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Abstract

Reasoning about agent preferences on a set of al-
ternatives, and the aggregation of such preferences
into some social ranking is a fundamental issue in
reasoning about multi-agent systems. When the set
of agents and the set of alternatives coincide, we get
the ranking systems setting. A famous type of rank-
ing systems are page ranking systems in the con-
text of search engines. In this paper we present an
extensive axiomatic study of ranking systems. In
particular, we consider two fundamental axioms:
Transitivity, and Ranked Independence of Irrele-
vant Alternatives. Surprisingly, we find that there
is no general social ranking rule that satisfies both
requirements. Furthermore, we show that our im-
possibility result holds under various restrictions on
the class of ranking problems considered. Each of
these axioms can be individually satisfied. More-
over, we show a complete axiomatization of ap-
proval voting using one of these axioms.

1 Introduction
The ranking of agents based on other agents’ input is fun-
damental to multi-agent systems (see e.g.[Resnicket al.,
2000]). Moreover, it has become a central ingredient of a va-
riety of Internet sites, where perhaps the most famous exam-
ples are Google’s PageRank algorithm[Pageet al., 1998] and
eBay’s reputation system[Resnick and Zeckhauser, 2001].

This basic problem introduces a new social choice model.
In the classical theory of social choice, as manifested by
Arrow[1963], a set of agents/voters is called to rank a set of
alternatives. Given the agents’ input, i.e. the agents’ indi-
vidual rankings, a social ranking of the alternatives is gener-
ated. The theory studies desired properties of the aggregation
of agents’ rankings into a social ranking. In particular, Ar-
row’s celebrated impossibility theorem[Arrow, 1963] shows
that there is no aggregation rule that satisfies some minimal
requirements, while by relaxing any of these requirements ap-
propriate social aggregation rules can be defined. The novel
feature of the ranking systems setting is that the set of agents
and the set of alternativescoincide. Therefore, in such setting
one may need to consider the transitive effects of voting. For
example, if agenta reports on the importance of (i.e. votes

for) agentb then this may influence the credibility of a re-
port byb on the importance of agentc; these indirect effects
should be considered when we wish to aggregate the infor-
mation provided by the agents into a social ranking.

Notice that a natural interpretation/application of this set-
ting is the ranking of Internet pages. In this case, the set of
agents represents the set of Internet pages, and the links from
a pagep to a set of pagesQ can be viewed as a two-level
ranking where agents inQ are preferred by agent(page)p to
the agents(pages) which are not inQ. The problem of find-
ing an appropriate social ranking in this case is in fact the
problem of (global) page ranking. Particular approaches for
obtaining a useful page ranking have been implemented by
search engines such as Google[Pageet al., 1998].

The theory of social choice consists of two complementary
axiomatic perspectives:

• The descriptive perspective: given a particular ruler for
the aggregation of individual rankings into a social rank-
ing, find a set of axioms that are sound and complete
for r. That is, find a set of requirements thatr satis-
fies; moreover, every social aggregation rule that satis-
fies these requirements should coincide withr. A result
showing such an axiomatization is termed arepresenta-
tion theoremand it captures the exact essence of (and
assumptions behind) the use of the particular rule.

• The normative perspective: devise a set of requirements
that a social aggregation rule should satisfy, and try to
find whether there is a social aggregation rule that satis-
fies these requirements.

Many efforts have been invested in the descriptive approach
in the framework of the classical theory of social choice. In
that setting, representation theorems have been presentedto
major voting rules such as the majority rule[May, 1952]. Re-
cently, we have successfully applied the descriptive perspec-
tive in the context of ranking systems by providing a represen-
tation theorem[Altman and Tennenholtz, 2005] for the well-
known PageRank algorithm[Pageet al., 1998], which is the
basis of Google’s search technology.

An excellent example for the normative perspective is Ar-
row’s impossibility theorem mentioned above. In[Tennen-
holtz, 2004], we presented some preliminary results for rank-
ing systems where the set of voters and the set of alternatives
coincide. However, the axioms presented in that work consist



of several very strong requirements which naturally lead toan
impossibility result.

