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Abstract

Reasoning about agent preferences on a set of al-
ternatives, and the aggregation of such preferences
into some social ranking is a fundamental issue in
reasoning about multi-agent systems. When the set
of agents and the set of alternatives coincide, we get
the ranking systems setting. A famous type of rank-
ing systems are page ranking systems in the con-
text of search engines. In this paper we present an
extensive axiomatic study of ranking systems. In
particular, we consider two fundamental axioms:
Transitivity, and Ranked Independence of Irrele-
vant Alternatives. Surprisingly, we find that there
is no general social ranking rule that satisfies both
requirements. Furthermore, we show that our im-
possibility result holds under various restrictions on
the class of ranking problems considered. Each of
these axioms can be individually satisfied. More-
over, we show a complete axiomatization of ap-
proval voting using one of these axioms.

1 Introduction

The ranking of agents based on other agents’ input is fun-

damental to multi-agent systems (see e[&esnicket al,

200d). Moreover, it has become a central ingredient of a va-
riety of Internet sites, where perhaps the most famous exam-

ples are Google’s PageRank algoriffifageet al., 1999 and
eBay'’s reputation systdResnick and Zeckhauser, 2401

for) agentb then this may influence the credibility of a re-
port byb on the importance of agent these indirect effects
should be considered when we wish to aggregate the infor-
mation provided by the agents into a social ranking.

Notice that a natural interpretation/application of thé¢-s
ting is the ranking of Internet pages. In this case, the set of
agents represents the set of Internet pages, and the lorks fr
a pagep to a set of page® can be viewed as a two-level
ranking where agents iQ are preferred by agent(pagejo
the agents(pages) which are notin The problem of find-
ing an appropriate social ranking in this case is in fact the
problem of (global) page ranking. Particular approaches fo
obtaining a useful page ranking have been implemented by
search engines such as Godgegeet al., 1999.

The theory of social choice consists of two complementary
axiomatic perspectives:

e The descriptive perspective: given a particular nufer
the aggregation of individual rankings into a social rank-
ing, find a set of axioms that are sound and complete
for r. That is, find a set of requirements thasatis-
fies; moreover, every social aggregation rule that satis-
fies these requirements should coincide withA result
showing such an axiomatization is termeckpresenta-
tion theoremand it captures the exact essence of (and
assumptions behind) the use of the particular rule.

e The normative perspective: devise a set of requirements
that a social aggregation rule should satisfy, and try to
find whether there is a social aggregation rule that satis-
fies these requirements.

This basic problem introduces a new social choice model.
In the classical theory of social choice, as manifested byany efforts have been invested in the descriptive approach
Arrow[1963, a set of agents/voters is called to rank a set ofin the framework of the classical theory of social choice. In
alternatives. Given the agents’ input, i.e. the agentsi-ind that setting, representation theorems have been presented
vidual rankings, a social ranking of the alternatives isggen major voting rules such as the majority riMay, 1953. Re-
ated. The theory studies desired properties of the agdgoegat cently, we have successfully applied the descriptive mrsp
of agents’ rankings into a social ranking. In particular; Ar tive in the context of ranking systems by providing a repnese
row’s celebrated impossibility theoréarrow, 1963 shows tation theorerfAltman and Tennenholtz, 200%or the well-
that there is no aggregation rule that satisfies some minimanown PageRank algorithfiPageet al., 1994, which is the
requirements, while by relaxing any of these requiremegmis a basis of Google’s search technology.
propriate social aggregation rules can be defined. The novel An excellent example for the normative perspective is Ar-
feature of the ranking systems setting is that the set oftagenrow’s impossibility theorem mentioned above. [[Fennen-
and the set of alternativesincide. Therefore, in such setting holtz, 2004, we presented some preliminary results for rank-
one may need to consider the transitive effects of voting. Foing systems where the set of voters and the set of altersative
example, if agent reports on the importance of (i.e. votes coincide. However, the axioms presented in that work consis



of several very strong requirements which naturally leaahto o
impossibility result. o °“°
In this paper we provide an extensive study of ranking sys-

tems. We introduce two fundamental axioms. One of these

axioms captures the transitive effects of voting in ranlapsr

tems, and the other adapts Arrow’s well-known independence Figure 1: Example of Transitivity
of irrelevant alternatives(I1A) axiom to the context of kamg

