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Abstract

We use “nearly sound” logical constraints to in-
fer hidden states of relational processes. We in-
troduce a simple-transition cost model, which is
parameterized by weighted constraints and a state-
transition cost. Inference for this model, i.e. find-
ing a minimum-cost state sequence, reduces to a
single-state minimization (SSM) problem. For re-
lational Horn constraints, we give a practical ap-
proach to SSM based on logical reasoning and
bounded search. We present a learning method that
discovers relational constraints using CLAUDIEN
[De Raedt and Dehaspe, 1997] and then tunes their
weights using perceptron updates. Experiments in
relational video interpretation show that our learned
models improve on a variety of competitors.

1 Introduction

We consider hidden-state inference from the observations of
relational processes, i.e. processes where states and obser-
vations are described by properties of and relations among
objects (e.g. people and blocks). To deal with the enormous
state and observation spaces, we utilize “nearly-sound” (i.e.
rarely violated) logical constraints on the states and obser-
vations. Such constraints can often be acquired via machine
learning and/or a human expert, and we give a framework for
combining them for relational sequential inference.

We introduce the simple-transition cost model (in Sec-
tion 3), which is parameterized by a set of weighted log-
ical constraints and a state-transition cost. The cost of a
state sequence given an observation sequence is the weight
of unsatisfied constraints plus a transition cost for each state
change. Sequential inference corresponds to computing the
minimum-cost state sequence. Here we study both learning
and inference for this model.

First, in Section 4, we (efficiently) reduce sequential infer-
ence to a single-state minimization (SSM) problem. We then
show, in Sections 5 and 6, how to leverage nearly-sound rela-
tional Horn constraints in order to compute SSM with prac-
tical efficiency. We also study the possibility of exploiting
efficient SSM in richer models. We show that for a simple en-
richment to our model, there is no efficient reduction unless
P=NP. In Section 7, we discuss learning a relational simple-
transition model using the logical discovery engine CLAU-
DIEN [De Raedt and Dehaspe, 1997] and a variant of Collins’

generalized perceptron algorithm [Collins, 2002]. Finally, in
Section 8, we evaluate our approach in a relational video-
interpretation domain. Our learned models improve on the ac-
curacy of an existing trainable system and an approach based
on more mainstream approximate inference.

2 Problem Setup

For simplicity, we describe our problem setup and approach
for propositional (rather than relational) processes, where in
the spirit of dynamic Bayesian networks (DBNs) [Murphy,
2002], states are described by a fixed set of variables. In Sec-
tion 6, we extend to the relational setting.

A sequential process is a triple (X', Y, P), where the ob-
Servation space X and state space ) are sets that contain
all possible observations and states. P is a probability dis-
tribution over the space of finite sequences constructed from
members of X x ). Each such sequence contains a pair of
an observation sequence (o-sequence) and a state sequence
(s-sequence). For a sequence @ = (qi,-..,q7), we let
Qi:j = (¢, ..., q;) fori < j. We will use uppercase for se-
quences and lowercase for single states and observations. A
process is propositional when its states are represented using
a set of n state variables over the finite domain D, yielding
Y = (Ds)™. The value of the i’th variable in state s is de-
noted by s(. We will not need to assume a representation
for observations until Section 6

We assume that the utility of an inferred s-sequence
S primarily derives from the sequence of distinct states,
rather than identifying the exact state transition points.
Let CoMPRESS(S) denote the sequence obtained by re-
moving consecutive repetitions in S. For example,
COMPRESS(a, a,a,b,b,a,c,c) = a,b,a,c. Our empirical
goal is to map an o-sequences O to an s-sequence S such that
CoMPRESS(.S) is the distinct sequence of states that gener-
ated O. Indeed, in our video domain, the exact locations of
state transitions are often ambiguous (as judged by a human)
and unimportant for recognizing activity—e.g. in Figure 1 it
is unimportant to know exactly where the transition occurs.
Example 1. The process in our video-interpretation domain
corresponds to a hand playing with blocks. Figure 1 shows
key frames where a hand picks up a red block from a green
block. The goal is to observe the video and then infer the
underlying force-dynamic states, describing the support rela-
tions among objects. States are represented as sets of force-
dynamic facts, such as ATTACHED(HAND, RED). Observa-
tions are represented as sets of low-level numeric facts, such



