Optimal and Suboptimal Singleton Arc Consistency Algorithms

Christian Bessiere

LIRMM (CNRS / University of Montpellier)

161 rue Ada, Montpellier, France
bessiere@lirmm.fr

Abstract

Singleton arc consistency (SAC) enhances the
pruning capability of arc consistency by ensuring
that the network cannot become arc inconsistent af-
ter the assignment of a value to a variable. Algo-
rithms have already been proposed to enforce SAC,
but they are far from optimal time complexity. We
give a lower bound to the time complexity of en-
forcing SAC, and we propose an algorithm that
achieves this complexity, thus being optimal. How-
ever, it can be costly in space on large problems.
We then propose another SAC algorithm that trades
time optimality for a better space complexity. Nev-
ertheless, this last algorithm has a better worst-case
time complexity than previously published SAC al-
gorithms. An experimental study shows the good
performance of the new algorithms.

1 Introduction

Ensuring that a given local consistency does not lead to a
failure when we enforce it after having assigned a variable
to a value is a common idea in constraint reasoning. It has
been applied (sometimes under the name ’shaving’) in con-
straint problems with numerical domains by limiting the as-
signments to bounds in the domains and ensuring that bounds
consistency does not fail [Lhomme, 1993]. In SAT, it has
been used as a way to compute more accurate heuristics for
DPLL [Freeman, 1995; Li and Ambulagan, 1997]. Finally,
in constraint satisfaction problems (CSPs), it has been intro-
duced under the name Singleton Arc Consistency (SAC) in
[Debruyne and Bessiére, 1997b] and further studied, both
theoretically and experimentally in [Prosser et al., 2000;
Debruyne and Bessiére, 2001].

Some nice properties give to SAC a real advantage over the
other local consistencies enhancing the ubiquitous arc consis-
tency. Its definition is much simpler than restricted path con-
sistency [Berlandier, 1995], max-restricted-path consistency
[Debruyne and Bessiére, 1997a], or other exotic local con-
sistencies. Its operational semantics can be understood by a
non-expert of the field. Enforcing it only removes values in
domains, and thus does not change the structure of the prob-
lem, as opposed to path consistency [Montanari, 1974], k-

Romuald Debruyne
Ecole des Mines de Nantes / LINA
4 rue Alfred Kastler, Nantes, France
romuald.debruyne@emn.fr

consistency [Freuder, 1978], etc. Finally, implementing it can
be done simply on top of any AC algorithm.

Algorithms enforcing SAC were already proposed in the
past (SAC1 [Debruyne and Bessiére, 1997b], and SAC2
[Bartak and Erben, 2004]) but they are far from optimal time
complexity. Moreover, singleton arc consistency lacks an
analysis of its complexity. In this paper, we study the com-
plexity of enforcing SAC (in Section 3) and propose an algo-
rithm, SAC-Opt, enforcing SAC with optimal worst-case time
complexity (Section 4). However, optimal time complexity is
reached at the cost of a high space complexity that prevents
the use of this algorithm on large problems. In Section 5, we
propose SAC-SDS, a SAC algorithm with better worst-case
space complexity but no longer optimal in time. Neverthe-
less, its time complexity remains better than the SAC algo-
rithms proposed in the past. The experiments presented in
Section 6 show the good performance of both SAC-Opt and
SAC-SDS compared to previous SAC algorithms.

2 Preiminaries

A constraint network P consists of a finite set of n variables
X = {i,j,...}, aset of domains D = {D(i), D(j),...},
where the domain D(4) is the finite set of at most d val-
ues that variable ¢ can take, and a set of e constraints C' =
{c1,...,ce}. Each constraint ¢ is defined by the ordered
set var(cy) of the variables it involves, and the set sol(cx)
of combinations of values satisfying it. A solution to a con-
straint network is an assignment of a value from its domain
to each variable such that every constraint in the network is
satisfied. When var(c) = (i, 7), we use ¢;; to denote sol(c)
and we say that c is binary.