systems. Surprisingly, we find that no general ranking Systnen agent should be ranked higher than agénThis notion
tem can simultaneously satisfy these two axioms! We furthe[s formally captured below:

show that our impossibility result holds under variousrniest - .
tions on the class of ranking problems considered. On th&€finition 3.1. Let I be a ranking system. We say thit
atisfiesstrong transitivityif for all graphsG = (V, E) and

other hand, we show that each of these axioms can be indivig- . . : X
ually satisfied. Moreover, we use our IIA axiom to present aor all verticesv:, v; € V: Assume thgre Is a 1-1 mapping
positive result in the form of a representation theoremffier t /- £(v1) — P(v2) s.t. forallv € P(v1): v < f(v). Further
well-known approval voting ranking system, which ranks the2Ssume that eithet is not onto or for some € P(v1): v <
agents based on the number of votes received. This axiond-(V)- Then,vl = b2 o
atization shows that when ignoring transitive effectsyehs Consider for example the graph in Figure 1 and any
only one ranking system that satisfies our 1A axiom. ranking system#" that satisfies strong transitivityF” must
This paper is structured as follows: Section 2 formally de-fank vertexd below all other vertices, as it has no predeces-
fines our setting and the notion of ranking systems. Sec8ons Sors, unlike all other vertices. If we assume that(; b, then
and 4 introduce our axioms of Transitivity and Ranked Inde-by strong transitivity we must conclude thatz£ ¢ as well.
pendence of Irrelevant Alternatives respectively. Ourrmai But then we must conclude that<Z a (asb's predecessor
impossibility result is presented in Section 5, and furthera is ranked lower tham's predecessat, anda has an addi-
strengthened in Section 6. Our positive result, in the formtional predecessat), which leads to a contradiction. Given
of an axiomatization for the Approval Voting ranking system b <% a, again by transitivity, we must conclude thak, b,
in presented in Section 7. Finally, some concluding remarkso the only ranking for the graph that satisfies strong tran-

are given in Section 8. sitivity is d <& ¢ <E b <L a.
In [Tennenholtz, 2004 we have suggested an algorithm
2 Ranking Systems that defines a ranking system that satisfies strong traitgitiv

by iteratively refining an ordering of the vertices.

Note that the PageRank ranking system defind@ayeet
al., 1999 does not satisfy strong transitivity. This is due to
e _ the fact that PageRank reduces the weight of links (or votes)
Definition 2.1. Let A be some set. ArelatioR C A X A from nodes which have a higher out-degree. Thus, assuming
is called anorderingon A if it is reerxwe,_ transitive, and  yahoo! and Microsoft are equally ranked, a link from Yahoo!
complete. Let.(A) denote the set of orderings oh means less than a link from Microsoft, because Yahoo! links
Notation2.2 Let < be an ordering, then- is the equality to more external pages than does Microsoft. Noting this fact
predicate of<, and< is the strict order induced by. For-  we can weaken the definition of transitivity to require that
mally,a ~ bifand only ifa < bandb < a; anda < bifand  the predecessors of the compared agents have an equal out-
only if a < b but notb < a. degree:

Given the above we can define what a ranking system is: Definition 3.2. Let F be a ranking system. We say that
Definition 2.3. Let Gy be the set of all graphs with vertex Satisfiesweak transitivityif for all graphsG = (V, E) and
setV. A ranking systent is a functional that for every finite  for all verticesv;, v, € V: Assume there is a 1-1 mapping
vertex sel/ maps graph€' € Gy toanordering<be L(V). [ : P(v1) — P(vs) s.t. forallv € P(v1): v 2 f(v) and
If Fis a partial function then it is called partial ranking ~ |[S(v)| = [S(f(v))|. Further assume that eith¢ris not onto
systemotherwise it is called general ranking system or for somev € P(v1): v < f(v). Then,vy < vs.