Figure 1: Key frames in a video segment showing a hand picking up a red block from a green block. The object tracker’s output is
shown by the polygons. The video segment has two distinct force-dynamic states given by: { GROUNDED(HAND), GROUNDED(GREEN),
CONTACTS(GREEN, RED)} (frames 1 and 3) and { GROUNDED(HAND), GROUNDED(GREEN), ATTACHED(HAND, RED)} (frames 14 and
20). The transition occurs between frames 3 and 14. See Example 2 regarding the predicates GROUNDED, CONTACTS, and ATTACHED.

as DISTANCE(GREEN, RED) = 3, that are derived from an
object tracker’s noisy output. For a fixed set of objects, the
process can be represented propositionally with a variable
for each possible fact. However, our system must handle any
number of objects, requiring a relational process representa-
tion described in Section 6.

3 TheSimple-Transition Cost Model

Our framework utilizes an additive conditional cost model
C(S|O) to represent the cost of labeling o-sequence O1.1 by
s-sequence Sy.p

C(S1rOrr) = Y Calsilo)+ > Cilsi,sica) (1)

1<i<T 1<i<T

with real-valued atemporal-cost and transition-cost functions
C, and C;. This is the cost cost model implicit in (con-
ditional) hidden Markov models (HMMs). C,(s;|o;) is the
cost of labeling o; by state s;, and C:(s;, s;—1) is the cost of
transitioning from state s;_; to s;. As in [Lafferty et al.,
2001], our work extends to C,’s with “non-local” observa-
tion dependencies. Sequential inference involves computing
arg ming,,,, C(S1.7|O1.7) for a given Oq.r.

C(S1.7|01.7) 1s a Simple-transition model (STM) with pa-
rameters (C,, K) if the atemporal-cost function is C, and
Ci(si,8i-1)=K-8(s;i # s;i—1), where K isareal,and 6(p) = 1
if p is true else 0. This model charges an equal cost for
all state transitions, even though generally some transitions
types are more likely than others. If this likelihood infor-
mation is critical for inference, then an STM alone will not
suffice. However, we believe that there are interesting pro-
cesses where accurate inference does not require exploiting
non-simple transition structure. For example, in our video
domain, states persist for many observations and can be reli-
ably inferred by integrating just those observations, without
considering transition type. For such processes, it is impor-
tant to study simple but sufficient models, as there can be
considerable computational advantages.

4 Inferencefor Simple-Transition M odels

Viewing an STM as an HMM we can apply the Viterbi algo-
rithm [Forney, 1973] to compute a minimum-cost s-sequence
Si.r in O(T - |Y|?) time. In fact, by leveraging the simple-
transition structure, Viterbi can be improved to O(T" - 2 - |)|)
time. However, these algorithms are impractical for us since
they are exponential in the number of state variables n (i.e.
|Y| = |Ds|™), which will typically be large for our re-
lational processes. Likewise, for STMSs, general-purpose

graphical-modeling techniques such as variable elimination
and junction-tree algorithms are exponential in n (i.e. the in-
duced tree width [Dechter, 1999] is linear in n).

Reduction to SSM. Sequential inference for an STM
(K, C,) reduces to the single-state minimization (SSM) prob-
lem, which is defined as computing the SSM function
0(01:5) = mins ), ;. Ca(slo;). The SSM function gives
the minimum cost of labeling Oy.; by a single state (i.e.
no state transitions). For an o-sequence Oi.7 we denote
the minimum cost over all s-sequences as C*(O1.7) =
ming, . C(S1.7|O1.7). For STMs, C*(O1.r) can be ex-
pressed in terms of o as follows (for proof see Fern [2004]).