In this paper we provide an extensive study of ranking sys-
tems. We introduce two fundamental axioms. One of these
axioms captures the transitive effects of voting in rankingsys-
tems, and the other adapts Arrow’s well-known independence
of irrelevant alternatives(IIA) axiom to the context of ranking
systems. Surprisingly, we find that no general ranking sys-
tem can simultaneously satisfy these two axioms! We further
show that our impossibility result holds under various restric-
tions on the class of ranking problems considered. On the
other hand, we show that each of these axioms can be individ-
ually satisfied. Moreover, we use our IIA axiom to present a
positive result in the form of a representation theorem for the
well-known approval voting ranking system, which ranks the
agents based on the number of votes received. This axiom-
atization shows that when ignoring transitive effects, there is
only one ranking system that satisfies our IIA axiom.

This paper is structured as follows: Section 2 formally de-
fines our setting and the notion of ranking systems. Sections3
and 4 introduce our axioms of Transitivity and Ranked Inde-
pendence of Irrelevant Alternatives respectively. Our main
impossibility result is presented in Section 5, and further
strengthened in Section 6. Our positive result, in the form
of an axiomatization for the Approval Voting ranking system
in presented in Section 7. Finally, some concluding remarks
are given in Section 8.

2 Ranking Systems
Before describing our results regarding ranking systems, we
must first formally define what we mean by the words “rank-
ing system” in terms of graphs and linear orderings:

Definition 2.1. Let A be some set. A relationR ⊆ A × A
is called anordering on A if it is reflexive, transitive, and
complete. LetL(A) denote the set of orderings onA.

Notation2.2. Let � be an ordering, then' is the equality
predicate of�, and≺ is the strict order induced by�. For-
mally, a ' b if and only if a � b andb � a; anda ≺ b if and
only if a � b but notb � a.

Given the above we can define what a ranking system is:

Definition 2.3. Let GV be the set of all graphs with vertex
setV . A ranking systemF is a functional that for every finite
vertex setV maps graphsG ∈ GV to an ordering�F

G∈ L(V ).
If F is a partial function then it is called apartial ranking
system, otherwise it is called ageneral ranking system.

One can view this setting as a variation/extension of the
classical theory of social choice as modeled by[Arrow,
1963]. The ranking systems setting differs in two main prop-
erties. First, in this setting we assume that the set of vot-
ers and the set of alternatives coincide, and second, we allow
agents only two levels of preference over the alternatives,as
opposed to Arrow’s setting where agents could rank alterna-
tives arbitrarily.

3 Transitivity
A basic property one would assume of ranking systems is that
if an agenta’s voters are ranked higher than those of agentb,

a

b
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Figure 1: Example of Transitivity

then agenta should be ranked higher than agentb. This notion
is formally captured below:
Definition 3.1. Let F be a ranking system. We say thatF
satisfiesstrong transitivityif for all graphsG = (V, E) and
for all verticesv1, v2 ∈ V : Assume there is a 1-1 mapping
f : P (v1) 7→ P (v2) s.t. for allv ∈ P (v1): v � f(v). Further
assume that eitherf is not onto or for somev ∈ P (v1): v ≺
f(v). Then,v1 ≺ v2.

Consider for example the graphG in Figure 1 and any
ranking systemF that satisfies strong transitivity.F must
rank vertexd below all other vertices, as it has no predeces-
sors, unlike all other vertices. If we assume thata �F

G b, then
by strong transitivity we must conclude thatb �F

G c as well.
But then we must conclude thatb ≺F

G a (asb’s predecessor
a is ranked lower thana’s predecessorc, anda has an addi-
tional predecessord), which leads to a contradiction. Given
b ≺F

G a, again by transitivity, we must conclude thatc ≺F
G b,

so the only ranking for the graphG that satisfies strong tran-
sitivity is d ≺F

G c ≺F
G b ≺F

G a.
In [Tennenholtz, 2004], we have suggested an algorithm

that defines a ranking system that satisfies strong transitivity
by iteratively refining an ordering of the vertices.