A value a in the domain of a variable i (denoted by (i, a))
is consistent with a constraint ¢, iff there exists a support
for (i,a) on ¢, i.e., an instantiation of the other variables
in var(cy) to values in their domain such that together with
(i, a) they satisfy c,. Otherwise, (i, a) is said arc inconsis-
tent. A constraint network P = (X, D, C') is arc consistent
iff D does not contain any arc inconsistent value. AC'(P) de-
notes the network where all arc inconsistent values have been
removed from P. If AC(P) has empty domain, we say that
P is arc inconsistent

Definition 1 (Singleton arc consistency) A constraint net-
work P = (X, D,C) is singleton arc consistent iff Vi €

X,Va € D(i), the network P|;—, = (X, D|i=4, C) obtained
by replacing D(¢) by the singleton {a} is not arc inconsis-
tent. If P|;—, is arc inconsistent, we say that (i,a) is SAC
inconsistent.

3 Complexity of SAC

Both SAC1 [Debruyne and Bessiére, 1997b] and SAC2
[Bartak and Erben, 2004] have an O(en?d*) time complexity
on binary constraints. But it is not optimal.

Theorem 1 The best time complexity we can expect from an
algorithm enforcing SAC on binary constraints is in O(end?).

Proof. According to [McGregor, 1979], we know that check-
ing whether a value (i, a) is such that AC does not fail in
P|;—, is equivalent to verifying if in each domain D(5) there
is at least one value b such that ((¢,a), (j,b)) is “path con-
sistent on (¢, a)”. (A pair of values ((i,a)(j,b)) is path con-
sistent on (4, a) iff it is not deleted when enforcing path con-
sistency only on pairs involving (i,a).) For each variable j,
we have to find a value b € D(3) such that ((¢, a), (4,b)) is
path consistent on (i, a). In the worst case, all the values b in
D(j) have to be considered. So, the path consistency of each
pair ((i,a), (j,b)) may need to be checked against every third
variable k by looking for a value (k, ¢) compatible with both
(i,a) and (j,b). However, it is useless to consider variables
k not linked to j since in this partial form of path consis-
tency only pairs involving (¢, a) can be removed. By using an
optimal time path consistency technique (storing supports),
we are guaranteed to consider at most once each value (&, ¢)
when seeking compatible value on k for a pair ((i,a), (4,b)).
The worst-case complexity of proving that path consistency
on (i, a) does not fail is thus Lyc p(j)Xe,, ecEeenn) = ed>.
Furthermore, enforcing path consistency on (i,a) is com-
pletely independent from enforcing path consistency on an-
other value (j,b). Indeed, a pair ((i,a), (j,b)) can be path
consistent on (4, a) while becoming path inconsistent after the
deletion of a pair ((k, ¢), (j,b)) thus being path inconsistent
on (j,b). Therefore, the worst case time complexity of any
SAC algorithm is at least in O(X; o) ped?) = O(end?). O

4 Optimal Time Algorithm for SAC

SAC1 has no data structure storing which values may become
SAC inconsistent when a given value is removed. Hence, it
must check again the SAC consistency of all remaining val-
ues. SAC2 has data structures that use the fact that if AC
does not lead to a wipe out in P|;—, then the SAC consis-
tency of (7, a) holds as long as all the values in AC(P|;—,)
are in the domain. After the removal of a value (j,b), SAC2
checks again the SAC consistency of all the values (7, a) such
that (4,b) was in AC(P|;=,). This leads to a better average
time complexity than SAC1 but the data structures of SAC2
are not sufficient to reach optimality since SAC2 may waste
time re-enforcing AC in P|;—, several times from scratch.

Algorithm 1, called SAC-Opt, is an algorithm that enforces
SAC in O(end?), the lowest time complexity which can be
expected (see Theorem 1).

