
Automatic Text-to-Scene Conversion in the Traffic Accident Domain

Richard Johansson Anders Berglund Magnus Danielsson Pierre Nugues
LUCAS, Department of Computer Science, Lund University

Box 118
SE-221 00 Lund, Sweden

{richard, pierre}@cs.lth.se, d98ab@efd.lth.se
magnus.danielsson2@comhem.se

Abstract

In this paper, we describe a system that automati-
cally converts narratives into 3D scenes. The texts,
written in Swedish, describe road accidents. One
of the program’s key features is that it animates the
generated scene using temporal relations between
the events. We believe that this system is the first
text-to-scene converter that is not restricted to in-
vented narratives.
The system consists of three modules: natural lan-
guage interpretation based on information extrac-
tion (IE) methods, a planning module that produces
a geometric description of the accident, and finally
a visualization module that renders the geometric
description as animated graphics.
An evaluation of the system was carried out in two
steps: First, we used standard IE scoring methods
to evaluate the language interpretation. The results
are on the same level as for similar systems tested
previously. Secondly, we performed a small user
study to evaluate the quality of the visualization.
The results validate our choice of methods, and
since this is the first evaluation of a text-to-scene
conversion system, they also provide a baseline for
further studies.

1 Introduction
For a machine, text-to-scene conversion consists in synthe-
sizing a 2D or 3D geometric description from a text and in
displaying it. Ideally, a text-to-scene converter would recreate
mental images we form when we read a text. This represents a
demanding task involving semantic and cognitive capabilities
and to many people seems both a far off and surreal fantasy.
However, there have been a small number of systems that
provided insights into the feasibility of it while at the same
time showing significant limitations[Adorni et al., 1984;
Coyne and Sproat, 2001; Arenset al., 2002]. First, all the
systems are restricted to very simple narratives, typically in-
vented by the authors themselves. Furthermore, none of the
authors report details on the text corpus they used or any pre-
cise description of the results. Another significant point is
that these systems all focus on spatial relations, while ignor-

ing the temporal dimension completely. Most of them are
limited to recreating static scenes.

In this paper, we describe a new version of the Carsim sys-
tem [Johanssonet al., 2004; Dupuyet al., 2001], which is
a text-to-scene converter that handles real texts and that we
evaluated using quantitative methods. The program gener-
ates 3D graphics from traffic accident reports generally col-
lected from web sites of Swedish newspapers. One of its key
features is that it takes time and temporal relations between
events into account to animate the synthesized scene.

The structure of this article is as follows: Section 2 de-
scribes the Carsim system and the application domain. Sec-
tion 3 details the implementation of the natural language in-
terpretation module. Then, in Section 4, we turn to the spatial
and temporal reasoning that is needed to construct the visual-
ization. The evaluation is described in Section 5. Finally, we
discuss the results and their implications in Section 6.

2 The Carsim System

Narratives of a car accidents often make use of space descrip-
tions, movements, and directions that are sometimes difficult
to grasp for readers. We believe that forming consistent men-
tal images is necessary to understand them properly. How-
ever, some people have difficulties in imagining situations
and may need visual aids pre-designed by professional an-
alysts.

Carsim is a computer program1 that addresses this need.
It is intended to be a helpful tool that can enable people to
imagine a traffic situation and understand the course of events
properly. The program analyzes texts describing car accidents
and visualizes them in a 3D environment.

To generate a 3D scene, Carsim combines natural lan-
guage processing components and a visualizer. The language
processing module adopts an information extraction strategy
and includes machine learning methods to solve coreference,
classify predicate/argument structures, and order events tem-
porally. However, as real texts suffer from underspecification
and rarely contain a detailed geometric description of the ac-
tions, information extraction alone is insufficient to convert
narratives into images automatically. To handle this, Carsim

1An online demonstration of the system is available at
http://www.lucas.lth.se/lt .



infers implicit information about the environment and the in-
volved entities from key phrases in the text, knowledge about
typical traffic situations, and properties of the involved enti-
ties. The program uses a visualization planner that applies
spatial and temporal reasoning to “imagine” the entities and
actions described in the text, and that tries to find the simplest
configuration that fits the description.