C*(Or:r) = min [C7(O1y) + K -6(j > 0) +0(O0j41:7)] (2)
0<j<T

Equation 2 minimizes over j, where j + 1 is viewed as
the final state-transition point. The minimum cost over s-
sequences with final transition 5 4+ 1 equals the minimum-
cost sequence up to j, plus a transition cost K (unless j =0),
plus the SSM cost for the remaining suffix (no transitions oc-
cur after j). This decomposition is possible because STMs
weigh all transition types equally, decoupling the minimiza-
tion problems before and after ;.

Equation 2 yields an efficient reduction to SSM based on
dynamic programming, which we call the SSM-DP algo-
rithm. Simply compute C*(O;;) intheorder j =1,2,...,T
for a total of 72 SSM computations. It is straightfor-
ward to store information for extracting the minimum-cost s-
sequence, which we denote by SSM-DP(O1.r1, 0, K). Thus,
efficient SSM computation implies efficient sequential infer-
ence for STMs. The complexity of SSM depends on the par-
ticular representation used for C,. In Section 5, we lever-
age nearly-sound logical constraints to provide practically ef-
ficient SSM.

Though SSM-DP provides the potential for handling large
state spaces, a naive implementation requires 72 SSM com-
putations, which is often unacceptable. However, signif-
icant and sound pruning of the computation is possible—
e.g. in Equation 2, ignore any j when a k exists such that
C(S1:x|01.) < C(51:5]10::5) + o(0;41.%). In our application,
pruning reduces the empirical number of SSM computations
to O(T'). See Fern [2004] for details.

Sufficient SSM Computation. In practice we do not need
exact SSM for all o-sequences. Rather we need only to com-
pute a sufficient SSM approximation defined below. O.; is
a critical o-sequence of process P if for some o-sequence
drawn from P, O;.; is a maximal subsequence generated
by a single state. Let o be the SSM function for an STM



that accurately predicts s-sequences of P. We say o’ is a
suffi cient SSM agpproximation to o for P if both 1) for all
o-sequences O1.7, o(O1.7) < ¢’(O1.7), and 2) o' (0') =
o(0") for any critical o-sequence O’ of P. It can be shown
that for o-sequences drawn from P, SSM-DP(O1.1,0, K) =
SSM-DP(O1.7,0’, K). Thus we can achieve accurate infer-
ence using o’. In Section 5 we show how to efficiently com-
pute such an approximation.

Non-Simple Models. Given our focus on SSM it is natu-
ral to consider efficient SSM reductions for non-simple mod-
els. Intuitively, if a model distinguishes between different
transition types, we may need to consider states other than
just SSM solutions (like Viterbi but unlike SSM-DP), possi-
bly resulting in exponential behavior in n even given efficient
SSM. Below we show that an efficient reduction is unlikely
for a modest extension to STMs, giving a boundary between
efficient and inefficient models under efficient SSM.

We extend STMs by allowing the model to assign higher
costs to transitions where more state variables change, unlike
STMs which can only detect whether a change occurred. A
cost model C', with atemporal component C,, is a counting-
transition model if Ci(si,si 1) = K -3, 6(st # s7),
i.e. transition cost is linear in the count of propositions that
change. We say C allows effi cient SSM if the SSM func-
tion for C, is computable in time polynomial in its input o-
sequence size and humber of state variables.

Theorem 1. Given as input a counting-transition model C,
an observation sequence O, and a cost bound 7, the prob-
lem of deciding whether C*(O1.7) < 7 is NP-complete, even
under the assumption that C' allows efficient SSM.

