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In this paper we investigate the computational complexity.
of abduction, a method of reasoning extensively studied b
Peirce[1955. Abductive reasoning is used to search for ex
planations of observed manifestations. The importance

this problem to Artificial Intelligence was first emphasized
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Abstract

Abduction is a fundamental form of nonmonotonic
reasoning that aims at finding explanations for ob-
served manifestations. Applications of this pro-
cess range from car configuration to medical diag-
nosis. We study here its computational complex-
ity in the case where the application domain is de-
scribed by a propositional theory built upon a fixed
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explanation forM, that is, a se? C H such thatl' U E'is
consistent and logically entails/. This framework is more
general than most frameworks studied in the literaturexan e
ception is the definition by MarquisMarquis, 2000, which
allows the manifestation to be encoded by any propositional
formula.

Example 1 Consider the following example from the do-
main of motor vehicles, inspired B onsoleet al, 1991.

constraint language and the hypotheses and man- T = (-rich_mixturev—leanmixture) A
ifestations are described by sets of literals. We (rich_mixture— —low_fueL.consumptioipA
show that depending on the language the problem is (leanmixture—overheatingA

either polynomial-time solvable, NP-complete, or (low_water—overheating,
v:P-complete. In particular, we show that under the H = {rich.mixture, leanmixture, lowwater},
assumption ENP, only languages that are affine M = {-low_fueLconsumption, overheating

of width 2 have a polynomial algorithm, and we
exhibit very weak conditions for NP-hardness.

Introduction

by Morgan[1971 and Popld1973.

The abductive process has demonstrated its practical i
portance in many domains. In particular, it has been use%

to formalize processes in medical diagnd&iglanderet al,,

1991], text interpretatiodHobbset al., 1993, system diag-
nosis[Stumptner and Wotawa, 20pand configuration prob-

lems[Amilhastreet al,, 2003.

m_

ThenE = {rich_mixture, lowwater} is an explanation of
M, while, e.g.,{leanmixture,lowwater} is not because it
does not explain loviluelL.consumption, andrich_mixture,
lean.mixture} is not because it is inconsistent with

Formalizations of abduction also differ in the literature
in the notions of preferred explanations: In this settirg t
%im is to compute an explanation that is minimal among all

O(?xplanations according to some criteria (e.g., inclusion o

cardinality). A good overview is given by Eiter and Gott-
lob [1999. However we are not concerned here with these
different notions; we indeed focus on the decision problem
sking whether there exists an explanation at all for a given
stance. This problem is from now on denoteglDAJCTION.

This problem is well studied from the computational com-
plexity perspectivd Eshghi, 1993; Selman and Levesque,
1990; Eiter and Gottlob, 1995; del Val, 2000b; 2000a;
Zanuttini, 2003, although with different formalizations of

In this paper we are interested in propositional logic-dase

abduction, i.e., the background knowledge is represented b is F -complete in the general caiiéiter and Gottlob, 1995

propositional theory. Even in this framework several forma hil itional deduction is k 10 be “onlv’ coNP
izations of the problem have been studied in the literature’" |e|prop03| ||(ona € ur::. lon 1S Known OI eon yh co o
depending on the syntactic restrictions imposed to the ma comp gte[Cc_)o_ , 1971, _This negative result raises the prob-
ifestations and on the hypotheses over which explanation§™ Of identifying restricted cases in whictBAUCTION has
must be formed. We use the following formalization: Given computational complexity lower than the ge_ne_ral case.

a propositional theor§” formalizing a particular application Th_e most natural way to study such resmrictions s to study
domain, a seb/ of literals describing a set of manifestations, festrictions on the theories representing knowledge bases

and a sef] of literals containing possible hypotheses, find an IS IS also the approach followed in most of the previous
research in the area. For example, it is known that when the