Note that the PageRank ranking system defined in[Pageet
al., 1998] does not satisfy strong transitivity. This is due to
the fact that PageRank reduces the weight of links (or votes)
from nodes which have a higher out-degree. Thus, assuming
Yahoo! and Microsoft are equally ranked, a link from Yahoo!
means less than a link from Microsoft, because Yahoo! links
to more external pages than does Microsoft. Noting this fact,
we can weaken the definition of transitivity to require that
the predecessors of the compared agents have an equal out-
degree:
Definition 3.2. Let F be a ranking system. We say thatF
satisfiesweak transitivityif for all graphsG = (V, E) and
for all verticesv1, v2 ∈ V : Assume there is a 1-1 mapping
f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v) and
|S(v)| = |S(f(v))|. Further assume that eitherf is not onto
or for somev ∈ P (v1): v ≺ f(v). Then,v1 ≺ v2.

Indeed, an idealized version of the PageRank ranking sys-
tem defined on strongly connected graphs satisfies this weak-
ened version of transitivity. Furthermore, the result in the
example above does not change when we consider weak tran-
sitivity in place of strong transitivity.

4 Ranked Independence of Irrelevant
Alternatives

A standard assumption in social choice settings is that an
agent’s relative rank should only depend on (some property
of) their immediate predecessors. Such axioms are usually
called independence of irrelevant alternatives(IIA) axioms.
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Figure 2: An example of RIIA.

In our setting, we require the relative ranking of two agents
must only depend on the pairwise comparisons of the ranks of
their predecessors, and not on their identity or cardinal value.
Our IIA axiom, calledrankedIIA, differs from the one sug-
gested by[Arrow, 1963] in the fact that we do not consider
the identity of the voters, but rather their relative rank.

For example, consider the graph in Figure 2. Furthermore,
assume a ranking systemF has ranked the vertices of this
graph as following:a ' b ≺ c ' d ≺ e ' f . Now look
at the comparison betweenc andd. c’s predecessors,a and
b, are both ranked equally, and both ranked lower thand’s
predecessorf . This is also true when consideringe andf
– e’s predecessorsc andd are both ranked equally, and both
ranked lower thanf ’s predecessore. Therefore, if we agree
with ranked IIA, the relation betweenc andd, and the relation
betweene andf must be the same, which indeed it is – both
c ' d ande ' f . However, this same situation also occurs
when comparingc andf (c’s predecessorsa andb are equally
ranked and ranked lower thanf ’s predecessore), but in this
casec ≺ f . So, we can conclude that the ranking systemF
which produced these rankings does not satisfy ranked IIA.

To formally define this condition, one must consider all
possibilities of comparing two nodes in a graph based only
on ordinal comparisons of their predecessors. We call these
possibilities comparison profiles:

Definition 4.1. A comparison profile is a pair 〈a,b〉
where a = (a1, . . . ,an), b = (b1, . . . ,bm),
a1, . . . , an, b1, . . . , bm ∈ N, a1 ≤ a2 ≤ · · · ≤ an,
andb1 ≤ b2 ≤ · · · ≤ bm. LetP be the set of all such profiles.

A ranking systemF , a graphG = (V, E), and a pair of
verticesv1, v2 ∈ V are said tosatisfysuch a comparison
profile 〈a,b〉 if there exist 1-1 mappingsf1 : P (v1) 7→
{1 . . . n} and f2 : P (v2) 7→ {1 . . .m} such that given
f : ({1} × P (v1)) ∪ ({2} × P (v2)) 7→ N defined as:

f(1, v) = af1(v)

f(2, u) = bf2(u),

f(i, x) ≤ f(j, y) ⇔ x �F
G y for all (i, x), (j, y) ∈ ({1} ×

P (v1)) ∪ ({2} × P (v2)).

For example, in the example considered above, all of the
pairs(c, d), (c, f), and(e, f) satisfy the comparison profile
〈(1, 1), (2)〉.

We now require that for every such profile the ranking sys-
tem ranks the nodes consistently:

Definition 4.2. LetF be a ranking system. We say thatF sat-
isfiesranked independence of irrelevant alternatives (RIIA)if
there exists a mappingf : P 7→ {0, 1} such that for every
graphG = (V, E) and for every pair of verticesv1, v2 ∈ V

b
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Figure 3: Graphs for the proof of Theorem 5.1

and for every comparison profilep ∈ P thatv1 andv2 satisfy,
v1 �F

G v2 ⇔ f(p) = 1.