Proof: (sketch) See Fern [2004] for full proof. Inference in
2-d grid Potts models, a class of Markov random fields, is NP-
hard [Veksler, 1999]. We first give a non-trivial extension of
this result to the smaller class of 2-d grid Potts models with
equally weighted “horizontal edges”. Next, we reduce this
problem to counting-transition model inference. Intuitively,
the state variables at time 7 represent the Potts model nodes
in column . Finally, we show that the constructed model
allows efficient SSM via variable elimination. O

5 Constraint-Based SSM

We now give a constraint-based representation for atemporal-
cost functions and study the corresponding SSM problem.
For simplicity, we assume that states have n binary state vari-
ables, i.e. D, = {true, false}. We also assume a set of m
binary observation tests, each one mapping observations to
{true, false}. Non-binary extensions are straightforward.
Propositional Horn Constraints. A propositional Horn
constraint ¢ is a logical implication (body — head), where
body is a conjunction of state variables and observation tests,
and head is a state variable or false. Given an observation o
and state s, we let ¢[o] (¢[s]) denote the result of substituting
observation tests (state variables) in ¢ with the truth values
under o (under s). If a constraint has no variables, then it is
interpreted as the truth value of the variable-free expression.
Thus, ¢[o][s] is the truth value of ¢ under o and s, and we
say that o and s satisfy ¢ iff ¢[o][s] is true. A set of Horn
constraints is satisfi able iff there exists a state and observa-
tion that jointly satisfy each constraint. For horn constraints,
testing satisfiability and finding satisfying assignments are
polynomial-time computable [Papadimitriou, 1995].

Constraint-Based Cost Functions. We parameterize an
atemporal-cost function using a set of weighted Horn con-
straints & = {(¢1,c1), ..., (py, )}, With Horn constraints
¢; and non-negative weights ¢; representing the cost of vi-
olating ¢;. The non-negativity requirement will be impor-
tant for inference. The sum of costs in @ is denoted by
CosT(®) and we say @ is satisfiable if its set of constraints
is satisfiable. Atemporal cost is defined as C,(s|o, ®) =
> o.yen € 0(m0lo][s]), i.e. the total cost of unsatisfied con-
straints. In this work, we will assume that ® contains “nearly
sound” constraints, meaning that each constraint is usually
satisfied by the state/observation pairs generated by our pro-
cess. Our primarily non-theoretical goals do not require a
formal notion of nearly sound (e.g. PAC).

Given ¢ and an o-sequence O.;, we define the combined
constraint set as T'(O1.;,®) = U@g U<¢,C>E¢<¢[oi}, c),

which involves only state variables and captures all of the
state constraints “implied” by ® and O;.;. The SSM func-
tion for C, is now given by

min Z Ca(s|os, ®) ©)]

1<i<y

= min E
s

(¢,c)€r(01.5,2)

o(0O14|®) =
c-0(—¢ls]) 4)

which is equivalent to solving maximum satisfi ability
(MAX-SAT) iang et al., 1995] for '(O;.;, ®), where MAX-
SAT asks for an s such that the weight of satisfied constraints
is maximum. While the number of SSM variables is fixed,
the constraint set grows with sequence length. Fortunately, in
practice we can significantly reduce this set by pruning and
merging. PRUNE(®) contains members of ¢ that do not have
false in the constraint’s body. MERGE(®) combines logi-
cally equivalent members of ® into one constraint by sum-
ming weights. MAX-SAT solutions are invariant under both
operators. Thus, we solve SSM via MAX-SAT for the smaller
constraint I'*(O.;, ®) = MERGE(PRUNE(L'(O1.5, ®))).

A Dual MAX-SAT Approach. MAX-SAT is NP-hard
even for Horn constraints [Jaumard and Simeone, 1987].
Rather than use general-purpose approximate techniques, we
give a MAX-SAT approach that leverages our setting of
nearly-sound Horn constraints. Let 7 = I'*(O.;, ®) and II
be the set containing all satisfiable subsets of 7. An equiv-
alent dual form of Equation 4 is ¢(0O.;|®) = CosT(n) —
max,cr; COST(7’), which asks for a maximum-cost mem-
ber of II. This motivates the following MAX-SAT ap-
proach that searches through constraint subsets rather than
than variable assignments. Conduct a cost-sensitive breadth-
first search through subsets of = for a satisfiable subset—i.e.
starting at = consider 7 subsets in order of non-increasing
cost until finding a satisfiable one. Any satisfying assignment
for this set is a MAX-SAT solution provided all weights are
non-negative. For negative weights a satisfying assignment
for a consistent constraint set may not be a MAX-SAT solu-
tion. Although we can always replace a negatively weighted
constraint (¢, c¢) by (—¢, —c), ~¢ may not be horn, possibly
making SAT hard. Hence we require non-negative weights.