One can view this setting as a variation/extension of the Indeed, an idealized version of the PageRank ranking sys-
classical theory of social choice as modeled [#yrow, tem defined on strongly connected graphs satisfies this weak-
1963. The ranking systems setting differs in two main prop_ened version of transitivity. Furthermore, the .result ie th
erties. First, in this setting we assume that the set of votexample above does not change when we consider weak tran-
ers and the set of alternatives coincide, and second, we allositivity in place of strong transitivity.
agents only two levels of preference over the alternatass,
opposed to Arrow’s setting where agents could rank alterna4  Ranked Independence of Irrelevant

Before describing our results regarding ranking systenes, w
must first formally define what we mean by the words “rank-
ing system” in terms of graphs and linear orderings:

tives arbitrarily. Alternatives
3 T o A standard assumption in social choice settings is that an
ransitivity agent’s relative rank should only depend on (some property

A basic property one would assume of ranking systems is thaif) their immediate predecessors. Such axioms are usually
if an agent’'s voters are ranked higher than those of agent called independence of irrelevant alternatives(l1A)
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Figure 2: An example of RIIA.

In our setting, we require the relative ranking of two agents
must only depend on the pairwise comparisons of the ranks of

their predecessors, and not on their identity or cardinialeza
Our A axiom, calledrankedllA, differs from the one sug-

gested by[Arrow, 1967 in the fact that we do not consider

the identity of the voters, but rather their relative rank.

For example, consider the graph in Figure 2. Furthermore,
assume a ranking system has ranked the vertices of this

graph as following:a ~ b < ¢ ~ d < e ~ f. Now look
at the comparison betweenandd. c's predecessors, and
b, are both ranked equally, and both ranked lower ttian
predecessof. This is also true when considerirgand f

(a) GraphG

Pl

V]

(b) GraphG4

Figure 3: Graphs for the proof of Theorem 5.1

and for every comparison profitee P thatv; andv, satisfy,
v 2G v e flp) = 1.
As RIIA is an independence property, the ranking system

—e's predecessorsandd are both ranked equally, and both . that ranks all agents equally, satisfies RIIA. A more in-

ranked lower thary’'s predecessar. Therefore, if we agree
with ranked lIA, the relation betweerandd, and the relation

betweere and f must be the same, which indeed it is — both
¢ ~ d ande ~ f. However, this same situation also occurs

when comparing andf (c's predecessorsandb are equally
ranked and ranked lower thgis predecessar), but in this
casec < f. So, we can conclude that the ranking systém

teresting ranking system that satisfies RIIA is the approval
voting ranking system, defined below.

Definition 4.3. The approval voting ranking systemV is
the ranking system defined by:

v1 <&¥ va & |P(v1)] < |P(v2)

which produced these rankings does not satisfy ranked IIA. A full axiomatization of the approval voting ranking sys-
To formally define this condition, one must consider all tem is given in section 7.
possibilities of comparing two nodes in a graph based only

on ordinal comparisons of their predecessors. We call thesg

possibilities comparison profiles:

Definition 4.1. A comparison profileis a pair (a,b)
where a = (a1,...,an), b = (b1,...,bm),
A1,y Qp,b1, o 0by € Ny ap < ag < < G,
andb; < by < --- < b,,. LetP be the set of all such profiles.

A ranking systemF’, a graphG = (V, E), and a pair of
verticesvy,v2 € V are said tosatisfy such a comparison
profile (a, b) if there exist 1-1 mappingg; : P(v1) +—
{1...n} and f : P(v2) — {1...m} such that given
f: ({1} x P(vn1)) U ({2} x P(v2)) — N defined as:

f(l,v) afl(v)
f(Q,U) = bfg(u)a

fi,z) < f(j,y) & = =& yforall (4,2),(j,y) € ({1} x
P(v1)) U ({2} x P(v2)).

For example, in the example considered above, all of th

pairs(c, d), (¢, f), and(e, f) satisfy the comparison profile

((1,1),(2)).

We now require that for every such profile the ranking sys

tem ranks the nodes consistently:

Definition 4.2. Let F' be aranking system. We say thasat-
isfiesranked independence of irrelevant alternatives (RIfA)
there exists a mapping : P — {0, 1} such that for every
graphG = (V, E') and for every pair of vertices;, vy € V

Impossibility
Our main result illustrates the impossibility of satisfyin
(weak) transitivity and RIIA simultaneously.