The idea behind such an optimal algorithm is that we don’t
want to do and redo (potentially nd times) arc consistency

Algorithm 1: The optimal SAC al gorithm

function SAC-Opt(inout P: Problem): Boolean;
/* init phase */;

1 if AC(P) then PendingList < () elsereturn false;
2 foreach (i,a) € D do
3 P;, — P [* copy only domains and data structures */;
Dia(i) — {a};
if -propagAC(Pia, D(7) \ {a}) then

D — D\{(i,a)};

if propagAC(P,{(%,a)}) then

foreach Pj;, suchthat (i,a) € Dj, do
Qjv +— Qv U{(4,a)};

10 PendingList < PendingList U {(5,b)};
11 else return false;

© 0N O U

/* propag phase */;
12 while PendingList # 0 do
13 pop (i, a) from PendingList;
14 if propaghAC(Piq, Qia) then Qi — 0;
else

16 D — D\ {(i,a)};

17 if D(i) = 0 then return false;

18 foreach (j,b) € D suchthat (i,a) € Dj; do

19 Dijy (i) < Dju(i) \ {a}; Qjp — Qjp U{(i,a)};
20 PendingList « PendingList U {(5,b)};

21 returntrue;

from scratch in each subproblem P|;—; each time a value
(i,a) is found SAC inconsistent. (Which represents n2d?
potential arc consistency calls.) To avoid such costly repe-
titions of arc consistency calls, we duplicate the problem nd
times, one for each value (7, a), so that we can benefit from
the incrementality of arc consistency on each of them. All
generic AC algorithms are incremental, i.e., their complexity
on a problem P is the same for a single call or for up to nd
calls, where two consecutive calls differ only by the deletion
of some values from P.

In the following, P;, is the subproblem in which SAC-
Opt stores the current domain (noted D,,) and the data
structure corresponding to the AC enforcement in P|;—,.
propagAC(P, Q) denotes the function that incrementally
propagates the removal of set of values in problem P when
an initial AC call has already been executed, initialising the
data structure required by the AC algorithm in use. It returns
false iff P is arc inconsistent.

SAC-Opt is composed of two main steps. After making the
problem arc consistent (line 1), the loop in line 2 takes each
value a in each domain D(7) and creates the problem P;, as
a copy of the current P. Then, in line 5 the removal of all
the values different from a for ¢ is propagated. If a subprob-
lem P,, is arc inconsistent, (i, a) is pruned from the *master’
problem P and its removal is propagated in P (line 7). The
advantage of propagating immediately in the master problem
the SAC inconsistent values found in line 5 is twofold. First,
the subproblem Py, of a value (k, ¢) removed in line 7 before
its selection in line 2 will never be created. Second, the sub-
problems P, created after the removal of (&, ¢) will benefit
from this propagation since they are created by duplication
of P (line 3). For each already created subproblem P;;, with
a € Djy(i), (4,a) is putin @, and P, is put in PendingList

for future propagation (lines 9-10).

Once the initialisation phase has finished, we know that
PendingList contains all values (i,a) for which some SAC
inconsistent value removals (contained in @Q;,) have not yet
been propagated in P;,. The loop in line 12 propagates these
removals (line 14). When propagation fails, this means that
(i, a) itself is SAC inconsistent. It is removed from the do-
main D of the master problem in line 16 and each subproblem
P, containing (4, a) is updated together with its propagation
list @, for future propagation (lines 18-20).

When PendingList is empty, all removals have been propa-
gated in the subproblems. So, all the values in D are SAC.

Theorem 2 SAC-Opt is a correct SAC algorithm with
O(end?) optimal time complexity and O(end?) space com-
plexity on binary constraints.

Proof. Soundness. A value a is removed from D(3) either in
line 6 or in line 16 because P;, was found arc inconsistent.
If P, was found arc inconsistent in the initialisation phase
(line 5), SAC inconsistency of (7, a) follows immediately. Let
us proceed by induction for the remaining case. Suppose all
values already removed in line 16 were SAC inconsistent. If
P;, is found arc inconsistent in line 14, this means that P,
cannot be made arc consistent without containing some SAC
inconsistent values. So, (i,a) is SAC inconsistent and SAC-
Opt is sound.

Completeness. Thanks to the way PendingList and Q;, are
updated in lines 8-10 and 18-20, we know that at the end of
the algorithm, all P;, are arc consistent. Thus, for any value
(i, a) remaining in P at the end of SAC-Opt, P|;—, is not arc
inconsistent and (i, a) is therefore SAC consistent.

