number of guessing games,
all adults are replaced by the children, and new children enter
the population. Such an iteration then repeats.

4 Results
A number of experiments were done with the above model,
three of which are reported here. Each condition was car-
ried out both without and with a transmission bottleneck. If
a transmission bottleneck was imposed, a set of 60 objects
were selected at random from the world of 120 objects at the
start of each iteration. These 60 objects were then the ob-
jects about which the agents could communicate during that
iteration.

Each experiment contained a population of 3 adults and
3 children. The experiments were run for 250 iterations of
6000 guessing games each. At the end of an iteration, the
population was tested before the adults were replaced by the
children and new children entered the population. In each
test phase, 200 contexts were constructed. In every context
one object was chosen as topic, and all agents then tried to
encode an expression, which in turn all other agents tried to
decode. From this phase, various measures were calculated of
which compositionality is the measure reported in this paper.
Compositionality is calculated as the ratio between the num-
ber of compositional rules used (both encoded and decoded)
and the total number of utterances produced and interpreted.
The testing phase always used the entire world of 120 objects.

4Alignments are only allowed if they appear at the start or the
end of an expression, and if they are connected.
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Figure 1: Compositionality as a function of iterations for ex-
periments 1 (top), 2 (middle) and 3 (bottom). All experiments
were done both without (left) and with (right) a transmission
bottleneck. Each line represents one simulation run.

no bottleneck bottleneck
2 250 2 250

1 0.74 � 0.01 0.16 � 0.11 0.69 � 0.04 0.93 � 0.01
2 0.68 � 0.01 0.76 � 0.14 0.64 � 0.04 0.93 � 0.02
3 0.30 � 0.03 0.35 � 0.26 0.48 � 0.03 0.91 � 0.02

Table 3: The results of the first three experiments, both with-
out and with bottleneck. For each condition compositionality
is given for the end of the 2nd iteration and the end of the
250st iteration.

Experiment 1 The first experiment was done with exactly
the same model as described in the previous section. Here all
meanings developed from scratch in parallel to the develop-
ment of the grammar.

Experiment 2 In experiment two, all agents were given a
repertoire of categorical features. With these CFs, the agents
could form categories right from the start, but they did not
have any idea how to combine the different dimensions to
form conceptual spaces as the basis of the semantic struc-
tures.

Experiment 3 In the third experiment, the semantic structure
was predefined. All agents were given CFs as in experiment
2 and an additional constraint that semantic categories (i.e.
conceptual spaces) were either colours, shapes or the whole
(holistic) meaning.

Figure 1 and Table 3 show the results of these three experi-



ments both without (left) and with (right) a transmission bot-
tleneck. The development of compositionality in experiment
1 is shown in the top graphs. As can be seen, in both cases
compositionality emerged to a rather high level in the first few
iterations ( � �PO�� � � � � 
 without and � � ��� � � � � � with a bottle-
neck, see Table 3, row 1). After that, compositionality tended
to be instable and eventually died away in favour of holistic
languages if no bottleneck was present (this was confirmed in
simulations run for 500 iterations). With a transmission bot-
tleneck, compositionality rapidly kept rising to a stable value
of around 0.93. Only one simulation showed a sudden dra-
matic decrease in compositionality around iteration 200, but
soon recovered to its previous level.

When the agents have predefined CFs, but had to learn the
semantic structures (experiment 2, middle graphs), the initial
levels of compositionality were slightly lower than in exper-
iment 1. In the case where there was no bottleneck, compo-
sitionality remained in most cases at the same level, and in
some cases even increased to levels near 1. When there was a
bottleneck, compositionality rose in the same way to similar
levels as in experiment 1.

In the case where the semantics, including their structures,
were predefined (experiment 3, bottom graphs), the results
were quite different from the other two experiments. In both
cases, the initial levels were substantially lower, although –
in contrast to the other experiments – compositionality was
lower without a bottleneck ( � � � � � � � � � ) than with a bottle-
neck ( � � ��> � � � � � ). When no bottleneck was imposed, com-
positionality increased to 0.8 in one simulation run, it rose
in a few other cases, but often it remained at the same level
or decreased. When a bottleneck was imposed, the composi-
tionality revealed a similar increase as in the two other exper-
iments with a bottleneck.

5 Discussion
The experiments in this paper investigate the hypothesis that
the statistical nature of the semantic structure can explain
the rapid development of compositionality and the hypothesis
that the instability of compositionality in some circumstances
had to do with the ontogenetical development of meaning.
The experiments further investigate the effect of imposing a
bottleneck on the transmission of language on the develop-
ment of compositionality.

All experiments reveal that when a bottleneck is imposed,
compositionality develops rapidly to a high and stable degree,
thus confirming the results achieved earlier by Kirby and oth-
ers [Brighton, 2002; Kirby, 2002; Smith et al., 2003]. When
no bottleneck is imposed, the behaviour of the different ex-
periments is more different from each other, which will be
discussed in the remainder of this section.

There are two types of observations: First, when no seman-
tic structure is imposed (experiments 1 and 2), high levels of
compositionality are achieved within two iterations. Second,
when no categorical features are predefined (experiment 1),
compositionality is unstable, whereas in other cases, compo-
sitionality is either stable (experiment 2) or may emerge at a
later stage (experiment 3).