Since testing satisfiability is efficient for Horn constraints,
the time required by the dual approach primarily depends on
the number of search nodes we consider. This number is



Table 1: Force-dynamic state predicates R (top) and observation
predicates R, (bottom) for our application.

ATTACHED(z,y) z supports y by attachment
GROUNDED(z)  support of x is unknown
CONTACTS(z,y) « supports y by contact

DIRECTION(X,d)  is moving in direction d

SPEED(X,S) x’sspeed is s
ELEVATION(x,e) x’s elevation is e
MORPH(X,C) 2’s shape-change factor is ¢

DISTANCE(X,y,d) distance between z and y is d
ADisT(x,y,dd)  change in distance is dd
ComPass(x,y,c) compass direction of y to z is ¢
ANGLE(X,Y,a) angle between z and y is a

bounded by the number of subsets of 7 that have a cost greater
than o(O1.;|®), which can be exponentially large. Thus, we
compute an approximation ¢” to o by first searching through
subsets of 7 for a maximum of 7 steps. We return a solu-
tion if one is found and otherwise return an upper-bound to
o(01.;|®) resulting from a greedy hill-climbing search.
Though o™ will not be correct for all inputs, we know from
Section 4, that it need only be a sufficient approximation to
guarantee correct sequential inference. When our constraints
are nearly sound, o™ will tend to be sufficient even for small
7. That is, o™ will equal o for critical o-sequences. Recall
that when O;.; is a critical o-sequence it must be generated
by a single state s. Thus, s will satisfy most constraints in
I'*(0.;, ®) and our search need only remove a small number
of constraints (the unsatisfied ones) to find a satisfiable sub-
set. In addition, as described in the full paper, the MERGE op-
eration tends to place high weight on the satisfied constraints,
which often leads in removing unsatisfied constraints first.

6 Extendingto Relational Processes

In the spirit of knowledge-base model construction [Wellman
et al., 1992], we extend to relational processes by compil-
ing “relational schemas” to propositional models and use the
ideas from previous sections.

Relational Processes. A process (X,Y,P) is relational
when the observation and state spaces X and ) are given by
specifying a domain set of objects D, a state-predicate set
R, and an observation-feature set F,, each having a speci-
fied number of arguments. An observation fact has the form
“f =v”, where f is an observation feature applied to objects
and v is a number. A statefact is a predicate from R, applied
to objects. See Example 1 for example facts from our video
domain. Observations (states) are finite sets of observation
(state) facts, representing all the facts that are true, and X' ()))
contains all such sets. States are restricted to only involve ob-
jects that appear in the corresponding observation. We often
view relational states as propositional. Given afinite D’ C D,
denote by Y[D’] the propositional state space over n binary
variables, one variable for each of the n = O(|D’|9) state
facts involving only objects in D’, where ¢ is the maximum
state-predicate arity.

Example 2. In our video domain we infer force-dynamic
state sequences from videos of a hand playing with blocks.
D contains all hands and blocks we might encounter. There
are three force-dynamic state predicates and eight observa-
tion features, shown in Table 1. Figure 1 depicts two distinct
force-dynamic states. Observations are sets of observation
facts calculated for the objects and object pairs based on the

PERCEPTRON(TRN, {¢1, . ..
K —0,C=0;
repeat M times,
for-each (O, S) € TRN
= {{¢1,c1),- -, {bw, o)}
§ — SSM-DP(0, o7 (-|®), K)
if S#S,
C —[C+V(5,0)-V(s0)*
K — [K 4 TRANS(S) — TRANS(S)]*
return (C, K)
Figure 2: Generalized Perceptron Pseudocode. [C]+ = C”
s.t. ¢; = max(0, ¢;).

a¢7)}77—7 M)

object tracker output.