Complexity. The complexity analysis is given for networks
of binary constraints since the optimality proof was given for
networks of binary constraints only. (But SAC-Opt works on
constraints of any arity.) Since any AC algorithm can be used
to implement our SAC algorithm, the space and time com-
plexities will obviously depend on this choice. Let us first
discuss the case where an optimal time algorithm such as
AC-6 [Bessiére, 1994] or AC2001 [Bessiére and Régin, 2001;
Zhang and Yap, 2001] is used. Line 3 tells us that the space
complexity will be nd times the complexity of the AC algo-
rithm, namely O(end?). Regarding time complexity, the first
loop copies the data structures and propagates arc consistency
on each subproblem (line 5), two tasks which are respectively
innd-ed and nd - ed?. In the while loop (line 12), each sub-
problem can be called nd times for arc consistency, and there
are nd subproblems. Now, AC-6 and AC2001 are both incre-
mental, which means that the complexity of nd restrictions
on the same problem is ed? and not nd - ed?. Thus the total
cost of arc consistency propagation on the nd subproblems is
nd - ed?. We have to add the cost of updating the lists in lines
8 and 18. In the worst case, each value is removed one by
one, and thus, nd values are put in nd Q lists, leading to n?d?
updates of PendingList. If n < e, the total time complexity is
O(end?), which is optimal. O

Remarks. We chose to present the @, lists as lists of values
to be propagated because the AC algorithm used is not spec-
ified here, and value removal is the most accurate informa-
tion we can have. When using a fine-grained AC algorithm,

such as AC-6 the lists will be used as they are. If we use
a coarse-grained algorithm such as AC-3 [Mackworth, 1977]
or AC2001, only the variables from which the domain has
changed are needed. The modification is direct. We should
bear in mind that if AC-3 is used, we decrease space complex-
ity to O(n%d?), but time complexity increases to O(end*)
since AC-3 is non optimal.

5 Losing Time Optimality to Save Space

SAC-Opt cannot be used on large constraint networks because
of its O(end?) space complexity. Moreover, it seems dif-
ficult to reach optimal time complexity with smaller space
requirements. A SAC algorithm has to maintain AC on nd
subproblems P|;—,, and to guarantee O(ed?) total time on
these subproblems we need to use an optimal time AC algo-
rithm. Since there does not exist any optimal AC algorithm
requiring less than O(ed) space, we obtain nd - ed space for
the whole SAC process.

We propose to relax time optimality to reach a satisfac-
tory trade-off between space and time. To avoid discussing in
too general terms, we instantiate this idea on a AC2001-based
SAC algorithm for binary constraints, but the same idea could
be implemented with other optimal AC algorithms such as
AC-6, and with constraints of any arity. The algorithm SAC-
SDS (Sharing Data Structures) tries to use as much as possi-
ble the incrementality of AC to avoid redundant work, with-
out duplicating on each subproblem P|;—,, the data structures
required by optimal AC algorithms. This algorithm requires
less space than SAC-Opt but is not optimal in time.

As in SAC-Opt, for each value (i, a) SAC-SDS stores the lo-
cal domain D;, of the subproblem P|;—, and its propagation
list Q;,. Note that in our AC2001-like presentation, @Q;, is a
list of variables j for which the domain D;,(j) has changed
(in SAC-Opt it is a list of values (j,b) removed from D;,).
As in SAC-Opt, thanks to these local domains D,,, we know
which values (i, a) may no longer be SAC after the removal
of a value (j,b): those for which (j,b) was in D;,. These
local domains are also used to avoid starting each new AC
propagation phase from scratch, since D;, is exactly the do-
main from which we should start when enforcing again AC
on P|,—, after a value removal. By comparison, SAC1 and
SAC?2 restart from scratch for each new propagation.

But the main idea in SAC-SDS is that as opposed to SAC-
Opt, it does not duplicate to all subproblems P;, the data
structures of the optimal AC algorithm used. The data
structure is maintained only in the master problem P. In
the case of AC2001, the Last structure which maintains
in Last(i,a, j) the smallest value in D(j) compatible with
(i, @) on ¢;; is built and updated only in P. Nevertheless, it
is used by all subproblems P;, to avoid repeating constraint
checks already done in P.