*Supported by théational Graduate School in Computer Sci- knowledge bas#' is a conjunction of Horn clauses, themsA
ence(CUGS), Sweden. DUCTION is NP-completdSelman and Levesque, 1990

the problem, as mentioned above. It has been proved that it



The ultimate goal of this line of research is to determine theF'(x) andT'(x) respectively. Constraint languages contain-
complexity of every restricted special case of the probleming F' andT will be of particular importance to us. Given
The first result of this type was proved by Schadfed7d, a constraint language, theidempotent constraint language
who proved that the satisfiability problem of conjunctiofis o corresponding td is I' U { F, 7'} which is denoted by <.
Boolean constraints over a fixed language is either in P or NP- Given a theon’, Vars(T') denotes the set of all variables
complete, depending on the language. Recall the resulbdue that occurs irf". Given a set of variablels, Lits(V') denotes
Ladner[1974 stating that if P~ NP, then there exist decision the set of constraints) ., {F(xz) U T(x)} or, equivalently,
problems in NP that are neither in P nor NP-complete. Hencéhe set of all literals formed upon the variableslin The
the existence of dichotomy theorems like Schaefer's cannadpposite of a literal is written . Given a set of literald.,
be taken for granted. Creignai al’s book[2001] surveys  their conjunction is denoted bX L.
such results. The ABDUCTION problem restricted to the finite constraint

In this paper we completely classify the complexity A  languagd’ is denoted by ApucTion(I") and is defined as
DUCTION in Schaefer’s framework and exhibit a trichotomy. follows; the problem is said to b@garameterizedby I'.

More precisely, we prove that#buCTION is: Problem 2 (ABDUCTION(I')) An  instance &  of

e In P if the language is affine of width ABpucTION(T') consists of a tupléV, H, M, T), where:
e Otherwise, NP-complete if the language is Horn, dual e V is a set of variables,
Horn, bijunctive or affine, H C Lits(V) is the set of hypotheses,
M C Lits(V) is the set of manifestations, and
T is a theory ovel with Vars(T) = V.

e Otherwise X} -complete.

As far as we know, the (only) polynomial case and the min-
imal NP-hard languages that we exhibit are all new results. L , .
Note that the only property that guarantees a polynomial al/N€ question is whether there exists an explanationor
gorithm is that of being affine of width, i.e., the case where 1-&- @ SetE" C H such thatl’ A A\ E'is satisfiable and” A
the theory representing the domain is only a conjunction of\E = AM.
constants and (in)equalities between two variables. Tieist  The size of = (V, H, M, T) is the total number of oc-
problem is very hard as soon as sets of literals are allowe@urrences of variables in it.
as hypotheses and manifestations (instead of atoms orfsets o Recall the following standard restrictions on the conatrai
atoms as in, e.glZanuttini, 2003). languages (see, e fgreignouet al, 2001).

We do not consider directly the complexity of the search .. .. .
problem consisting of computing an explanation or assgrtin Definition 3 (restrictions on ')
there is none. It is however easily seen that this problem is ® I'is Hornif every relation’z in I' is the set of models of

hard as soon as BDUCTION is; as for languages that are a CNF formula having at most one unnegated variable

affine of width2, our proof that DUCTION is in P exhibits in each clause,

an efficient algorithm. e I'isdual Hornif every relationR in I is the set of models
of a CNF formula having at most one negated variable

2 Preliminaries in each clause,

The set of alln-tuples of elements frorfi0, 1} is denoted by o T'isbijunctiveif every relationR in T' is the set of models

{0,1}™. Any subset of 0, 1}" is called am-ary relationon of a CNF formula having at most two literals in each

{0, 1}. The set of all finitary relations oveb, 1} is denoted clause,

by BR. A constraint languagever{0, 1} is an arbitrary fi- o I'is affineif every relationR in T is the set of models of

nite setl’ € BR. Constraint languages are the way in which a system of linear equations oveiF(2), the field with

we impose restrictions on the knowledge bases for tBe A two elements,

DUCTION problem.
A constraintover the constraint languadéis an appli-
cation of a relationR in T' to a tuple of variables, written

e [ is affine of width2 if every relationR in I is the set
of models of a system of linear equations o&t(2) in
which each equation has at masvariables.

