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Abstract turing user preferences. While the structure of the utility

model is known, the parameters of this utility model are im-
precise, given by upper and lower bounds. Adopting the min-
imax regret model of5], a robust decision can be made with
respect to this utility uncertainty, by choosing tirénimax

We propose new methods of preference elicitation for
constraint-based optimization problems based on the use
of minimax regret. Specifically, we assume a constraint-
based optimization problem (e.g., product configuration)

in which the objective function (e.g., consumer prefer- optimal configurationThis is the solution the user would re-
ences) are unknown or imprecisely specified. Assum- gret the least should an adversary impose a utility function
ing a graphical utility model, we describe several elicita- consistent with our knowledge of the user’s preferences. If

tion strategies that require the user to answer only binary regret is unacceptably high, we query the user for more in-

(bound) queries on the utility model parameters. Whilea  formation about their preferences, until the worst-case error

theoretically motivated algorithm can provably reduce re- (regret) is small enough (zero if optimality is required).

gret quickly (in terms of number of queries), we demon- In this work, we elicit preferences usirtgppund queries

strate that, in practice, heuristic strategies perform much (a local form o,fstandard gamble querid®])—that provide

better, and are able to find optimal (or near-optimal) con- tight | b d the utilit ters—

figurations with far fewer queries. ghter upper or lower bounds on the utility parameters
since these are reasonably easy for users to assess and have
been studied extensively in the decision analysis literature.

1 Introduction We develop several new strategies for elicitation using bound

The development of automated decision software is a keguerles whose aim is to reduce the worst-case error (i.e.,
focus within decision analysit21; 16 and Al [7; 3. To et g_uaranteed improvementin decision ql_Jallty) with as few
! ! pJueries as possible. These include strategies with good theo-

deal with different users, some form of preference elicitation™". : L
must be undertaken in order to capture specific user prefeF—etlcal guarantees (related to polyhedral methods in conjoint

ences to a sufficient degree to allow an (approximately) Opgnalysis[l& 11), as well as several heuristic methods that
timal decision to be taken. In this work, we study the prob_perform better empirically. We also show that one of these

lem of preference elicitation iconstraint-based optimization strategies is largely unaffected by computational approxima-

(CBO). CBO provides a natural framework for specifying 10" ©f the required minimax solutions.
and solving many decision problems, such as configuratio% .
tasks[15], in which hard constraints capture options avail- Problem Formulation
able to a customer and an objective (or utility) function re-We assume some system is charged with making or recom-
flects customer preferences. Explicit formulation as a mathmending a decision on behalf of a user, for example, configur-
ematical program or using a soft constraint framewldrk;  ing a (multiattribute) product for a consumer (e.g., the choice
2] has been successfully used to model such problems. of a car and options). However, since user preferences vary,
Unfortunately, the requirement of complete utility infor- an appropriate configuration requires that the system inter-
mation demanded by CBO is often problematic. For instanceqct with the user to determine enough about her preferences
users may have neither the ability nor the patience to providever feasible alternatives to make a good (or possibly opti-
full utility information to a system. Furthermore, in many if mal) choice. Thus, the system must engage in some form of
not most instances, an optimal decision (or some approximareference elicitation This basic problem lies at the heart
tion thereof) can be determined with a very partial specificaof considerable work in multiattribute utility theofg2; 20;
tion of the user's utility function. As such, it is imperative 14] and the theory of consumer choice (such as conjoint anal-
that preference elicitation procedures be designed that focyssis[18; 11). Our approach differs from classic approaches
on the relevant aspects of the problem (e.g., by ignoring inin several important respects, as we emphasize below. Most
feasible parts of utility space, or utility for outcomes provablyimportantly, our decision model and elicitation strategies will
dominated given current information). be driven by the minimax regret criterion. To present our
Our framework is as follows. We assume a set of (hardyesults, we first need to review previous work on minimax
constraints together with a graphical utility mofl&i 4] cap-  regret and the framework 5] in more detail.