SAC-SDS (Algorithm 2) works as follows: After some
initialisations (lines 1-4), SAC-SDS repeatedly pops a value
from PendingList and propagates AC in P;, (lines 6-9). Note
that *D,,=nil’ means that this is the first enforcement of AC
in P,,, so D;, must be initialised (line 8).1 If P,, is arc in-

1We included this initialisation step in the main loop to avoid
repeating similar lines of code, but a better implementation will put

Algorithm 2: The SAC- SDS al gorit hm

function SAC-SDS-2001(inout P: problem): Boolean;
1 if AC2001(P) then PendingList < () else return false;
2 foreach (i,a) € D do
3 Diq — nil ; Qia — {i};
PendingList «+ PendingList U {(i,a)};
while PendingList # () do
pop (i, a) from PendingList ;
if a € D(7) then
if Diq = nilthen D;, « (D \ D(i)) U {(i,a)};
if propagSubAC(Dia, Qia) then Qis — 0;
else

© 0N O N

P
= O

D(i) <« D(@) \ {a} ; Deleted — {(¢,a)} ;

if propagMainAC(D, {i}, Deleted) then
updateSubProblems (Deleted)

14 elsereturn falsg

15 returntrue;

function Propag| Main/Sub [AC(inout D: domain; in Q: set;

| inout Deleted: set [): Boolean;

B
w N

16 while@ # 0 do
17 pop j from Q@ ;
18 foreach < € X suchthat 3c;; € C do

19 foreach a € D(4) suchthat Last(i,a,j) ¢ D(j) do
20 if 3b € D(j),b > Last(i,a, j) A cij(a,b) then
2

2 else

23 D) — D@)\ {a}; Q — QU {i};

24 | Deleted — Deleted U {(i, a)} |;

25 if D(i) = 0 then returnfalse;

26 returntrue;
[*[---]: inpropagMainAC but not in propagSubAC */;

procedure updateSubProblems(in Deleted: set);
27 foreach (j,b) € D | Dj, N Deleted # () do
28 ij <—Qﬂ,U{i eX/Dﬂ,(i)ﬂDeletedyé(/]} ;
29 Djb — Djb \ Deletaj,
30 PendingList < PendingList U {(4,b)};

consistent, (4, a) is SAC inconsistent. It is therefore removed
from D (line 11) and this deletion is propagated in the master
problem P using propagMainAC (line 12). Any value (i, a)
removed from P is put in the set Deleted (lines 11 and 24).
This set is used by updateSubProblems (line 13) to pass
the values removed from P on to the subproblems, and to up-
date the lists @) ;, and PendingList for further propagation in
modified subproblems.

At this point we have to explain the difference between
propagMainAC, which propagates deletions in the mas-
ter problem P, and propagSubAC, which propagates dele-
tions in subproblems P;,. The parts that are in boxes be-
long to propagMainAC and not to propagSubAC. Function
propagSubAC, used to propagate arc consistency in the sub-
problems, follows the same principle as the AC algorithm.
The only difference comes from the fact that the data struc-
tures of the AC algorithm are not modified. When using
AC2001, this means that Last is not updated in line 21. In-
deed, this data structure is useful to achieve AC in the sub-

itin aformer loop asin SAC-Opt.

problems faster (lines 19-20) since we know that there is
no support for (i,a) on ¢;; lower than Last(i,a,j) in P,
and so in any subproblem as well. But this data structure is
shared by all subproblems. Thus it must not be modified by
propagSubAC. Otherwise, Last(i,a, j) would not be guar-
anteed to be the smallest support in the other subproblems and
in P. When achieving AC in P, propagMainAC does update
the Last data structure. The only difference with AC2001 is
line 24 where it needs to store in Deleted the values removed
from D during the propagation. Those removals performed
in P can directly be transferred in the subproblems without
the effort of proving their inconsistency in each subproblem.
This is done via function updateSubProblems, which re-
moves values in Deleted from all the subproblems. It also
updates the local propagation lists @;, and PendingList for
future propagation in the subproblems.

Theorem 3 SAC-SDS is a correct SAC algorithm with
O(end*) time complexity and O(n2d?) space complexity on
binary constraints.