As RIIA is an independence property, the ranking system
F=, that ranks all agents equally, satisfies RIIA. A more in-
teresting ranking system that satisfies RIIA is the approval
voting ranking system, defined below.

Definition 4.3. The approval voting ranking systemAV is
the ranking system defined by:

v1 �AV
G v2 ⇔ |P (v1)| ≤ |P (v2)|

A full axiomatization of the approval voting ranking sys-
tem is given in section 7.

5 Impossibility
Our main result illustrates the impossibility of satisfying
(weak) transitivity and RIIA simultaneously.

Theorem 5.1. There is no general ranking system that satis-
fies weak transitivity and RIIA.

Proof. Assume for contradiction that there exists a ranking
systemF that satisfies weak transitivity and RIIA. Consider
first the graphG1 in Figure 3(a). First, note thata1 and
a2 satisfy some comparison profilepa = ((x, y), (x, y))
because they have identical predecessors. Thus, by RIIA,
a1 �F

G1
a2 ⇔ a2 �F

G1
a1, and thereforea1 'F

G1
a2.

By weak transitivity, it is easy to see thatc ≺F
G1

a1 and
c ≺F

G1
b. If we assumeb �F

G1
a1, then by weak transitivity,

a1 ≺F
G1

b which contradicts our assumption. So we conclude
thatc ≺F

G1
a1 ≺F

G1
b.

Now consider the graphG2 in Figure 3(b). Again, by
RIIA, a1 'F

G2
a2. By weak transitivity, it is easy to see that

a1 ≺F
G2

c andb ≺F
G2

c. If we assumea1 �F
G2

b, then by weak
transitivity, b ≺F

G2
a1 which contradicts our assumption. So

we conclude thatb ≺F
G2

a1 ≺F
G2

c.
Consider the comparison profilep = ((1, 3), (2, 2)). Given

F , a1 andb satisfyp in G1 (becausec ≺F
G1

a1 'F
G1

a2 ≺F
G1

b) and inG2 (becauseb ≺F
G2

a1 'F
G2

a2 ≺F
G2

c). Thus, by



RIIA, a1 �F
G1

b ⇔ a1 �F
G2

b, which is a contradiction to the
fact thata1 ≺F

G1
b butb ≺F

G2
a1.

This result is quite a surprise, as it means that every reason-
able definition of a ranking system must either consider car-
dinal values for nodes and/or edges (like[Pageet al., 1998]),
or operate ordinally on a global scale (like[Altman and Ten-
nenholtz, 2005]).

6 Relaxing Generality
A hidden assumption in our impossibility result is the fact
that we considered only general ranking systems. In this sec-
tion we analyze several special classes of graphs that relate to
common ranking scenarios.

6.1 Small Graphs
A natural limitation on a preference graph is a cap on the
number of vertices (agents) that participate in the ranking.
Indeed, when there are three or less agents involved in the
ranking, strong transitivity and RIIA can be simultaneously
satisfied. An appropriate ranking algorithm for this case is
the one we suggested in[Tennenholtz, 2004].

However, when there are four or more agents, strong transi-
tivity and RIIA cannot be simultaneously satisfied (the proof
is similar to that of Theorem 5.1, but with vertexd removed
in both graphs). When five or more agents are involved, even
weak transitivity and RIIA cannot be simultaneously satis-
fied, as implied by the proof of Theorem 5.1.

6.2 Single Vote Setting
Another natural limitation on the domain of graphs that we
might be interested in is the restriction of each agent(vertex)
to exactly one vote(successor). For example, in the voting
paradigm this could be viewed as a setting where every agent
votes for exactly one agent. The following proposition shows
that even in this simple setting weak transitivity and RIIA
cannot be simultaneously satisfied.

Proposition 6.1. Let G1 be the set of all graphsG = (V, E)
such that|S(v)| = 1 for all v ∈ V . There is no partial
ranking system overG1 that satisfies weak transitivity and
RIIA.