Relational Horn Constraints. A stateatomis a state pred-
icate or the relation “=£” applied to variables. An observation
atom has the form “(f1 r f2)”, where r € {=,<}, and f; is
a number or an observation feature applied variables. A re-
lational Horn constraint has the form (body — head), where
body is a conjunction of state and/or observation atoms, and
head is a state atom or false and may only contain vari-
ables that appear in body. For example, (DISTANCE(z,y) <
5) A (6 < Speed(y)) — ATTACHED(zx,y) is a relational
Horn constraint for predicting object attachment based on an
observation. A relational Horn constraint ¢ is a schema for
propositional constraints. Any way of (consistently) replac-
ing variables in ¢ with objects gives a (propositional) ground
instance of ¢. Given a set of objects D', GROUND(¢, D')
contains all ground instances with only objects in D’.

Relational Cost Models. A relational simple-transition
model is a pair (®, K), with transition-cost K and non-
negatively weighted relational Horn constraints & =
{{¢1,¢1),...,{dv,cyp)}. Given a relational o-sequence O;.1
with objects D’, we know that states may only involve facts
constructed from D’, and thus we need only consider the
propositional state space Y[D’]. To infer an s-sequence
over Y[D’] we use the set of propositional constraints
o, = meeI> U¢’eGROUND(¢,D’) (¢, c) to define an atempo-
ral cost function C,(s|o, ®,) as in Section 5. We then return
the lowest-cost S;.7 given by SSM-DP(Oq.1, o7 (:|®), K),
where o7 (O1.;|®) = 07 (01.;|®,) is a relational SSM func-
tion with search bound 7. That is o is computed by compi-
lation to a propositional SSM function o™ and then using our
bounded-search dual MAX-SAT approach.

A naive implementation of this approach can be expensive
since ®,, can be large. Fortunately, in practice, our relational
representation allows us to avoid constructing most of the set.
We use efficient forward-chaining logical inference to con-
struct I'*(O1.7, ®,,), the input to MAX-SAT, without explic-
itly constructing ®,,. Space constraints preclude details.

7 LearningaRelational STM

We learn relational STMs by first running the relational
learner CLAUDIEN [De Raedt and Dehaspe, 1997] on a train-
ing set of labeled o-sequences, acquiring “nearly sound” re-
lational Horn constraints that are satisfied by the training data
(producing 300-400 constraints for our domain). Next, using
a new training set we jointly tune the constraint weights and
transition-cost K using a variant of Collins’ voted percep-



tron algorithm [Collins, 2002]. The algorithm extends Rosen-
blatt’s perceptron for binary labels [Rosenblatt, 1958] to han-
dle structured labels such as sequences, and has convergence
and generalization properties similar to Rosenblatt’s.

The algorithm requires representing cost using a lin-
ear combination of n features, which we do as follows.
Given Oq.r and Si.r involving just objects in the fi-
nite D’, and a relational STM ({{¢1,c1),...,{¢v,cu)}, K),
the violation-count feature of ¢; is V;(Oir,Sur) =
Y 1<i<T 24/ cGROUND(o,, ) 0(m¢[0i][s:]), 1.e. the number
of unsatisfied instances of ¢;. We let V(O1.r, Si.r) be the

v-dimensional vector of violation-count features and C =
[c1,...,¢y] is the weight vector. The transition count fea-
ture TRANS(S1.7) is equal to the number of state transitions
in S;.7. These v + 1 features represent the STM cost as
C(S1.7|0O1.1) = V(Or.1, S1.7) - C + TRANS(S1.7) - K.