Proof. Soundness. Note first that the structure Last is up-
dated only when achieving AC in P so that any support
of (¢,a) in D(j) is greater than or equal to Last(i,a,j).
The domains of the subproblems being subdomains of D,
any support of a value (i, a) on ¢;; in a subproblem is also
greater than or equal to Last(i,a,j). This explains that
propagSubAC can benefit from the structure Last without
losing any support (lines 19-20). Once this observation is
made, soundness comes from the same reason as in SAC-Opt.

Completeness. Completeness comes from the fact that
any deletion is propagated. After initialisation (lines 2-4),
PendingList = D and so, the main loop of SAC-SDS pro-
cesses any subproblem P|;—, at least once. Each time a
value (i,a) is found SAC inconsistent in P because P|;—,
is arc inconsistent (line 9) or because the deletion of some
SAC-inconsistent value makes it arc inconsistent in P (line
23 of propagMainAC called in line 12), (¢,a) is removed
from the subproblems (line 29), and PendingList and the local
propagation lists are updated for future propagation (lines 28
and 30). At the end of the main loop, PendingList is empty,
so all the removals have been propagated and for any value
(i,a) € D, D,, is a non empty arc consistent subdomain of
Pliza-

Complexity. The data structure Last requires a space in
O(ed). Each of the nd domains D,, can contain nd values
and there is at most n variables in the nd local propagation
lists Q;4. Since e < n?, the space complexity of SAC-SDS-
2001 is in O(n2d?). So, considering space requirements,
SAC-SDS-2001 is similar to SAC2.

Regarding time complexity, SAC-SDS-2001 first duplicates
the domains and propagates arc consistency on each subprob-
lem (lines 8 and 9), two tasks which are respectively in nd-nd
and nd - ed?. Each value removal is propagated to all P|;—,,
problems via an update of PendingList, Q;, and D;, (lines
27-30). This requires nd - nd operations. Each subproblem
can in the worst case be called nd times for arc consistency,
and there are nd subproblems. The domains of each subprob-
lem are stored so that the AC propagation is launched with
the domains in the state in which they were at the end of the

cpu time (in sec.)

160 e

__| Zoomwith a non

———SAC-0pt-2001. ———@——SAC-SDS-2001 logarithmic scale

——@———SAC-1-2000 —————— SAC-2:2001

67 69 71 73 75 01

cpu time (in sec.) 1500
n=100, d=20, and density=1 (complete constraint networks)

1E43—

om with a non

: logarithmic scale |

5 R

R

IE) -

————SAC-Opi-2001 ——@——SAC-SDS-2001
———SAC12000 ——<—— SAC-2-2001

% Tightness

1 T T T T T T T T T T T T T

1E2 T T T T T T T T T T T T T
0 15 20 25 30 35 40 45 50 5 £0 65 10 15 80 85

Figure 1: cpu time with n = 100, d = 20, and density= .05.

previous AC propagation in the subproblem. Thus, in spite
of the several AC propagations on a subproblem, a value will
be removed at most once and, thanks to incrementality of arc
consistency, the propagation of these nd value removals is in
O(ed?). (Note that we cannot reach the optimal ed?® com-
plexity for arc consistency on these subproblems since we do
not duplicate the data structures necessary for AC optimal-
ity.) Therefore, the total cost of arc consistency propagations
is nd - ed®. The total time complexity is O(end*). i

As with SAC2, SAC-SDS performs a better propagation
than SAC1 since after the removal of a value (i,a) from
D, SAC-SDS checks the arc consistency of the subproblems
P|,=p only if they have (i, a) in their domains (and not all the
subproblems as SAC1). But this is not sufficient to have a bet-
ter worst-case time complexity than SAC1. SAC2 has indeed
the same O(en?d*) time complexity as SAC1. SAC-SDS im-
proves this complexity because it stores the current domain of
each subproblem, and so, does not propagate in the subprob-
lems each time from scratch.? Furthermore, we can expect
a better average time complexity since the shared structure
Last reduces the number of constraint checks required, even
if it does not permit to obtain optimal worst-case time com-
plexity. This potential gain can only be assessed by an exper-
imental comparison of the different SAC versions. Finally,
in SAC1 and SAC2 each AC enforcement in a subproblem
must be done on a new copy of D built at runtime (potentially
nd - nd times) while such duplication is performed only once
for each value in SAC-SDS (by creating subdomains D;,,).