R(x,...,z,) (possibly with repeated variables). An assign-

mentm to the variablesatisfieghe constrainR(z1, . .., z,) We emphasize thdf is assumed to be finite in the def-
if (m(z1),...,m(z,)) is atuple inR. Such a satisfying as- inition of ABDUCTION(I"). Moreover, it parameterizes the
signmentn is called amodelof R(z1,...,z,). AtheoryT’  problem, and is not part of its input. Thus we can assume

overI' is a conjunction of constraints ov€r a modelm of  any convenient presentation of the relation§'irs stored in
T is an assignment that satisfies all its constraints simedtan a catalog; thus we will assume, e.g., thaf'ifs Horn then a
ously, denotedn |= T'. If there is such a model is said to  theoryT overT is given as a CNF formula with at most one
besatisfiable Finally, a theoryl" entailsa theoryT”, written ~ unnegated variable per clause.

T & T', if every model ofT" is a model of7”. We now recall Schaefer’s result, which will be of great im-
The unary relationd” = {(0)} andT = {(1)}, which  portance throughout the paper. CallTgI") the problem of
force the value of a variable 10 and 1 respectively, have deciding whether a given theory oVEiis satisfiable. Schae-
a special role for the AbDucTION problem. We will often  fer completely classified the complexity oA§(I"); we only

use the shorthand notatierr andz to denote the constraints report the result for idempotent constraint languages.



Theorem 4 (Schaefer, 1978 SaT(I?)isin PifI"isHorn,  unsatisfiable for ever§ € M, the following result is obvious.
IH ij i ffine. Otherwise it is NP- .
dual Horn, bijunctive or affine. Otherwise it is NP-complete Lemma 6 If SAT(I') is in P, thenABOUCTION(T') is in NP,

Finally, we assume that the reader is familiar with the basic We first establish NP-completeness for particular lan-
notions of complexity theory, but we briefly recall the follo ~ guages. In Section 5 we will establish more general results.
ing. P is the class of decision problems solvable in determin  Let R, = {(1,1),(0,1),(0,0)}, i.e., the set of models
istic polynomial time. NP is the class of decision problemsof -z Vv y. Observe thaf?_,., is both Horn and dual Horn.
solvable in nondeterministic polynomial tim&! = NPNFP
is the class solvable in nondeterministic polynomial tinigaw
access to an NP-oracle. A problem is NP-complét§-(  Proof Membership in NP follows from Theorem 4 and
complete) if every problem in NP5£) is polynomial-time  Lemma 6. As regards hardness, we give a reduction from the
reducible to it. Throughout the paper we assuFdP#£XY . NP-complete problem MNOTONESAT [Garey and John-

son, 1979 i.e., the satisfiability problem for CNF formu-
3 Polynomial case las where each clause contains either only positive Igeral

The following proposition gives the only (maximal) polyno- or only negative literals. Let) = /\f:1 Ni A /\f:1 P; be
mial case of BbpucTION(T). Note that, as mentioned in the such a formula, where each; is a negative clause, written
introduction, its proof_givesapc_)lynomial algorithmtleatm- N, = \/;’;1 -z, and everyP; is a positive clause written
putesan explanation if there exists one. P, = V;-ril yf We build the instance? = (V, H, M, T of

Throughout the proof we write/ = a) (a € {0, 1}) for the i
linear equation{x = a) if £ = z, and for the linear equation ABDUCTION([2—y ) where:

x =a®1if £ = —z. The shorthand? = ¢') is used in the oV ={y|i=1.,kU{s|i=1,..,0U

Proposition 7 ABDUCTION({ R-zv4 }) is NP-complete.

same manner and is equivalen{fab ¢’ = 0). Vars(v); —y; will intuitively represent satisfaction of
Proposition 5 If I is affine of width2, thenABDUCTION(T) clauseN; and;, that of clause;

. . k v j 4 T j . :

is polynomial. _ o T'=A\"_, /\jzl(ggg \/ﬁ%)A./\i:1 /\jzl(ﬁy_g V 4;); this
Proof Let & = (V,H,M,T) be an instance of encodes the implicationsz] — —v; andy! — 4;, i.e.,