The algorithm (see Figure 2) cycles through the training
data and when an incorrect s-sequence S is inferred in place

of S, the weights are adjusted to increase cost for S and de-
crease cost for S. The input is a training set TRN, relational
Horn constraints {1, . .., ¢, }, an SSM search bound 7, and
the number M of iterations. The output is the learned weights

C and transition cost K. Ideally we want this STM to al-
low for accurate sequential inference when using the search-
bounded relational SSM function ¢7. Unlike Collins we re-
quire non-negative weights for inference. Thus, we set a
weight to zero if a normal perceptron update would result
in a negative value. This variant has not yet been shown to
possess the convergence and generalization properties of the
unconstrained version. However, this variant of Rosenblatt’s
perceptron has been shown to converge [Amit et al., 1989].

8 Experimental Results

We apply our technique to force-dynamic state inference from
real video. The LEONARD system [Siskind, 2001] uses these
states to recognize events, such as “a hand picked up a block”
(see Figure 1). Recently [Fern and Givan, 2004] devel-
oped a trainable system for this problem using the forward
greedy merge (FGM) algorithm, which outperformed prior
techniques. FGM also utilizes Horn constraints, but assumes
that they are sound, rather than nearly sound. Since this is
not true for CLAUDIEN-learned constraints, which were also
used by FGM, that work utilized two steps to improve per-
formance: 1) Constraint pruning yields a much smaller but
(hopefully) “sufficient” constraint set, reducing the chance of
constraint violations. 2) Sequence-cleaning preprocessing is
an ad-hoc step that removes observations where constraint vi-
olations are “detected”. See [Fern and Givan, 2004] for de-
tails. While these steps allowed for good performance, the
soundness assumption limits the approach’s applicability, as
such preprocessing will not always be effective. The moti-
vation for the work in this paper was to develop a “softened”
more robust framework for utilizing nearly-sound constraints.

Procedure. Our corpus of 210 videos from [Siskind, 2003]
contains 7 event types (30 movies each) involving a hand
playing with up to three blocks (e.g. assembling a tower).
We use the hand-labeled training sets of size 14 (TRN-14)
and 21 (TRN-21) from [Fern and Givan, 2004]. The remain-
ing videos are labeled with their compressed s-sequences (the
output of COMPRESS), which is the label we wish to predict.

For each training set, we learn relational STMs for three SSM
search bounds 7 = 0, 100, 1000. Seven training instances are
used by CLAUDIEN to acquire constraints and the perceptron
algorithm is run for 100 iterations on the remaining instances.
We evaluate each iteration’s model according to the % of test
videos for which SSM-DP’s compressed inferred s-sequence
is correct (using the same 7 as for learning).

We compare against FGM used with an without sequence
cleaning and always with pruning. We also compare against a
system that is closer to mainstream graphical modeling tech-
niques, which uses the counting-transition model of Section
4, and WALKMAXSAT [Jiang et al., 1995] for approximate
inference. The model is identical to our relational STMs, us-
ing the same CLAUDIEN-learned constraints, except that it
has a non-simple transition structure. For sequential inference
we construct a single large MAX-SAT problem correspond-
ing to the transition-counting model and use WALKMAXSAT
to find an approximate solution. We tune the model’s weights
using the perceptron algorithm with WALKMAXSAT (rather
than SSM-DP) for inference.

Performance Across Iterations. Table 2 shows, for each
training set, the testing error of our learned STMs for 7 =
0, 100, 1000 (shown as SSM-DP(7)), over the first eight per-
ceptron iterations. There is always a rapid improvement after
iteration one, followed by a period of fluctuating or constant
performance. The fluctuation continues out to iteration 100
(not shown), but never improves over the best performance
shown. In practice, one could use cross-validation to select a
good model, or consider “weight averaging” [Collins, 2002].
Note that the best performance on the smaller training set
TRN-14 is superior to TRN-21. Our explanation for this is
that by using relatively small training sets, the results can be
significantly affected by a small number of particularly noisy
movies (presumably in TRN-21). Experiments not shown,
provide evidence for this by training on subsets of TRN-21.%

Bounding Search. The search bound 7 = 0 means that
SSM is (approximately) solved via hill-climbing. Surpris-
ingly we can learn weights for which hill-climbing performs
well. Increasing the search bound improves performance
with respect to the best model across iterations, particularly
for TRN-14. The last column shows the frames processed
per second when inferring states for our corpus. Inference
time apparently does not increase linearly with 7, indicating
that the SSM search typically end much before reaching the
bound. Increasing 7 to 10,000, doubles inference time, but
neither improves nor hurts results.