Proof. Assume for contradiction that there is a partial ranking
systemF over G1 that satisfies weak transitivity and RIIA.
Let f : P 7→ {0, 1} be the mapping from the definition of
RIIA for F .

Let G1 ∈ G1 be the graph in Figure 4a. By weak transitiv-
ity, x1 'F

G1
x2 ≺F

G1
b ≺F

G1
a. (a, b) satisfies the comparison

profile 〈(1, 1, 2), (3)〉, so we must havef〈(1, 1, 2), (3)〉 = 0.
Now let G2 ∈ G1 be the graph in Figure 4b. By weak tran-
sitivity x1 'F

G2
x2 ≺F

G2
y ≺F

G2
a ≺F

G2
b. (b, a) satis-

fies the comparison profile〈(2, 3), (1, 4)〉, so we must have
f〈(2, 3), (1, 4)〉 = 0.

Let G3 ∈ G1 be the graph in Figure 4c. By weak transitiv-
ity it is easy to see thatx1 'F

G3
· · · 'F

G3
x7 ≺F

G3
y1 'F

G3

y2 ≺F
G3

c ≺F
G3

d. Furthermore, by weak transitivity we
conclude thata ≺F

G3
b anda′ ≺F

G3
b′ from c ≺F

G3
d; and

a b

x1

x2

(a) GraphG1

a bx1

x2 y

(b) GraphG2

a’

b b’

a

x1

c
x2

x3 y1

x4 y2

d

x5

x6

x7

(c) GraphG3

Figure 4: Graphs from the proof of proposition 6.1

y1 ≺F
G3

b from x3 ≺F
G3

d. Now consider the vertex pair
(c, b′). We have shown thatx1 'F

G3
x2 ≺F

G3
y1 ≺F

G3
b. So,

(c, b′) satisfies the comparison profile〈(1, 1, 2), (3)〉, thus by
RIIA b′ ≺F

G3
c. Now consider the vertex pair(b, a). We

have already shown thata′ ≺F
G3

b′ ≺F
G3

c ≺F
G3

d. So,(a, b)
satisfies the comparison profile〈(2, 3), (1, 4)〉, thus by RIIA
b ≺F

G3
a. However, we have already shown thata ≺F

G3
b – a

contradiction. Thus, the ranking systemF cannot exist.

6.3 Bipartite Setting

In the world of reputation systems[Resnicket al., 2000], we
frequently observe a distinction between two types of agents
such that each type of agent only ranks agents of the other
type. For example buyers only interact with sellers and vice
versa. This type of limitation is captured by requiring the
preference graphs to be bipartite, as defined below.

Definition 6.2. A graphG = (V, E) is calledbipartite if
there existV1, V2 such thatV = V1 ∪ V2, V1 ∩ V2 = ∅, and
E ⊆ (V1 ×V2)∪ (V2 ×V1). LetGB be the set of all bipartite
graphs.

Our impossibility result extends to the limited domain of
bipartite graphs.

Proposition 6.3. There is no partial ranking system over
GB ∩ G1 that satisfies weak transitivity and RIIA.

6.4 Strongly Connected Graphs

The well-known PageRank ranking system is (ideally) de-
fined on the set of strongly connected graphs. That is, the



set of graphs where there exists a directed path between any
two vertices.

Let us denote the set of all strongly connected graphsGSC .
The following proposition extends our impossibility result to
strongly connected graphs.

Proposition 6.4. There is no partial ranking system over
GSC .

7 Axiomatization of Approval Voting
In the previous sections we have seen mostly negative results
which arise when trying to accommodate (weak) transitivity
and RIIA. We have shown that although each of the axioms
can be satisfied seperately, there exists no general ranking
system that satisfies both axioms.

We have previously shown[Tennenholtz, 2004] a non-
trivial ranking system that satisfies (weak) transitivity,but
have not yet shown such a ranking system for RIIA. In this
section we provide a representation theorem for a ranking
system that satisfies RIIA but not weak transitivity — the ap-
proval voting ranking system. This system ranks the agents
based on the number of votes each agent received, with no re-
gard to the rank of the voters. The axiomatization we provide
in this section shows the power of RIIA, as it shows that there
exists only one (interesting) ranking system that satisfiesit
without introducing transitive effects.