6 Experimental Results

We compared the performance of the SAC algorithms on ran-
dom uniform constraint networks of binary constraints gener-
ated by [Frost et al., 1996], which produces instances accord-

2Thisisindependent on the AC algorithm used and so, enforcing
AC with AC-3 preserves this O(end”) time complexity.

T
0 15 20 2 30 35 40 45 50 85 60 65 10 e} 80 8

Figure 2: cpu time with n = 100, d = 20, and density= 1.

ing to Model B [Prosser, 1996]. All algorithms have been im-
plemented in C++ and ran on a Pentium IV-1600 MHz with
512 Mb of memory under Windows XP. SAC1 and SAC2 have
been tested using several AC algorithms. In the following,
we note SAC-1-X, SAC-2-X and SAC-Opt-X the versions of
SAC1, SAC2 and SAC-Opt based on AC-X. Note that for SAC2
the implementation of the propagation list has been done ac-
cording to the recommendations made in [Bartak and Erben,
2003]. For each combination of parameters tested, we gener-
ated 50 instances for which we report mean cpu times.

6.1 Experimentson sparse constraint networks

Fig. 1 presents performance on constraint networks having
100 variables, 20 values in each domain, and a density of
.05. These constraint networks are relatively sparse since the
variables have five neighbours on average.

For a tightness lower than .55, all the values are SAC. On
these under-constrained networks, the SAC algorithms check
the arc consistency of each subproblem at most once. Storing
support lists (as in SAC2) or local subdomains (as in SAC-
Opt and SAC-SDS) does not pay-off. A brute-force algorithm
such as SACL1 is sufficient. SAC-1-2001 shows the best per-
formance.

On problems having tighter constraints, some SAC incon-
sistent values are removed and at tightness .72 we can see
a peak of complexity. However, as mentioned in [Bartak
and Erben, 2003], the improved propagation of SAC2 is use-
less on sparse constraint networks and SAC2-X (with Xe
{4,6,2001}) is always more expensive than SAC1-X on the
generated problems. Around the peak of complexity, SAC-
SDS-2001 is the clear winner. SAC-Opt-2001 and SAC1-2001
are around 1.7 times slower, and all the others are between 2.1
and 10 times slower.

6.2 Experimentson dense constraint networks

Fig. 2 presents performance on constraint networks having
100 variables, 20 values in each domain and a complete graph
of binary constraints.

SAC1 and SAC2 show very close performance. When all
values are SAC consistent (tightness lower than .37) the addi-
tional data structure of SAC2 is useless since there is no prop-
agation. However the cost of building this data structure is not
important compared to the overall time and the time required
by SAC2 is almost the same as SAC1. Around the peak of
complexity, SAC2-X (with Xe {4,6,2001}) requires a little
less time than SAC1-X. SAC2 has to repeatedly recheck the
arc consistency of less subproblems than SAC1 but the cost
of testing a subproblem remains the same. On very tight con-
straints, SAC1 requires less time than SAC2 since the incon-
sistency of the problem is found with almost no propagation
and building the data structure of SAC2 is useless.

Conversely to what was expected in [Bartak and Erben,
2004], using AC-4 in SAC1 (or in SAC2) instead of AC-6 or
AC2001 is not worthwhile. The intuition was that since the
data structure of AC-4 does not have to be updated, the cost
of its creation would be low compared to the profit we can ex-
pect. However, SAC1-4 and SAC2-4 are far more costly than
the versions based on AC-6 or AC2001.

The best results are obtained with SAC-Opt-2001 and SAC-
SDS-2001 which are between 2.6 and 17 times faster than the
others at the peak. These two algorithms have a better prop-
agation between subproblems than SAC1 but they also avoid
some redundant work and so reduce the work performed on
each subproblem.