Theorem 5.1. There is no general ranking system that satis-
fies weak transitivity and RIIA.

Proof. Assume for contradiction that there exists a ranking
systemF’ that satisfies weak transitivity and RIIA. Consider
first the graphG, in Figure 3(a). First, note that; and

ay satisfy some comparison profile, = ((z,y), (z,v))
because they have identical predecessors. Thus, by RIIA,
a1 =& ax & ax =& ay, and thereforen, ~f&  ao.

By weak transitivity, it is easy to see that<g1 a; and

¢ <& b. If we assumé <& a1, then by weak transitivity,

aq <gl b which contradicts our assumption. So we conclude

thate <§ a1 <&, b.

€ Now consider the graplizs in Figure 3(b). Again, by

F

RIIA, a1 ~¢, a2. By weak transitivity, it is easy to see that

a1 <& candb <E_ c. Ifwe assume <. b, then by weak

transitivity, b <gz a1 Which contradicts our assumption. So
we conclude that <&, a1 <& c.

Consider the comparison profile= ((1, 3), (2,2)). Given
F, a1 andb satisfyp in G; (because <gl ay ~g, as <gl
b) and inG, (becausé <&, a1 ~f, ay <&, ¢). Thus, by



RIIA, a1 2£ b4 ap <& b, whichis a contradiction to the
fact thata; <§, bbutb <& a;. O x2) O

. o . . (D)
This result is quite a surprise, as it means that every reason ]
able definition of a ranking system must either consider car&e) o ° @ ]
dinal values for nodes and/or edges (liRageet al., 1999),
or operate ordinally on a global scale (likéltman and Ten- (a) GraphG. (b) GraphG.

nenholtz, 2008.

6 Relaxing Generality

A hidden assumption in our impossibility result is the fact
that we considered only general ranking systems. In this sec
tion we analyze several special classes of graphs that telat
common ranking scenarios.

6.1 Small Graphs

A natural limitation on a preference graph is a cap on the
number of vertices (agents) that participate in the ranking

Indeed, when there are three or less agents involved in the (2)
ranking, strong transitivity and RIIA can be simultanegusl S
satisfied. An appropriate ranking algorithm for this case is () ()
the one we suggested fiennenholtz, 2004

However, when there are four or more agents, strong transi- (c) GraphGs

tivity and RIIA cannot be simultaneously satisfied (the groo

is similar to that of Theorem 5.1, but with vertédxemoved . N

in both graphs). When five or more agents are involved, even  Figure 4: Graphs from the proof of proposition 6.1
weak transitivity and RIIA cannot be simultaneously satis-

fied, as implied by the proof of Theorem 5.1. 1 453 b from x3 <53 d. Now consider the vertex pair

6.2 Single Vote Setting (c,b'). We have shown that; ~§ 2 <{, 41 <&, b So,
Another natural limitation on the domain of graphs that we(¢: ©") s/atls;les the comparison profilél, 1, 2), (3)), thus by
might be interested in is the restriction of each agentéwart RIA V" <¢, ¢. Now consider the vertex pai,a). We
to exactly one vote(successor). For example, in the votinlave already shown that <¢, o' <¢,. ¢ <¢, d. So,(a,b)
paradigm this could be viewed as a setting where every agesatisfies the comparison profil€2, 3), (1,4)), thus by RIIA
votes for exactly one agent. The following proposition seow b <¢;, a. However, we have already shown thak{, b-a
that even in this simple setting weak transitivity and RIIA contradiction. Thus, the ranking systeicannot exist. [
cannot be simultaneously satisfied.

Proposition 6.1. Let G, be the set of all graph& = (V, E) 6.3 Bipartite Setfing

such that/S(v)] = 1 for all v € V. There is no partial In the world of reputation systerf@esnicket al., 2004, we

ranking system ovef; that satisfies weak transitivity and frequently observe a distinction between two types of agent

RIIA. such that each type of agent only ranks agents of the other
type. For example buyers only interact with sellers and vice

Proof. Assume for contradiction that there is a partial rankingversa. This type of limitation is captured by requiring the

systemF over G that satisfies weak transitivity and RIIA. Preference graphs to be bipartite, as defined below.