Let me start discussing the first observation. The prob-

� � � �	�
� 

r gbs 0.297
g rbs 0.200
b rgs 0.256
rg bs 0.117
rb gs 0.144
gb rs 0.117
rgb s 0.075

Table 4: Probability of finding co-occurring structures in di-
mension

�
in two different games, assuming the values in�

differ. Assuming that
4 � can have any possible value in

the space of
�

(indicated by
4 � � �

) and � � any value in
the space of

�
, then

� � � �  4 � � �
� � � � � " and��
 � �  4 
 � 4 � � � 
 � � � � � 
 � " " . The values are based on
the distribution of feature values, which are not presented in
this text.

lems the agents learn is to discover regularities in the seman-
tic space (which reflects the feature space of the objects) in
combination with regularities in the signal space. It was hy-
pothesised that the rapid development of compositionality in
experiment 1 (and 2) was caused by the statistical properties
of the semantic space on one hand and the signal space on the
other [Vogt, 2005]. Because signals tend to be short and are
constructed from a limited alphabet, the likelihood of find-
ing alignments in this space is high. Since this aspect is not
varied, all experiments had the same likelihood.

The chances for finding regularities in the semantic space,
however, is much higher when no structure is predefined. In
experiment 3, the structure for combining the rgb space with
the shape s space was imposed. Given there are 12 colours
and 10 shapes, there are 
8:�� 
 � � 
 : � different ways to form
semantic structures of these 120 objects. However, when
no structure is imposed, the combinations r-gbs, g-rbs,
b-rgs, rg-bs, rb-gs and bg-rs are possible ways to
combine the 4 quality dimensions as well. Since, for in-
stance, in the r dimension there are 40 different objects (4
colours and 10 shapes) that can have feature value 	 � � � .
In a rough estimation, the probability

� �
of finding a one of

these objects in game is proportional to
���� 
 � . The probability��


of finding another object with 	�� � � in another game
is
��
 B ���� 
 � . So, the probability of finding a co-occurring

structure in the r dimension with 	 � � � in two consecutive
games is:

� � ����
 BM� ��
 � > . Now, if we look at objects of the
same colour, e.g., blue (i.e. with 	�� �M� 
�	�� � 
 and 	
� �M� ),
then the chance of finding a blue object in the first game is��� B ���� 
 � and a different blue object in the second game is��
 B �� 
 � , so finding this co-occurrence is

� � ����
 BG� � ��� � .
Table 4 shows the co-occurrence probabilities for all ob-

jects involving similar values in one or more dimensions of
the colour space. The values shown are the probabilities
summed over all possible values in a conceptual space. As
the table shows, when considering the entire colour space
rgb, the co-occurrence probability is much lower than when
searching for a co-occurring structure in the r space. So
clearly, when an agent is able to construct any possible
combination of semantic categories as in experiment 1, the



chances of finding co-occurring structures is much higher
than when it is restricted only to using rgb-s as in exper-
iment 3. Hence, compositionality in experiment 1 emerges
faster than in experiment 3.

Interestingly, when there is a bottleneck on the transmis-
sion of language and stable compositional systems emerge,
the most dominant rules (i.e. the type of rules that were used
most frequently) combine the colour space rgb and the shape
space s. When there is no bottleneck, the most frequently
used compositional rule combined r with gbs. This can be
understood by realising that when half of the objects are dis-
carded, the co-occurrence probability in the rgb-s structure
is more or less maintained, while the other probabilities are
affected differently in each iteration. This is because the dis-
tribution of colours and shapes is less skewed than the distri-
butions in the other dimensions. (Recall that each iteration a
different set of objects is selected to learn from.) As a result,
the rgb-s structure can be learnt most reliably.

The second observation that compositionality is unstable in
the absence of bottlenecks when categorical features are not
predefined can be explained by realising the consequences of
the gradual development of CFs. The foremost difference is
that at the start of an iteration adults have a well developed
set of CFs, while the children have none. During develop-
ment, the children gradually acquire a similar set of CFs, but
initially these CFs are overgeneralisations of the final cate-
gories. Nevertheless, the children may – in certain situations
– categorise some objects distinctively, thus successfully fin-
ishing a discrimination game.

As a consequence, these children can successfully learn the
words associated with these categories. However, since the
CFs are overgeneralisations of the adults’ CFs, the children’s
CFs may be associated with more than one word. This is
even more the case when realising that different adults can
have different words to name a CF. When the children ac-
quire more fine grained CFs, the words may become associ-
ated with different CFs than was the case for the adults. This
way, the words can drift through the conceptual space. When
the language is compositional, the movement in one semantic
category affects a larger part of the language than it would
when the language is holistic. Hence, holistic languages are
more stable and thus easier to learn. When the CFs are prede-
fined, there is less or no reason for overgeneralisations. This,
in turn, allows children to acquire any compositional struc-
ture of their adults more reliably, which – in part – explains
why compositionality is more stable (experiment 2) or even
emerges (experiment 3). The results of experiment 3 are very
similar to those reported in [Smith et al., 2003], while the re-
sults of experiment 2 is highly dissimilar. It is yet unclear
whether the predefined semantics of Smith et al. are more
similar to the ones used in experiment 2 or 3, though the re-
sults suggest that the semantics are more similar to the one
used in experiment 3.

Concluding, both hypotheses tested in this paper are
confirmed. In addition, the major findings of [Brighton,
2002; Kirby, 2002; Smith et al., 2003] that compositional-
ity emerges under the pressure of a transmission bottleneck

are confirmed in all tested conditions. Hence, the assumption
they made on predefining semantics to simplify their models
appears valid. However, predefining the meanings – either
with or without structure – can affect the results achieved in
simulations of language evolution to a great extent, so one
should be very careful in interpreting results achieved with
such ungrounded models. This does not mean that the current
grounded model on language evolution is sufficiently realis-
tic to make hard claims regarding the evolution of language.
However, the model is more realistic than ungrounded mod-
els in that in this model children do not have the same full-
fletched semantic structures as adults.
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