2.1 A Corpus of Traffic Accident Descriptions
Carsim has been developed using authentic texts. As a devel-
opment set, we collected approximately 200 reports of road
accidents from various Swedish newspapers. The task of an-
alyzing the news reports is made more complex by their vari-
ability in style and length. The size of the texts ranges from a
couple of sentences to more than a page. The amount of de-
tails is overwhelming in some reports, while in others, most
of the information is implicit. The complexity of the acci-
dents described ranges from simple crashes with only one car
to multiple collisions with several participating vehicles and
complex movements. Although our work has concentrated on
the press clippings, we also have access to accident reports
from the STRADA database (Swedish TRaffic Accident Data
Acquisition) of Vägverket, the Swedish traffic authority.

The next text is an excerpt from our test corpus. This report
is an example of a press wire describing an accident.

En bussolycka i södra Afghanistan krävde på torsda-
gen 20 dödsoffer. Ytterligare 39 personer skadades i oly-
ckan som inträffade tidigt på torsdagsmorgonen två mil
norr om staden Kandahar. Bussen var på väg från Kan-
dahar mot huvudstaden Kabul när den under en omkörn-
ing körde av vägbanan och voltade, meddelade general
Salim Khan, biträdande polischef i Kandahar. Läget för
några av de skadade uppgavs som kritiskt.

TT-AFP & Dagens Nyheter, July 8, 2004

A bus accident in southern Afghanistan last Thurs-
day claimed 20 victims. Additionally, 39 people were
injured in the accident, which occurred early Thursday
morning twenty kilometers north of the city Kandahar.
The bus was on its way from Kandahar towards the capi-
tal Kabul when it left the road while overtaking and over-
turned, said general Salim Khan, assistant head of police
in Kandahar. The state of some of the injured was said to
be critical.

The text above, our translation.

2.2 Architecture of the Carsim System
We use a division into modules where each one addresses one
step of the conversion process (see Figure 1).

• A natural language processingmodule that interprets
the text to produce an intermediate symbolic represen-
tation.

• A spatio-temporal planning and inferencemodule that
produces a full geometric description given the symbolic
representation.

• A graphicalmodule that renders the geometric descrip-
tion as graphics.

Text Symbolic
repr.

knowledge
Geometric

description
Geometric

knowledge
Linguistic

Interpretation Planning Rendering

World
knowledge

Figure 1: System architecture.

We use the intermediate representation as a bridge between
texts and geometry. This is made necessary because the in-
formation expressed by most reports has usually little affinity
with a geometric description. Exact and explicit accounts of
the world and its physical properties are rarely present. In ad-
dition, our vocabulary is finite and discrete, while the set of
geometric descriptions is infinite and continuous.

Once the NLP module has interpreted and converted a text,
the planner maps the resulting symbolic representation of the
world, the entities, and behaviors, onto a complete and unam-
biguous geometric description in a Euclidean space.

Certain facts are never explicitly stated, but are assumed by
the author to be known to the reader. This includes linguistic
knowledge, world knowledge (such as traffic regulations and
typical behaviors), and geometric knowledge (such as typi-
cal sizes of vehicles). The language processing and planning
modules take this knowledge into account in order to produce
a credible geometric description that can be visualized by the
renderer.

2.3 The Symbolic Representation
The symbolic representation has to manage the following
trade-off. In order to be able to describe a scene, it must con-
tain enough information to make it feasible to produce a con-
sistent geometric description, acceptable to the user. On the
other hand, the representation has to be close to ways human
beings describe things to capture information in the texts.