Let f : P — {0,1} be the mapping from the definition of pefinition 6.2. A graphG = (V, E) is calledbipartite if

RIIA for F. - . there existi;, V3 such thatl’ = Vi U V5, Vi NV, = (), and

_ LetG, € G, bethe graph in Figure 4a. By weak transitiv- £ ¢ (1, x 15) U (V3 x ;). LetG be the set of all bipartite

ity, 21~ x2 <, b <§, a. (a,b) satisfies the comparison graphs.

profile ((1,1,2), (3)), so we must havé((1,1,2), (3)) = 0.

Now let G2 € G; be the graph in Figure 4b. By weak tran-

sitivity z1 ~§. 2o <&, y <&, a <&, b. (b,a) satis-

fies the comparison profil&2, 3), (1,4)), so we must have Proposition 6.3. There is no partial ranking system over

£{(2,3),(1,4)) =0. Gp N G, that satisfies weak transitivity and RIIA.

Let G3 € G, be the graph in Figure 4c. By weak transitiv-
ity it is easy to see that, ~f, --- ~§ x7 <&,y ~&, 6.4 Strongly Connected Graphs

Y2 <&, ¢ =&, d. Furthermore, by weak transitivity we The well-known PageRank ranking system is (ideally) de-
conclude that, <£, banda’ <&, ' frome <&, d; and  fined on the set of strongly connected graphs. That is, the

Our impossibility result extends to the limited domain of
bipartite graphs.



set of graphs where there exists a directed path between a
two vertices.

Let us denote the set of all strongly connected gréphs.
The following proposition extends our impossibility retsial
strongly connected graphs.

Proposition 6.4. There is no partial ranking system over
Gsc.

7 Axiomatization of Approval Voting

epnditions above (anonymity, neutrality, and AllA) are es-
sential and sufficient for a ranking system beid§*. In
addition, we show that as in the classical social choice set-
ting when only considering two-level preferences, positi-
sponse, anonymity, neutrality, and AllA are an essentidl an
sufficient representation of approval voting. This resuk e
tends the well known axiomatization of the majority rule due
to [May, 195%:

Proposition 7.5. (May’'s Theorem) A social welfare func-
tional over two alternatives is a majority social welfarenfu

In the previous sections we have seen mostly negative sesultional if and only if it satisfies anonymity, neutrality, apds-
which arise when trying to accommodate (weak) transitivityitive response.

and RIIA. We have shown that although each of the axioms
can be satisfied seperately, there exists no general ranking

system that satisfies both axioms.
We have previously shodfiennenholtz, 2004a non-
trivial ranking system that satisfies (weak) transitivibyt

have not yet shown such a ranking system for RIIA. In this

We can now formally state our theorem:

Theorem 7.6. Let F' be a general ranking system. Then, the
following statements are equivalent:

1. Fis the approval voting ranking systemE& AV)

section we provide a representation theorem for a ranking 2. F' satisfies positive response, anonymity, neutrality, and

system that satisfies RIIA but not weak transitivity — the ap-

proval voting ranking system. This system ranks the agents

based on the number of votes each agent received, withnor

gard to the rank of the voters. The axiomatization we provide

in this section shows the power of RIIA, as it shows that ther
exists only one (interesting) ranking system that satisfies
without introducing transitive effects.

In order to specify our axiomatization, recall the follogin
classical definitions from the theory of social choice:

The positive response axiom essentially means that if a
agent receives additional votes, its rank must improve:

Definition 7.1. Let F' be a ranking systemF' satisfiespos-
itive responseif for all graphsG = (V,E) and for all
(vi,v2) € (V x V) \ E, and for allvs € V: Let G
(V,E U (v1,v2)). If vg jg V9, thenvs <g/ Va.

The anonymity and neutrality axioms mean that the name
of the voters and alternatives respectively do not matter fo
the ranking:

Definition 7.2. A ranking systent’ satisfiesanonymityif for
all G = (V, E), for all permutationsr : V — V, and for
all vy,v3 € V: Let E' = {(w(v1),v2)|(v1,v2) € E}. Then,
U1 j{‘V,E) V2 = U1 j(V,E’) V2.