In order to specify our axiomatization, recall the following
classical definitions from the theory of social choice:

The positive response axiom essentially means that if an
agent receives additional votes, its rank must improve:

Definition 7.1. Let F be a ranking system.F satisfiespos-
itive responseif for all graphs G = (V, E) and for all
(v1, v2) ∈ (V × V ) \ E, and for allv3 ∈ V : Let G′ =
(V, E ∪ (v1, v2)). If v3 �F

G v2, thenv3 ≺F
G′ v2.

The anonymity and neutrality axioms mean that the names
of the voters and alternatives respectively do not matter for
the ranking:

Definition 7.2. A ranking systemF satisfiesanonymityif for
all G = (V, E), for all permutationsπ : V 7→ V , and for
all v1, v2 ∈ V : Let E′ = {(π(v1), v2)|(v1, v2) ∈ E}. Then,
v1 �F

(V,E) v2 ⇔ v1 �F
(V,E′) v2.

Definition 7.3. A ranking systemF satisfiesneutrality if for
all G = (V, E), for all permutationsπ : V 7→ V , and for
all v1, v2 ∈ V : Let E′ = {(v1, π(v2))|(v1, v2) ∈ E}. Then,
v1 �F

(V,E) v2 ⇔ v1 �F
(V,E′) v2.

Arrow’s classical Independence of Irrelevant Alternatives
axiom requires that the relative rank of two agents be depen-
dant only on the set of agents that preferred one over the other.

Definition 7.4. A ranking systemF satisfiesArrow’s Inde-
pendence of Irrelevant Alternatives (AIIA)if for all G =
(V, E), for all G′ = (V, E′), and for all v1, v2 ∈ V :
Let PG(v1) \ PG(v2) = PG′(v1) \ PG′(v2) andPG(v2) \
PG(v1) = PG′(v2)\PG′(v1). Then,v1 �F

G v2 ⇔ v1 �F
G′ v2.

Our representation theorem states that together with pos-
itive response and RIIA, any one of the three independence

conditions above (anonymity, neutrality, and AIIA) are es-
sential and sufficient for a ranking system beingAV 1. In
addition, we show that as in the classical social choice set-
ting when only considering two-level preferences, positive re-
sponse, anonymity, neutrality, and AIIA are an essential and
sufficient representation of approval voting. This result ex-
tends the well known axiomatization of the majority rule due
to [May, 1952]:

Proposition 7.5. (May’s Theorem) A social welfare func-
tional over two alternatives is a majority social welfare func-
tional if and only if it satisfies anonymity, neutrality, andpos-
itive response.

We can now formally state our theorem:

Theorem 7.6. Let F be a general ranking system. Then, the
following statements are equivalent:

1. F is the approval voting ranking system(F = AV )

2. F satisfies positive response, anonymity, neutrality, and
AIIA

3. F satisfies positive response, RIIA, and either one of
anonymity, neutrality, and AIIA

Proof. (Sketch) It is easy to see thatAV satisfies positive
response, RIIA, anonymity, neutrality, and AIIA. It remains
to show that (2) and (3) entail (1) above.

To prove (2) entails (1), assume thatF satisfies positive re-
sponse, anonymity, neutrality, and AIIA. LetG = (V, E) be
some graph and letv1, v2 ∈ V be some agents. By AIIA,
the relative ranking ofv1 and v2 depends only on the sets
PG(v1) \ PG(v2) andPG(v2) \ PG(v1). We have now nar-
rowed our consideration to a set of agents with preferences
over two alternatives, so we can apply Proposition 7.5 to com-
plete our proof.

To prove (3) entails (1), assume thatF satisfies positive
response, RIIA and either anonymity or neutrality or AIIA.
As F satisfies RIIA we can limit our discussion to compar-
ison profiles. Letf : P 7→ {0, 1} be the function from the
definition of RIIA. We will use the notationa � b to mean
f〈a,b〉 = 1, a ≺ b to meanf〈b,a〉 = 0, anda ' b to
meana � b andb � a.