We used four concept categories that we ordered in an in-
heritance hierarchy. The representation is implemented using
Minsky-style (“object-oriented”) frames, which means that
the objects in the representation consist of a number of prede-
fined attribute/values slots. This ontology was designed with
assistance of traffic safety experts. It consists of:

• Objects. These are typically the physical entities that are
mentioned in the text, but we might also need to present
abstract or oneiric entities as symbols in the scene. Each
object has a type that is selected from a predefined, finite
set.Car andTruck are examples of object types.

• Events. They correspond intuitively to an activity that
goes on during a period in time and here to the possible
object behaviors. We represent events as entities with
a type from a predefined set.Overturn andImpact
are examples.

• Relations and Quantities. The objects and the events
need to be described and related to each other. The most
obvious examples of such information arespatial infor-
mation about objects andtemporal information about
events. We should be able to express not only exact



quantities, but also qualitative information (by which
we mean that only certain fundamental distinctions are
made).Behind , FromLeft , andDuring are exam-
ples of spatial and temporal relations.

• Environment. The environment of the accident is impor-
tant for the visualization to be understandable. Signif-
icant environmental parameters include light, weather,
road conditions, and type of environment (such as rural
or urban). Another important parameter is topography,
but we have set it aside since we have no convenient way
to express this qualitatively.

3 Natural Language Interpretation
We use information extraction techniques to interpret the text.
This is justified by the symbolic representation, which is re-
stricted to a limited set of types and the fact that only a part
of the meaning of the text needs to be presented visually. The
IE module consists of a sequence of components (Figure 2).
The first components carry out a shallow parse: POS tagging,
NP chunking, complex word recognition, and clause segmen-
tation. This is followed by a cascade of semantic markup
components: named entity recognition, temporal expression
detection, object markup and coreference, and predicate ar-
gument detection. Finally, the marked-up structures are in-
terpreted to yield the resulting symbolic representation of the
accident. The development of the IE module has been made
more complex by the fact that few tools or annotated cor-
pora are available for Swedish. The only significant external
tool we have used is the Granska POS tagger[Carlberger and
Kann, 1999].

3.1 Entity Detection and Coreference
A correct detection of the involved entities is crucial for the
graphical presentation to be understandable. We first search
the likely participants among the noun phrases in the text by
checking them against a dictionary. We then apply a corefer-
ence solver to link the groups that refer to identical entities.
This results in a set of equivalence classes referring to entities
that are likely to be participants in the accident.

The coreference solver uses a hand-written filter in con-
junction with a statistical system based on decision trees
[Danielsson, 2005]. The filter first tests each antecedent-
anaphor pair using 12 grammatical and semantic features to
prevent unlikely coreference. The statistical system then uses
20 features to classify pairs of noun groups as coreferring or
not. These features are lexical, grammatical, and semantic.
The trees were induced from a set of hand-annotated exam-
ples using the ID3 algorithm and a method inspired by Soon
et al. [2001]. We implemented a novelfeature transfermech-
anism that propagates and continuously changes the values
of semantic features in the coreference chains during clus-
tering. This means that the coreferring markables inherit se-
mantic properties from each other. Feature transfer, as well
as domain-specific semantic features, proved to have a signif-
icant impact on the performance.

3.2 Domain Events
In order to produce a symbolic representation of the accident,
we need to recreate the course of events. We find the events

using a two-step procedure. First, we identify and mark up
text fragments that describe events, and locate and classify
their arguments. Secondly, we interpret the fragments in or-
der to produce event objects as well as the involved partici-
pants, spatial and temporal relations, and information about
the environment. This two-step procedure is similar to other
work that uses predicate-argument structures for IE, for ex-
ample[Surdeanuet al., 2003].

We classify the arguments of each predicate (assign them
a semantic role) using a statistical system, which was trained
on about 900 hand-annotated examples. Following Gildea
and Jurafsky[2002], there has been a relative consensus on
the features that the classifier should use. We use a slightly
different set; since we have no full parser, there are no fea-
tures that refer to the parse tree. Also, since the system is
domain-specific, we have introduced asemantic typefeature
that takes the following values: dynamic object, static object,
human, place, time, cause, or speed.