2.1 Optimization with Graphical Utility Models In this paper we adopt the minimax regret criterion, fol-
Following [5], we assume a finite set afttributes X —  lowing the formulation offS]. - Unlike Bayesian methods,
{X1, Xs,..., Xx} with finite domains, characterizing a set MiNimax regret recommends decisions given onigeaof
of choices available to a decision maker (or consequenc ssible utility functions rather than a probabilistic prior.

thereof). These might be, say, car options suchmake us it is suitable when reasonable priors are hard to for-
engine size transmission typeetc. An assignmenk e mulate and does not require the computational approxima-

Dom(X) is often referred to as atate For ease of pre- tions often needed in reasoning with complex pridrs

sentation, we assume attributes are boolean. We also hage Minimax regret also allows recommendation of decisions

a set ofhard constraintsC over these attributes. Each con- thatare robustin the face of utility function uncertainty since
straintCy, ¢ = 1,..., L, is defined over a subset of attributes 't Provides tight bounds on the worst-case error, which is ap-
X[f] ¢ X, and thus induces a set of legal configurations of atP€aling in many circumstances (and unlike many schemes
tributes in the subs&[(] (e.g., the set of products that can be Proffers a specific decision rather than, say, a Pareto optimal
proposed). We assume that the constraiptare represented set). Previously this has been found to be an attractive crite-
in some logical form and can be expressed compactly (e.g/ion in real-world procurement settingg]. As we will see,

X, A X5 D —X3). For instance, we might have that model regret is also very effective in focusing elicitation effort even
Passatand engine2.8T do not allow transmissioBSpeed- When priors are availabld.9].

Man. We let FeagX) denote the subset déasible states ~ SUPPOse the utility function for a CBO problem is un-
satisfyingC. known, but constraints on its parameters (e.g., in the form

Suppose the system had access to the user's utility functio?]f bounds) are available and some decision must be recom-

u: Dom(X) — R, representing a user's strength of prefer_mendedl. The minimax regret decision criterion suggests

ence for various configurations (e.g., we might view this adhat one adopt the (feasible) assignmerthat obtains mini-

what they are willing to pay). The constraint-based optimiza"UM max-regret, where max-regret s the largest quantity by

; ; : ; : which one could “regret” choosing (while allowing the util-
tion (CBO) problem s to find an optimal feasible state ity function to vary within the bounds). More formally, &t

x* € arg max  u(x). denote the set of feasible utility functions. We refer to a pair
xeFeagX) (C,U), whereC is a set of configuration constraints, as an
For multiattribute problems of this type, one generally as-MPrecise CBO problemThe pairwise regreiof statex with
sumes some utility function structuf®2: §. In this work, we  '€SPecttac’ over feasible utility sel/ is defined as
adopt ageneralized additive independence (GAipdel[8; R(x,x',U) = max {u(x') —u(x)}, (2
1]. Specifically, we assume that the utility function can be ueu
written as the sum of< local utility functions, orfactors  which is the most our system could regret choosirfgr the

over small sets of variables: user instead at’ (e.g., if an adversary could impose any util-
, ity function ini/). Themaximum regredf decisionx is:
u(x) = Y fHx[k]. (1) MR(x.24) Rix.x.20) -
X = ma. X, X
k<K ’ x’eFea)éX) B

Here each functiorf* depends only on a local family of at- Theminimax regrebf feasible utility set/ is:

tributesX[k] C X. We denote bk[k] the restriction of state _ .

x to the attributes ifX [k]. This model is attractive due to its MMR() = xcFeagX) MR(x, ) )
naturalness and generality (encompassing both linear model

[12] and UCP-net4] as special cases). The problem of find- _Ifsthe only information we have about a user’s utility function

ing an optimal configuration can be formulated as an integeﬁ’ thatitlies in the se/, then a minimax-optimal decisiotr

P f | ffectively. ., x" s.t. MR(x",U) = MMR(l/)) minimizes the worst-
program (IP), and can often be solved very effectively case loss w.r.t. possible realizations of utilitye 4.

2.2 Minimax Regret Computation of minimax regretin CBO problems requires

. o . care; the explicit minimization in Eq. 4 is infeasible. For-
While many approaches to elicitation focus on obtaining fullynately, one can formulate it in a manner that exploits the
utility information, it will often be mfeas_lble, und_eswable, Of graphical structure of the utility model, thereby admitting (in
unnecessary to extract a complete utility function from_ t_hepractice) computationally tractable solutifi]. The proce-
user[20]. As a consequence, a system must make decisiongre of[5] assumes an imprecise CBO problem with factors
in the face ofincompletelyspecified utility functions. Sev- k& < K, defined over local familieX|k]. The parame-
eral approaches have been proposed for representing Ut'“éérs of this utility function are denoted by = 1R (x[k]),