Other Techniques. We significantly outperform WALK-
MAXSAT (further iterations did not help), which we allowed
a generous search time, using search cutoff 10 with 102 ran-
dom restarts (other settings did not improve). Further exper-
iments suggest that WALKMAXSAT does not scale well for
our problems. Using learned STM weights for the counting-
transition model, WALKMAXSAT reliably infers correct s-
sequences for short videos, but is very poor for long videos.
WALKMAXSAT gave equally poor results when used to learn

'Runtime of CLAUDIEN (interpreted Prolog) on TRN-21 was
about six days. Thus, it was not feasible to average results across
many training sets. In another full experiment (21 movies), we ob-
served similar (slightly better) performance for SSM-DP, and similar
relative performance to the other systems.



Table 2: % error on test movies across training iterations. The last column gives frames processed per second (FPS) by the best

model in each row on our video corpus.

TRN-14 (Iteration) TRN-21 (Iteration) FPS

12 3 4 5 6 7 81 2 3 4 5 6 7 8
SSM-DP(0) 94 24 32 21 21 26 21 26|94 6.3 69 58 48 12 17 3.7| 15
SSM-DP(100) 93 32 26 26 21 21 21 21|93 3.2 3.7 3.7 3.2 10 21 85| 14
SSM-DP(1000) {93 31 42 1.6 1.1 1.1 1.1 11|93 3.2 3.7 3.7 3.2 10 21 85| 8
WALKMAXSAT |96 46 51 54 50 43 50 58|95 47 50 60 49 50 45 52|14
FGM / FGM+SC 17 /6.3 15/3.2 29

STMs rather than counting-transition models. This suggests
the poor performance is primarily due to the ineffectiveness
of this general-purpose inference technique for our models.
We conjecture that other approximate techniques such as
(loopy) belief propagation and Gibbs sampling will also yield
inferior performance. Indeed, Gibbs sampling is very similar
to WALKMAXSAT. Evaluating this conjecture is future work.
FGM without sequence cleaning (shown as FGM) is an or-
der of magnitude worse than STMs (which never use clean-
ing). We significantly improve on FGM with sequence clean-
ing (FGM+SC) on TRN-14 and yield equal performance on
TRN-21. FGM is faster, close to frame rate. A reimplemen-
tation of our LISP prototype will likely achieve frame rate.

9 Redated Work

Segment models [Ostendorf et al., 1996] subsume our STM
formulation. We are not aware of prior work that has lever-
aged or noted the SSM reduction for large state spaces. Per-
haps this is because prior segment modeling work typically
utilizes non-simple transition structure (perhaps sometimes
unnecessarily) and to our knowledge has not been applied to
large state spaces.

Our “model schema” approach for handling relational data
is now standard in probabilistic modeling [De Raedt and Ker-
sting, 2004]. Most closely related are relational Markov net-
works (RMNs) [Taskar et al., 2002]. A relational STM can
be viewed as defining a log-linear conditional RMN, where
the RMN *“clique feature templates” correspond to relational
Horn constraints and a transition template. RMNSs are very
general and thus the existing techniques do not fully exploit
the structure of relational STMs. Instead RMN-like propos-
als rely on general-purpose approximate inference (e.g. be-
lief propagation), with unclear practical implications. Like-
wise dynamic probabilistic relational models [Sanghai et al.,
2003] provide a generic schema-based approach specialized
to relational sequence data. Again the generality precludes
leveraging the STM structure.
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