Similarly to the method described by Gildea and Jurafsky
[2002], the classifier chooses the role that maximizes the es-
timated probability of a role given the values of the target,
head, and semantic type attributes:

P̂ (r|t, head, sem) =
C(r, t, head, sem)
C(t, head, sem)

.

If a particular combination of target, head, and semantic type
is not found in the training set, the classifier uses a back-off
strategy, taking the other attributes into account. In addition,
we tried other classification methods (ID3 with gain ratio,
SVMs) without any significant improvement.

When the system has located the references to domain
events in the text, it can interpret them; that is, we map the text
fragments onto entities in the symbolic representation. This
stage makes significant use of world knowledge, for example
to handle relationships such as metonymy and ownership.

Since it is common that events are mentioned more than
once in the text, we need to remove the duplicates in order
not to introduce unnecessary animations. Event coreference
is a task that can be treated using similar methods as those we
used for object coreference. However, event coreference is a
simpler problem since the range of candidates is narrowed by
the involved participants and the event type. To get a minimal
description of the course of events, we have found that it is
sufficient to unify as many events as possible, taking event
types and participants into account.

Finally, we fill in the information that is lacking due to mis-
takes or underspecification using default and heuristic rules.
Thus, we have a complete description of the events and the
participants.

3.3 Temporal Ordering of Events
Since we produce an animation rather than just a static image,
we take time into account and we find the temporal relations
between the events. Although the planner alone can infer a
probable course of events given the positions of the partici-
pants, and some orderings are deducible by means of simple
ad-hoc rules that place effects after causes (such as a fire after
a collision), we have opted for a general approach.



ordering
EventEnvironment

inference
Event

coreference
Spatial

interpretation
representation
Intermediate

POS tagging Clause
segmentationNP ChunkingComplex words

Defaults

Text

NE recognition

coreference
Object Metonymy

resolutioninterpretation
Pred/arg

detector
Pred / argObject detectorTime detector

Figure 2: Architecture of the language interpretation module.

We developed a component based on the generic TimeML
framework[Pustejovskyet al., 2002]. We first create an or-
dering of all events in the text (where all verbs, and a small
set of nouns, are considered to refer to events) by generating
temporal links (orderings) between the words that denote the
events. The links are generated by a hybrid system that con-
sists of a statistical system based on decision trees and a small
set of hand-written heuristics.

The statistical system considers events that are close to
each other in the text, and that are not separated by ex-
plicit temporal expressions. It was trained on a set of hand-
annotated examples, which consists of 476 events and 1,162
temporal relations. The decision trees were produced using
the C4.5 tool[Quinlan, 1993] and make use of the following
information:

• Tense, aspect, and grammatical constructof the verb
groups that denote the events.

• Temporal signalsbetween the words. This is a TimeML
term for temporal connectives and prepositions such as
“when”, “after”, and “during”.

• Distancebetween the words, measured in tokens, sen-
tences, and in punctuation signs.

The range of possible output values is the following subset
of Allen’s relations:simultaneous, after, before, is_included,
includes, andnone.

After the decision trees have been applied, we remove
conflicting temporal links using probability estimates derived
from C4.5. Finally, we extract the temporal relations between
the events that are relevant to Carsim.

3.4 Inferring the Environment
The environment is important for the graphical presentation
to be credible. We use traditional IE techniques, such as
domain-relevant patterns, to find explicit descriptions of the
environment.

As noted by the WordsEye team[Sproat, 2001], the envi-
ronment of a scene may often be obvious to a reader even
though it is not described in the text. In order to capture this
information, we try to infer it using prepositional phrases that
occur in the description of the events. We then use a Naïve
Bayesian classifier to guess the environment.