7 Summary and Conclusion

We have presented SAC-Opt, the first optimal time SAC algo-
rithm. However, the high space complexity of this algorithm
prevents its use on large constraint networks. Hence, we have
proposed SAC-SDS, a SAC algorithm that is not optimal in
time but that requires less space than SAC-Opt. Experiments
show the good performance of these new SAC algorithms
compared to previous versions available in the literature. This
opens again the issue of using SAC as an alternative to AC for
pruning values in a constraint network, or at least in promis-
ing’ parts of the network. SAC could also be used to compute
variable selection heuristics, as this had been done with suc-
cess in SAT [Li and Ambulagan, 1997].

References

[Bartak and Erben, 2003] R. Bartak and R. Erben. Singleton
arc consistency revised. In ITI Series 2003-153, Prague,
2003.

[Bartak and Erben, 2004] R. Bartak and R. Erben. A new
algorithm for singleton arc consistency. In Proceedings
FLAIRS’04, Miami Beach FL, 2004. AAAI Press.

[Berlandier, 1995] P. Berlandier. Improving domain filtering
using restricted path consistency. In Proceedings IEEE-
CAIA’95, 1995.

[Bessiére and Régin, 2001] C. Bessiére and J.C. Régin. Re-
fining the basic constraint propagation algorithm. In Pro-
ceedings 1JCAI’01, pages 309-315, Seattle WA, 2001.

[Bessiére, 1994] C. Bessiére. Arc-consistency and arc-
consistency again. Artificial Intelligence, 65:179-190,

1994,
[Debruyne and Bessiére, 1997a] R. Debruyne and
C. Bessiére. From restricted path consistency to

max-restricted path consistency. In Proceedings CP’97,
pages 312-326, Linz, Austria, 1997.

[Debruyne and Bessiére, 1997b] R. Debruyne and
C. Bessiére. Some practicable filtering techniques
for the constraint satisfaction problem. In Proceedings
IJCAI’97, pages 412-417, Nagoya, Japan, 1997.

[Debruyne and Bessiére, 2001] R. Debruyne and
C. Bessiére. Domain filtering consistencies. Jour-
nal of Atrtificial Intelligence Research, 14:205-230,
2001.

[Freeman, 1995] J.W. Freeman. Improvements to proposi-
tional satisfiability search algorithms. PhD thesis, Univer-
sity of Pennsylvania, Philadelphia PA, 1995.

[Freuder, 1978] E.C. Freuder. Synthesizing constraint ex-
pressions. Communications of the ACM, 21(11):958-966,
Nov 1978.

[Frostet al., 1996] D. Frost, C. Bessiére, R. Dechter, and
J.C. Régin. Random uniform csp generators. URL:
http://www.lirmm.fr/"bessiere/generator.html, 1996.

[Lhomme, 1993] O. Lhomme. Consistency techniques for
numeric csps. In Proceedings IJCAI’93, pages 232-238,
Chambeéry, France, 1993.

[Li and Ambulagan, 1997] C.M. Li and Ambulagan. Heuris-
tics based on unit propagation for satisfiability problems.
In Proceedings 1JCAI’97, pages 366—371, Nagoya, Japan,
1997.

[Mackworth, 1977] A.K. Mackworth. Consistency in net-
works of relations. Artificial Intelligence, 8:99-118, 1977.

[McGregor, 1979] J.J. McGregor. Relational consistency al-
gorithms and their application in finding subgraph and
graph isomorphism. Information Science, 19:229-250,
1979.

[Montanari, 1974] U. Montanari. Networks of constraints:
Fundamental properties and applications to picture pro-
cessing. Information Science, 7:95-132, 1974.

[Prosser et al., 2000] P. Prosser, K. Stergiou, and T Walsh.
Singleton consistencies. In Proceedings CP’00, pages
353-368, Singapore, 2000.

[Prosser, 1996] P. Prosser. An empirical study of phase tran-
sition in binary constraint satisfaction problems. Artificial
Intelligence, 81:81-109, 1996.

[Zhang and Yap, 2001] Y. Zhang and R.H.C. Yap. Making
AC-3 an optimal algorithm. In Proceedings 1JCAI'01,
pages 316-321, Seattle WA, 2001.