un_certainty, as well as ma_king decisions givgn this un(.:er\'/vherex[k] ranges ovePom (X[k]). Upper and lower bounds
tainty. For example, Bayesian methods quantify uncertainty,, o»ch of these parameters are assumed denoteg

about preferences probabilistically; 3. Other techniques andu, !, respectively. Effective computation of pairwise re-
simply pose constraints on the set of possible utility JunC-y .ot may regret and minimax regret is possible by exploiting
tions and use various criteria to find or reduce the set of deétructure in the constraints and graphical utility model
cisions or otherwise direct elicitation; for example, one can '

identify Pareto optimad21] or dominant alternative®0; 13; 1These constraints reflect knowledge of the user's utility func-
14], or decisions that minimize regrigt; 16; 19; §. tion, generally obtained through elicitation as we elaborate below.



Input: imprecise CBO problem, worst-case error tolerance jon, refining initial bounds on the parameters, until minimax

1. Compute minimax regret valuamr regret reaches an acceptable levélTable 1 summarizes the
2. Repeat untinmr < 7 general form of the interactive elicitation procedure.
(a) Askbound query about some utility parametefx[]). 3.1 Bound Queries
(b) If u(x[k]) < g then lowerus i tog. The types of queries we consider &@und queriesn which
(c) Otherwise raise(x) to ¢ we ask the user whether one of her utility parameters lies
(d) recomputemmr above a certain value. A positive response raises the lower

Table 1: General form of the interactive elicitation procedurebound on that parameter, while a negative response lowers
) o o ) ~the upper bound: in both cases, uncertainty is reddced.

In particular, the minimax optimization in Eq. 4 is rewrit-  while users often have difficulty assessing numerical pa-
ten as as minimization with an infinite number of constraintsyameters, they are typically better at comparing outcdm2s
A constraint generation procedure is used to generate corj. However, a bound query can be viewed as a local form of
straints incrementally until all (_flnlte_ly many) active con- zstandard gamble query (SGQommonly used in decision
straints are enumerated. The mixed integer programs (MIPSQnalysis: these, in fact, ask for comparisons. An SGQ for a
eration of the most violated constraint are compact, with ayhjch the best outcomer occurs with probability and the
number of variables linear in the size (number of parametersyorstx, occurs with probabilityl — / [12]. A positive re-
of the GAl model. Animportant property of this procedure is sponse puts a lower bound on the utilitysgfand a negative
that it generates both an optimal solutiehand an adversar- response puts an upper bound. Calibration is attained by the
ial witnessx™ for the current/: x* is the assignment thatthe yse of common best and worst outcomes across all queries
maximizes regret ok™ in Eq. 4 (as thex’ variable in Eq. 3).  (and numerical assessment is restricted to evaluating proba-
We refer to[5] for further algorithm details. The procedure pjlities). The foundations of such queries can be made pre-
was shown to handle significant practical problems, generallgjse using results of Fishbufs]; we defer details for space
from fractions of a second to 1000 secofisls Our query strategies rely on the following definitions.

In practice, since minimax regret will be computed be-
tween elicitation queries, it is critical that minimax regret bepefn 1 Let (C,U) be an imprecise CBO problem. Aopti-
estimated in a relatively short period of time (say 5 seconds)mistic statex®, a pessimistic stat&”, and amost uncertain
For this reason, we propose several improvements to the pretatex™ are any states satisfying:

cedure of(5] that can speed up regret computation with elic- x° €arg max_ maxu(x)

itation in mind: (1) The constraint generation procedure for xcFeagX) uell
solving the MIP can be accelerated by simply finding a feasi- xP carg max minu(x)
blex given the current set of constraints, rather than explicitly xeFeagX) u€lU
searching for a minimax optimal given current constraints.

- S ) ! mu e _ !
(2) Since minimax regret is computed incrementally by gen- * argxeglagi({m ur’I’;/aéXM{u(X) w(x)}

erating constraints, it has an anytime nature and early stop- timistic state is a feasible state with th test
ping can be used. This has the effect that some violated cory}" OPUMISUC State IS a feasible state with the greatest upper

straints may not have been generated, but the “early” solutiofPund on utility. A pessimistic state has the greatest lower
provides a lower bound on true minimax regret. We can als ound on utility. A most uncertain state has the greatest dif-
compute an upper bound by computing the max regret of th erence between its upper and lower bounds. Each of these

x found for the last MIP solved. These bounds are often tighPt&t€S can be computed in a single optimization by setting the

enough to provide good elicitation guidance. (3) The mini-Parameters of the utility model to their upper bounds, their

max regret problem solved after receiving a response to on! wer bounds, or their difference, and solving the correspond-

query is very similar {o that solved before posing the query.'nglln( grrﬁsc Ifsrg%%a(grﬁr?ﬁtlee;ndal of an elicitation strategy is to