4 Planning the Animation
We use a planning system to create the animation out of the
extracted information. It first determines a set of constraints
that the animation needs to fulfill. Then, it goes on to find the

initial directions and positions. Finally, it uses a search algo-
rithm to find the trajectory layout. Since we use no backtrack-
ing, this separation into steps introduces a risk of bad choices.
However, it reduces the computation load and proved suffi-
cient for the texts we considered, enabling an interactive gen-
eration of 3D scenes and a better user experience.

4.1 Finding the Constraints
The constraints on the animation are created using the de-
tected events and the spatial and temporal relations combined
with the implicit knowledge about the world. The events are
expressed as conjunctions of primitive predicates about the
objects and their behavior in time. For example, if we state
that there is anOvertake event whereO1 overtakesO2, this
is translated into the following proposition:

∃t1, t2.MovesSideways(O1, Left, t1)
∧Passes(O1, O2, t2) ∧ t1 < t2

In addition, other constraints are implied by the events and
our knowledge of the world. For example, ifO1 overtakes
O2, we add the constraints thatO1 is initially positioned be-
hind O2, and thatO1 has the same initial direction asO2.
Other constraints are added due to the non-presence of events,
such as

NoCollide(O1, O2) ≡ ¬∃t.Collides(O1, O2, t)

if there is no mentioned collision betweenO1 andO2.

4.2 Finding Initial Directions and Positions
We use constraint propagation techniques to infer initial di-
rections and positions for all the involved objects. We first
set those directions and positions that are stated explicitly.
Each time a direction is uniquely determined, it is set and this
change propagates to the sets of available choices of direc-
tions for other objects, whose directions have been stated in
relation to the first one. When the direction can’t be deter-
mined uniquely for any object, we pick one object and set its
direction. This goes on until the initial directions have been
inferred for all objects.

4.3 Finding the Trajectories
After the constraints have been found, we use the IDA*
search method to find a trajectory layout that is as simple as
possible while violating no constraints. As heuristic func-
tion, we use the number of violated constraints multiplied by
a constant in order to keep the heuristic admissible.

The most complicated accident in our development con-
tains 8 events, which results in 15 constraints during search,



and needs 6 modifications of the trajectories to arrive at a tra-
jectory layout that violates no constraints. This solution is
found in a few seconds. Most accidents can be described us-
ing only a few constraints.

At times, no solution is found within reasonable time. Typ-
ically, this happens when the IE module has produced in-
correct results. In this case, the planner backs off. First,
it relaxes some of the temporal constraints (for example:
Simultaneous constraints are replaced byNearT ime).
Next, all temporal constraints are removed.

5 Evaluation
We evaluated the components of the system, first by measur-
ing the quality of the extracted information using standard IE
evaluation methods, then by performing a user study to deter-
mine the overall perception of the complete system. For both
evaluations, we used 50 previously unseen texts, which had
been collected from newspaper sources on the web. The size
of the texts ranged from 36 to 541 tokens.

5.1 Evaluation of the Information Extraction
Module

For the IE module, three aspects were evaluated: object de-
tection, event detection, and temporal ordering of the events.
Table 1 shows the precision and recall figures.

P R Fβ=1

Objects 0.96 0.86 0.91
Events 0.86 0.85 0.85
Temporal relations (correct events)0.73 0.55 0.62
Temporal relations (all events) 0.61 0.51 0.55

Table 1: Statistics for the IE module on the test set.

The evaluations of object and event detection were rather
straightforward. A road object was considered to be correctly
detected if a corresponding object was either mentioned in or
implicit from the text, and the type of the object was correct.
The same criteria applied to the detection of events, but here
we also added the criterion that the actor (and victim, where
it applies) must be correct.

Evaluating the quality of the temporal orderings proved to
be less straightforward. First, to make it feasible to compare
the graph of orderings to the correct graph, it must be con-
verted to some normal form. For this, we used the transitive
closure (that is, we made all implicit links explicit). The tran-
sitive closure has some drawbacks – for example, one small
mistake may cause a large impact on the precision and recall
measures if many events are involved. However, we found no
other obvious method for normalizing the temporal graphs.