AspucTION(T), wherel is affine of width2. If A/’ is the set DA i j
of all manifestationsn such thafl’ = m, then obviously the th? fapt that; (73) is §at|sf|ed itat Iegst one of ther;
explanations of% are exactly those ofi/, H, M’, T). Since W) je{l,...,vit Ge{l,...,m})is
T = m can be decided efficiently with Gaussian elimination e I = Lits(Vars(y))
onT A (m = 0), we assumé/’ = M. . .

For every manifestatiom € M write £, for the set of o M= Aimy i ANzt 6
literals {h € H | T |= (h = m)}; once again every,, can  Opviously enough, the theory” is over the language
be computed efficiently with Gaussian elimination 80\ (g 1 Now it is easily seen that if) has at least one
(h&m = 1) for everyh € H. We show that? has an  model, saym, thenE = {/ | m |= ¢} is an explanation for
explanationif and only if" A A\, .\, A\ Em is satisfiable and g7, and that if has an explanatioR, then any assignment

no E,, is empty. Since the satisfiability Gt A A ), A Em mto Vars(y) with V¢ € E,m = £ is a model ofy. O
can be decided efficiently with again Gaussian elimination )
ONTAAers Aner,, (h = 1)), this will conclude the proof. Similarly, we now prove that BADUCTION(I") is NP-

Assume first has an explanatio’. ThenT A A M is complete if " is the singleton language containing only

consistent; since for eveny, € M andh € E,, we have Ravy = {(1,1),(1,0), (0, 1)}.

T | (h=m),wealsohavd NAM =T AN, cps A Em: Proposition 8 ABDUCTION({ Ry, }) is NP-complete.
and thusl" A A\, A\ En, is satisfiable. Now we also have
Ym e M, T = (\ E — m). SinceT is affine of width2 it is
bijunctive, thus every clause entailed Bycan be minimized
into a bijunctive one; sincE A A F is satisfiable and’ = m,
the only possibility is a minimal clause of the forln— m

Proof Since R, is dual Horn, membership in NP fol-
lows from Theorem 4 and Lemma 6. As for hardness, we
give a reduction from MNOTONESAT (see the proof of
Proposition 7), where positive clauses in an instance &f thi
with 1, € E. But sinceT is affine this implies thatn, — 7 problem are restricted to contain at most two literals. Thus

also is an implicate of it, and finally we hafel= (h &m = 2 Instance e°f th'ls prc;blem 'S a forr_rjula of thg fogm=
0), which shows thaf,,, is nonempty. For more details we Ai—1 Vi A Ai—1 (i V ¥7), where they;’s are variables and
refer the reader tizanuttini and Hébrard, 2002Conversely, everyN; is a negative clause writteN; = \/;’;1 —x]. The
assum&’ A A\, o N\ En, is satisfiable and né,,, is empty.  NP-completeness of this restricted problem follows diyect
Then sincelh @ m = 0) |= (h — m) it is easily seen that from Schaefer’s resu[1974.

Amen N\ Em is an explanation foe?. o Given an instance ¢» of MONOTONESAT as
above we build the instance”? = (V,H,M,T) of

4 NP-complete cases ABDUCTION({ Ryvy }) Where:

We now exhibit the NP-complete cases o BUCTION(T). o V={yili=1,...,k} UVars(y); v will intuitively

SinceT A A E = A M holds if and only if T A A E A Lis represent satisfaction of clausg



e T = Niet Njza (@] Vi) A Ai:l(yil vV y7); clauses
(x] V ~;) encode the implicationsz! — ~;
o H = Lits(Vars(y))

o M= /\f:l Vi

We show thaty has a model if and only it has an ex-
planation. Assume first that has a modein; then it is
easily seen thatl = {¢ | m | ¢} is an explanation for
Z. Now assumeZ has an explanatioz. Then from
Vi 1,...,k,T N \NE E ~ it follows that for every
i = 1,...,k E contains at least onez], and thus any as-
signment satisfyind’ satisfies every negative clauseygfon
the other hand, sincé A A E is satisfiable there is a model
m of T A A\ E that satisfies every positive clausewfand
this m thus satisfieg. m]

m(z) = 1 and thusn/(z) < m(z) again. Finally, we have
dg;,m'(g;) = 0 < 1 = m(g;), which contradicts the mini-
mality of m. Thusp AAE E (1 A... Agn) @andFE is an
explanation.