As such, one can “seed” the minimax procedure invoked after e : ; )

a query with the constraints generated at the previous step. [ffdUce minimax regret using as few queries as possible. The
this way, typically, only a few extra constraints are generate(‘% allenge is to select such queries efficiently—avoiding in-
during each minimax computation. ractabilities inherentin outcome enumeration and lookahead,

While we focus on the use of upper and lower boundé"’h'le nevertheless reducing minimax regret effectively.

on utility parameters, the procedures described here can be 2y could insist that regret reaches zero (i.e., a provably optimal
adapted to problems with arbitrary linear constraints over utilsolution), or stop when regret reaches a point where further improve-
ity parameters. Handling such constraints is important whement is outweighed by the cost of further interaction.

comparison queriegre used (see below). With this back-  3If the user’s true value is close to the query point, she may feel

ground in place, we can now turn to elicitation. “roughly indifferent;” in this case we could impose a constraint that
the true value is “close” (e.g., within soragto this point.
3 Elicitation Strategies “While we focus on bound queries, other queries are quite natu-

) ) i ) _ . ral. Comparison queries ask if one statis preferred to another’.
We consider an interactive process in which the decision softa response imposes a linear constraint on utility parameters. Regret

ware queries the user for information about her utility func-computation must then take the general form alluded to above.



3.2 The Halve Largest Gap Strategy the utility parameter in the sdix* (k] : & < K} U {x"[k] :

The first query strategy we consider is thalve largest gap # < K} with largestgap(x[k]) and queries the midpoint of
(HLG) strategy. It asks a query at the midpoint of the Iargesfhe corresponding _ut|I|ty interval. Intuitively, should the an-
interval, i.e., corresponding to the parameté] with the ~ SWer to a query raise the lower bound on sonte* [k]) or
largest gap between its upper and lower bounds. This is motlower the upper bound on somex"|[k]), then the pairwise
vated by theoretical considerations based on simple worstegretiz(x”, x*) will be reduced, and usually minimax regret
case bounds on minimax regret. Define, respectively, th@S Well. Of course, if the answer lowers the upper bound on
gapof a utility parameter(x[k]), thespanof factor f* and ~ SOmeu(x"[k]) or raises the lower bound on somex"[k|),

maxsparof a utility model I/ as follows® then pairwise regreR(x*,x") remains unchanged. (Note
that minimax regret might still be reduced.)
gap(x[k]) = tspil — usil () We have also experimented with a variant of the CS strat-
spar(f*) = max gap(x[k]) (6)  €gyinwhichregretis computed approximately to ensure fast
x[k]€ Dom (X[k]) interactive response by imposing a time bound on computa-
_ k 7 tlo_n_(as desc_rlbed abo_ve). \_Nhlle we can’t be_ sure we hav_e the
maxspart/) zk: span(f’) () minimax optimal solution with early termination, the solution

may be good enough to guide the querying process. Further-
The quantitymaxsparmeasures the largest gap between themore, since we can compute the max regret of the anytime
upper and lower utility bound, regardless of feasibility. We solution, we know the quality of the solution, and we have
can show that this quantity bounds minimax regret: an upper bound on minimax regret which can be used as a

natural termination criterion for the querying process.
Proposition 1 For any (C,U), MMR(U) < maxspafif).

SinceMMR(U) < MR(x?, () and for any optimistic state° 3.4 Alternative Strategies
we haveMR(x°, /) < maxspafi{), the result follows . ] ] ]
This suggests an obvious query strategy, the HLG method;inally, we have experimented with several other strategies,
in which a bound query is asked of the parameteith the ~ Which we describe briefly. Theptimistic query strateggom-
largest gap, at the midway point of its intervgl} — p|)/2.  Putes an optimistic state’ and queries (at the midpoint of the
This method ensures rapid reduction in max regret: interval) the utility parameter ir” with the largest gap. In-
tuitively, an optimisticx? is a useful adversarial choice, so
Proposition 2 Let ¢/ be an uncertain utility model with ~ '€fining information about it can help reduce regret. pee-
parameters and letn = maxspafif). After nlog(m/e)  Simistic query strategis analogous, relying on the intuition

queries by HLG, minimax regret is no greater than that a pessimistic choice is useful in preventing the adversary
from making us regret our decision too much. Timimistic-