A second problem to resolve was that of how to evaluate
temporal orderings when the events are not all correctly de-
tected. This difficulty arises when the event coreference res-
olution fails and multiple instances of the same event are re-
ported. Because of this complication, we measured the link
precision and recall for two cases: first, only those links that
connect properly detected events; secondly, all links. We then
compared the results.

The results of the event detection is comparable to those re-
ported in previously published work.[Surdeanuet al., 2003]
reports an F-measure of 0.83 in the Market Change domain
for a system that uses similar IE methods.2 Although our sys-
tem has a different domain, a different language, and different
resources (their system is based on PropBank), the figures
are roughly similar. The somewhat easier task of detecting
the objects results in higher figures, demonstrating that the
method chosen works satisfactorily for the task at hand.

We believe that the figures for the temporal relations will
prove competitive. We are not aware of any previous result in
automatic detection of temporal relations in IE. The figures
also show that the difference between the methods of eval-
uation is relatively small, suggesting that both methods are
useful when evaluating temporal orderings.

5.2 User Study to Evaluate the Visualization
Four users were shown the animations of subsets of the 50 test
texts. Figure 3 shows an example corresponding to the text
from Subsection 2.1. The users graded the quality of anima-
tions using the following scores: 0 for wrong, 1 for “more or
less” correct, and 2 for perfect. The average score was 0.91.
The number of texts that had an average score of 2 was 14 (28
percent), and the number of texts with an average score of at
least 1 was 28 (56 percent). These figures demonstrate that
the chosen strategy is viable, especially in a restricted con-
text like the traffic accident domain. However, interpretation
of the figures is difficult since there are no previously pub-
lished results. In any case, they provide a baseline for further
studies, possibly in another domain.

To determine whether the small size of our test group in-
troduced a risk of invalid results, we calculated the standard
deviation of annotations3, and we obtained the value of 0.45.
Replacing all annotations with random values from the same
probability distribution resulted in a standard deviation of
0.83 on average. In addition, the pairwise correlation of the
annotations is 0.75. This suggests that the agreement among
annotators is enough for the figures to be relevant.

During discussions with users, we had a number of unex-
pected opinions about the visualizations. One important ex-
ample of this is the quantity of implicit information they infer
from reading the texts. For example, given a short descrip-
tion of a crash in an urban environment, one user imagined a
collision of two moving vehicles at an intersection, while an-
other user interpreted it as a collision between a moving and
a parked car.

This user response shows that the task of imagining a situ-
ation is difficult for humans as well as for machines. Further-
more, while some users have suggested that we improve the
realism (for example, the physical behavior of the objects),
discussions generally made it clear that the semi-realistic
graphics that we use (see Figure 3) may suggest to the user

2We have assumed that the Templettes that they use roughly can
be identified with events.

3We calculated this using the formula

√∑
(xij−ẋi)

2∑
(ni−1)

, where

xij is the score assigned by annotatorj on text i, ẋi the average
score on texti, andni the number of annotators on texti.



Figure 3: Screenshots from the animation of the text above.

that the system knows more than it actually does. Since the
system visualizes symbolic information, it may actually be
more appropriate to present the graphics in a more “abstract”
manner that reflects this better, for example via symbolic
signs in the scene.

6 Conclusion and Perspectives
We have presented an architecture and a strategy based on in-
formation extraction and symbolic visualization that enables
to convert real texts into 3D scenes. As far as we know, Car-
sim is the only text-to-scene conversion system that has been
developed and tested using non-invented narratives. It is also
unique in the sense that it produces animated graphics by tak-
ing takes temporal relations between events into account.

We have provided the first quantitative evaluation of a text-
to-scene conversion system, which shows promising results
that validate our choice of methods and set a baseline for fu-
ture improvements.