By the definition of RIIA, it is easy to see thata '
a for all a. By positive response it is also easy to see
that (1, 1, . . . , 1

︸ ︷︷ ︸

n

) � (1, 1, . . . , 1
︸ ︷︷ ︸

m

) iff n ≤ m. Let P =

〈(a1, . . . , an), (b1, . . . , bm)〉 be a comparison profile. Let
G = (V, E) be the following graph :

V = {x1, . . . , xmax{an,bm}} ∪

∪{v1, . . . , vn, v′1, . . . , v
′
n, v} ∪

∪{u1, . . . , um, u′
1, . . . , u

′
m, u}

E = {(xi, vj)|i ≤ aj} ∪ {(xi, uj)|i ≤ bj} ∪

∪{(vi, v)|i = 1, . . . , n} ∪ {(ui, u)|i = 1, . . . , m}.

1In fact, an even weaker condition ofdecoupling,that in essence
allows us to permute the graph structure while keeping the edges’
names is sufficient in this case.



It is easy to see that in the graphG, v andu satisfy the profile
P . Let π be the following permutation:

π(x) =







v′i x = vi

vi x = v′i
u′

i x = ui

ui x = u′
i

x Otherwise.

The remainder of the proof depends on which additional ax-
iom F satisfies:

• If F satisfies anonymity, letE′ = {(π(x), y)|(x, y) ∈
E}. Note that in the graph(V, E′) v andu satisfy the
profile 〈(1, 1, . . . , 1

︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and thusv �F
(V,E′)

u ⇔ n ≤ m. By anonymity,u �F
(V,E) v ⇔ u �F

(V,E′)

v, thus proving thatf(P ) = 1 ⇔ n ≤ m for an arbitrary
comparison profileP , and thusF = AV .

• If F satisfies neutrality, letE′ = {(x, π(y))|(x, y) ∈
E}. Note that in the graph(V, E′) v andu satisfy the
profile 〈(1, 1, . . . , 1

︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and thusv �F
(V,E′)

u ⇔ n ≤ m. By neutrality,u �F
(V,E) v ⇔ u �F

(V,E′) v,
again showing thatf(P ) = 1 ⇔ n ≤ m for an arbitrary
comparison profileP , and thusF = AV .

• If F satisfies AIIA, letE′ = {(x, π(y))|(x, y) ∈ E}
as before. So, alsov �F

(V,E′) u ⇔ n ≤ m. Note that
PG(v) = P(V,E′)(v) andPG(u) = P(V,E′)(u), so by
AIIA, u �F

(V,E) v ⇔ u �F
(V,E′) v, and thus as before,

F = AV .

8 Concluding Remarks
Reasoning about preferences and preference aggregation isa
fundamental task in reasoning about multi-agent systems (see
e.g. [Boutilier et al., 2004; Conitzer and Sandholm, 2002;
LaMura and Shoham, 1998]). A typical instance of prefer-
ence aggregation is the setting of ranking systems. Rank-
ing systems are fundamental ingredients of some of the most
famous tools/techniques in the Internet (e.g. Google’s page
rank and eBay’s reputation systems, among many others).

Our aim in this paper was to treat ranking systems from
an axiomatic perspective. The classical theory of social
choice lay the foundations to a large part of the rigorous
work on multi-agent systems. Indeed, the most classical re-
sults in the theory of mechanism design, such as the Gibbard-
Satterthwaite Theorem (see[Mas-Colellet al., 1995]) are ap-
plications of the theory of social choice. Moreover, previous
work in AI has employed the theory of social choice for ob-
taining foundations for reasoning tasks[Doyle and Wellman,
1989] and multi-agent coordination[Kfir-Dahav and Tennen-
holtz, 1996]. It is however interesting to note that ranking sys-
tems suggest a novel and new type of theory of social choice.
We see this point as especially attractive, and as a main reason
for concentrating on the study of the axiomatic foundationsof
ranking systems.

In this paper we identified two fundamental axioms for
ranking systems, and conducted a basic axiomatic study of

such systems. In particular, we presented surprising impos-
sibility results, and a representation theorem for the well-
known approval voting scheme.
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