In the worst case, no query strategy can reduce regret mogessimistic (OP) strateggombines the two: it queries the pa-
quickly than HLG. Furthermore, there are classes of utilityrameter that has the largest gap among both states. These
functions for which the bound is tight, so worst-caéeand  strategies are computationally appealing since they require
configuration constrainis exist that ensure regret will never only standard CBO, not minimax optimization.

be reduced to zero in finitely many querfesthis strategy The most uncertain state (MUS) stratedy a variant of

is similar to heuristica”y motivated pOthedral methods in HLG that accounts for feas|b|||ty we compute a most un-
conjoint analysis used in product design and markdti®j  certain statec™ and query (at the midpoint) the parameter in
11]). In fact, HLG can be viewed as a special case of thesmu with the largest gap. Finally, theecond-best (SB) strat-
method off 18] in which our polyhedra are hyper-rectangles. egyis based on the following intuition: suppose we haée the
. optimistic statex® and the second-best optimistic stat

3.3 The Current Solution Strategy (i.e., that state with the second-highest upper bound—this is
While HLG allows one to provide strong worst-case guarancomputable with a single optimization). If we could ask a
tees on regret improvement, it is “undirected” in that con-query which reduced the upper bound utilityxf to lower
siderations of feasibility play no role in determining which than that ofx?°, we ensure that regret is reduced (since the
queries to ask. An alternative strategy is to focus attention oadversary can no longer attain this most optimistic value); if
parameters that participate in defining the max regret, namelyhe lower bound ok® were raised to the level of?°’s upper

the minimax optimak* and the adversarial witness” for  bound, then we could terminate—knowing tls4tis optimal

the current/ (recall that the witness maximizes the regretThus we would like to query® atx2°’s upper bound: a neg-

of x*). Thecurrent solution (CS) query strategsks about ative response will reduce regret, a positive response ensures

s x° is optimal. The SB method “distributes” this query across
We denote the upper and lower bounds of any paraneigli e relevant factor parameters, asking several bound queries.
andp| respectively.

5The definition ofmaxsparcan be tightened to account for logi- 1 nemyopically optimal (MY) strateggomputes the aver-
cal consistency of the assignments to different factors, or by restrictge regret reduction of the midpoint query feach utility
ing attention to feasible states (w.€). The result still holds. parameter by solving the minimax problem for each response
"The bound is not generally tight if there is overlap in factors; to each query; it then asks the query with the largest average
but is tight if maxsparaccounts for logical consistency. reduction. This approach is generally infeasible, but we test



it on small problems to see how the other methods conmfpareexcellent anytime performance: after only 80 queries, aver-
age minimax regret has dropped from 18% to under 2%. In-

4 Empirical Results terestingly, the time bound of 5 seconds imposed by CS-5,

) . while leading to approximately minimax optimal solutions,
We tested the effectiveness of our query strategies on goes not affect query quality: the approximate solutions give
variety of problems. For each problem we tested: halvise to queries that are virtually as effective as the optimal
largest gap (HLG), current solution (CS), current solutionsejytions. The CS strategy requires on average at most 83s
with a computation-time bound of five seconds per quenper query. The OP strategy works very well too, and re-
(CS-5), optimistic-pessimistic (OP), second-best (SB), an@uires less computation time (0.1s per query) since it does
most uncertain state (MUS). We also compared these againght need to solve minimax problems (except to verify termi-
the more computationally demanding myopically optimalpation “periodically,” which is not reflected in query compu-
method (MY) on small problems. We implemented the con+ation time). However, both OP and CS-5 are fast enough to
straint generation approach [8] and used CPLEX as the pe ysed interactively on problems of this size. MUS, HLG,
generic IP solver. Our experiments considered two realisti,q SB do not work nearly as well. Note the HLG per-
domains—car rentals and real estate—as well as randomyyrms poorly since it fails to account for the feasibility of op-
generated synthetic problems. tions, thus directing its attention to parts of utility space for

First, we tested small synthetic problems to allow a com~yhich no product exists (hence polyhedral methods dlb8g

parison of our heuristics with the MY strategy. Fig. 1 reportsy 1] will not offer reasonable elicitation in our setting). MUS
the average minimax regret over 45 small synthetic problemgigniﬁcanﬂy outperforms HLG for just this reason.