In the future, we would like to extend the prototype system
to deeper levels of semantic information. While the current
prototype uses no external knowledge, we would like to in-
vestigate whether it is possible to integrate additional knowl-
edge sources in order to make the visualization more realistic
and understandable. Two important examples of this are ge-
ographical and meteorological information, which could be
helpful in improving the realism and in creating a more accu-
rate reconstruction of the circumstances and the environment.
Another topic that has been prominent in our discussions with
traffic safety experts is how to reconcile different narratives
that describe the same accident.

Acknowledgements
The first author wishes to thank Margaret Newman-Nowicka
for her numerous suggestions for improvement of this paper.

This work is partly supported by grant number 2002-02380
from the Språkteknologi program of Vinnova, the Swedish
Agency of Innovation Systems.

References
[Adorni et al., 1984] Giovanni Adorni, Mauro Di Manzo,

and Fausto Giunchiglia. Natural language driven image
generation. InProceedings of COLING 84, pages 495–
500, Stanford, California, 1984.

[Arenset al., 2002] Michael Arens, Artur Ottlik, and Hans-
Hellmut Nagel. Natural language texts for a cognitive vi-
sion system. In Frank van Harmelen, editor,ECAI2002,

Proceedings of the 15th European Conference on Artificial
Intelligence, Lyon, July 21-26 2002.

[Carlberger and Kann, 1999] Johan Carlberger and Viggo
Kann. Implementing an efficient part-of-speech tagger.
Software Practice and Experience, 29:815–832, 1999.

[Coyne and Sproat, 2001] Bob Coyne and Richard Sproat.
WordsEye: An automatic text-to-scene conversion system.
In Proceedings of the Siggraph Conference, Los Angeles,
2001.

[Danielsson, 2005] Magnus Danielsson. Maskininlärn-
ingsbaserad koreferensbestämning för nominalfraser ap-
plicerat på svenska texter. Master’s thesis, Lunds Univer-
sitet, 2005.

[Dupuyet al., 2001] Sylvain Dupuy, Arjan Egges, Vincent
Legendre, and Pierre Nugues. Generating a 3D simula-
tion of a car accident from a written description in natural
language: The Carsim system. InACL2001: Workshop on
Temporal and Spatial Information Processing, pages 1–8,
Toulouse, July 7 2001.

[Gildea and Jurafsky, 2002] Daniel Gildea and Daniel Juraf-
sky. Automatic labeling of semantic roles.Computational
Linguistics, 28(3):245–288, 2002.

[Johanssonet al., 2004] Richard Johansson, David
Williams, Anders Berglund, and Pierre Nugues. Carsim:
A System to Visualize Written Road Accident Reports as
Animated 3D Scenes. InACL2004: Second Workshop on
Text Meaning and Interpretation, pages 57–64, Barcelona,
July 25-26 2004.

[Pustejovskyet al., 2002] James Pustejovsky, Roser Saurí,
Andrea Setzer, Rob Gaizauskas, and Bob Ingria. TimeML
Annotation Guidelines. Technical report, 2002.

[Quinlan, 1993] John Ross Quinlan.C4.5: Programs for
Machine Learning. Morgan Kauffman, 1993.

[Soonet al., 2001] Wee Meng Soon, Hwee Tou Ng, and
Daniel Chung Yong Lim. A machine learning approach
to coreference resolution of noun phrases.Computational
Linguistics, 27(4):521–544, 2001.

[Sproat, 2001] Richard Sproat. Inferring the environment in
a text-to-scene conversion system. InProceedings of the
K-CAP’01, October 22-23 2001.

[Surdeanuet al., 2003] Mihai Surdeanu, Sanda Harabagiu,
John Williams, and Paul Aarseth. Using predicate-
argument structures for information extraction. InPro-
ceedings of the ACL, Sapporo, Japan, 2003.