Definition 7.3. A ranking system¥’ satisfiemeutralityif for
all G = (V, E), for all permutationsr : V +— V, and for
all vy,v3 € V: Let E' = {(v1,7(v2))|(v1,v2) € E}. Then,
vy i{V,E) V2 & V1 Z(y gy V2-

Arrow’s classical Independence of Irrelevant Alternagive

axiom requires that the relative rank of two agents be depenV’
dant only on the set of agents that preferred one over the othe

Definition 7.4. A ranking systemf’ satisfiesArrow’s Inde-
pendence of Irrelevant Alternatives (AllX)for all G =
(V,E), for all ¢’ (V,E’), and for allv;,v; € V:
Let PG(’Ul) \ PG(’UQ) = PG/(Ul) \ PG/(’UQ) andPG UQ) \
Pg(’l}l) = PG/(’UQ)\PG/(Ul). Then,; %g Vo & V1 jG/ V3.

AllA

3. F satisfies positive response, RIIA, and either one of

e- anonymity, neutrality, and AllIA

Proof. (Sketch) It is easy to see thall satisfies positive

response, RIIA, anonymity, neutrality, and AllA. It remain
to show that (2) and (3) entail (1) above.

To prove (2) entails (1), assume tHasatisfies positive re-
sponse, anonymity, neutrality, and AllA. Lét= (V, E) be
dome graph and lei;,v2 € V be some agents. By AllA,
the relative ranking of; andwvs depends only on the sets
Pg(v1) \ Pa(v2) and Pg(v2) \ Pa(v1). We have now nar-
rowed our consideration to a set of agents with preferences
over two alternatives, so we can apply Proposition 7.5 to-com
plete our proof.

s 10 prove (3) entails (1), assume th&tsatisfies positive
response, RIIA and either anonymity or neutrality or AllA.
As F satisfies RIIA we can limit our discussion to compar-
ison profiles. Letf : P — {0, 1} be the function from the
definition of RIIA. We will use the notatioa < b to mean
f(a,b) = 1,a < btomeanf(b,a) = 0, anda ~ b to
meana < b andb < a.

By the definition of RIIA, it is easy to see that ~
a for all a. By positive response it is also easy to see
that (1,1,...,1) < (1,1,...,1) iff n < m. LetP =
N—— N——
((a1,...,an),(b1,...,by)) be a comparison profile.
G = (V, E) be the following graph :

Let

= {«Tla cee axmax{an.,bm}} )
/ /

{1,y U, 01, oo, 0 U
/ /

U{u1, ooy U, uy,y ey U, ub

E {(@i,vj)li < az} U {(w,u5)]i < bj}U

U{(vi,0)|li =1,...,n}U{(us,uw)li =1,...,m}.

LIn fact, an even weaker condition découplingthat in essence

Our representation theorem states that together with posdiows us to permute the graph structure while keeping thEsd
itive response and RIIA, any one of the three independenceames is sufficient in this case.



Itis easy to see that in the graph v andu satisfy the profile
P. Letw be the following permutation:

The remainder of the proof depends on which additional ax-

vl x =
v X =

— T —
m(z) =4 u, = u;
up T =

z  Otherwise

iom F satisfies:

e If F satisfies anonymity, lek’ = {(7(x),y)|(z,y) €

E}. Note that in the grapliV, E’) v andu satisfy the

profile ((1,1,...,1),(1,1,...,1)), and thus jfvﬂE,)

u & n < m. By anonymityu <y, oy v & u (i g
v, thus proving thaf (P) = 1 < n < mforan arbitrary
comparison profile?, and thust” = AV,

If F satisfies neutrality, leE’ = {(x, 7 (y))|(z,y) €
E}. Note that in the grapkV, E’) v andu satisfy the
profile ((1,1,...,1),(1,1,...,1)), and thus j{VE,)

N N — ’

u < n < m. By neutrality,u ijE) v u jf’V’E,) v,
again showing thaf (P) = 1 < n < m for an arbitrary
comparison profile?, and thust” = AV,

If F satisfies AllA, letE’ = {(z,7(y))|(z,y) € E}
as before. So, also j{vﬁE,) u < n < m. Note that

such systems. In particular, we presented surprising impos
sibility results, and a representation theorem for the ‘well
known approval voting scheme.
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