constructed by randomly setting the utility bounds and the "The real-estate problem is modeled with 20 (multivalued)

variables on which each utility factor depends. Each probyaples, with 47,775,744 possible configurations. The fac-

lem has 10 attributes that can take at most 4 values and 184 iility model consists of 29 local factors, giving rise
factors that depend on at most 3 attributes. We simulate usg 100 ytility parameters. Query performance is shown in
responses by drawing a random utility functierfor each g 2() using the same regime as above. Again, both CS
trial, consistent with the bounds, representing a user’s prefet;4 cg.5 perform best, and the time bound of CS-5 has no
ences. Responses to queries are generatedw$s3uming  eftect on the quality of the CS strategy. Interestingly, OP per-
the user accurately answers queries relative)idresults aré o mgs aimost identically to these, with somewhat lower com-
shown for two cases: utility parameters drawn from a uni-y iational cost (CS takes 14s/query, CS-5 5s, and OP 0.1s).
form distribution over each interval, and those drawn from ag 5 of these methods reduces minimax regret from 40% of
(truncated) Gaussian centered at the midpoint of the intervg]ima 1o under 5% in about 120 queries. As above, SB fails
(reflecting that a user is somewhat more likely to have a trugy make progress, while HLG and MUS do somewhat better.

value near the middle of the range)n both cases, we ob- We also tested the ;
. ! g query strategies on larger randomly gen-
serve that the OP, CS and CS-5 heuristics decrease minimaxg,ieq problems (with 25 variables of domain size no more

regret at a rate very close to MY. This suggests that OP, Cian, four, and 20 utility factors with no more than three vari-

and CS-5 are computationally feasible, yet promising alterypes each). The same performance patterns as in real-estate
natives to the computationally prohibitive MY strategy. emerge, with CS, CS-5 and OP all performing much better
We report on further experiments using all strategies exiyan the others (see Fig. 2(c)). Although OP performs slightly

cept MY with larger synthetic problems, a real-estate probyeer than CS/CS-5, the difference is not significant.
lem and a car rental problem taken frdf}, drawing users

from uniform distributions (Gaussian results are very sim- )
ilar both in shape and magnitude). As above, all result® Concluding Remarks
are averaged over 45 trials. The car-rental problem is moc\-Ne

eled with 26 (multivalued) variables that specify various at- Ve have developed a number of query strategies for elicit-
ing bounds on the parameters of graphical utility models for

tributes of a car relevant to typical rental decisions, result; S . ; >
he purpose of solving imprecise constraint-based optimiza-

ing in 61,917,360,000 possible configurations. The factoreéion roblems. The most pbromising of these stratedies. CS
utility model consists of 36 local factors, each defined on al P ‘ P 9 gies,

most five variables, with 150 utility parameters. Performanc{md OP, perform extremely well, requiring very few queries
of the various query strategies is depicted in Fig. 2(a). Ini- relative to the model size) to provide dramatic reductions in

tial utility bounds are set to give minimax regret of roughly :gg:gzlrgjiggg?nfgfavgg\fgacgﬁlZ%a?ﬁs%rgﬂ??él(l)e@glfsr?énImfex d
18% of the optimal solution. Both CS and CS-5 performfo?real—time response Withoutg noticeable effect on thg er-
extremely well: regret is reduced to almost zero within 160 P p

queries on averagl.More importantly, these methods show ormance of CS. OP also can be executed in real-time, since
it does not require the same intensive minimax computation.

8By doing lookahead of this type fdr stages, we could in fact We plan to extend this research a number of directions. We
compute the optimal query plan bfsteps. would like to consider additional query types, such as com-

%All experiments show a reasonably small variance so we ex{arisons of outcomes and tackle the associated computational
clude error bars for legibility.

®Though this may seem like a lot of queries, recall that thetational boundaries of regret-based elicitation. Furthermore, while
problem is very large, with a utility model with 150 parameters. 160 queries may be large for typical consumer choice problems, itis
We intentionally choose problems this large to push the compumore than reasonable for high stakes configuration applications.
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Figure 1: Avg. max regret on small random problems (45 instances) as a function of number of queries given (a) uniform and
(b) Gaussian distributed utilities.
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Figure 2: Avg. max regret (45 instances, uniform density) as a function of number of queries: (a) car; (b) real estate; (c) large
random problems.

problems. We also plan to explore new query strategies, il U. Chajewska, D. Koller, and R. Parr. Making rational decisions using adaptive
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