Conversely, assume th#t is an explanation. Thep A
\ E is satisfiable; writem for one of its minimal models.
By assumption the formula A A E A (—g1 V...V —gy,) IS
unsatisfiable, thus: = (—¢1 V. ..V—qi). We also haven |=
© by assumption. Finally, assume for sake of contradiction
thatm is not a minimal model ofy, and letm’ be such that
m' = ¢, m’ < mandm’ # m. Then sinceF is negative
(becauseH is) andm = A E we havem’ = A E, thus
m’ = oA\ E, which contradicts the minimality of: among
the models ofp A \ E. O

5 Classification

The following proposition can be shown with the sameWe finally put together the results in the previous sections

proof as Proposition 8 with all variables renamed.

Proposition 9 Let R,y {(1,0),(0,1),(0,0)}.
ABDUCTION({ R-zv—y }) is NP-complete.

We finally prove that AbucTioN(T") is NP-complete for

a particular affine language. This will be achieved by re-
ducing to it another important problem in nonmonotonic rea
soning, namely the inference problem for propositional cir

cumscription. A modeln = (m4,...,m,) of a formula
@ is said to be aninimal modelof ¢ if there is no model
m’ (mf,...,m.) of ¢ such thatm # m’ andVi =

yeees Ml < my.

1

for obtaining our complete classification. The concept of a
relational cloneis central to our approach.

Definition 12 (relational clone) Let I' € BR. The rela-
tional clone ofT" is written (I") and is the set of all relations
that can be expressed using relations frihu {=} (= is

the equality relation o{0, 1}), conjunction, and existential

“quantification.

Intuitively, the constraints ovell") are those which can be
simulated by constraints ovétr

The following result states that when studying the com-
plexity of ABDUCTION(T) it is enough to consider constraint

Durand and Hermann proved that the inference problenfanguages that are relational clones.

for propositional circumscription of affine formulas is ceN

Lemma 13 LetT" be a finite constraint language add C

complete. In the process, they proved the following theorem(r) finite. ThenAsbucTION(I) is polynomial-time re-

Theorem 10 {Durand and Hermann, 2003) The problem

of deciding whether there is a minimal model of a given affineProof

formulap that does not satisfy a given negative clagse, v
S Vog,) (Vi=1,...,n,q; € Vars(p)) is NP-complete.

A careful reading of their proof shows that the theorem . ; .
esuch thatT” is logically equivalent to the formulaW, 7-.

remains true even if the linear equations in the input affin
formulas are all restricted to contain at méstariables. We
thus define the languadi, s to be the set of alk-ary affine
relations withk < 6. Obviously,I's. ¢ is finite, which is nec-
essary for problem BDUCTION(I'sq ) to be well-defined.

Proposition 11 ABDUCTION(I'sq¢) is NP-complete.

Proof Membership in NP follows from Theorem 4 and
Lemma 6. As for hardness, lep be a formula and
q1,---,qn € Vars(yp). We show that the claugeq; vV ...V
—qy) is false in some minimal model af if and only if the
abduction problem withl' = ¢, M = {q1,...,qn}, and
H={-x|zeVars(p)\{q,-..,q}} hasanexplanation,
which will conclude by Theorem 10 and the above remark.
Assume first that—q; V ... V —¢,) is false in a minimal
modelm of ¢. DefineE to be{—z; | m = —z;}. Sincem =
by assumption antgh = A E by constructionp A A E is

ducible toAsbucTioN(T).

Let (V/,H',M’,T') be an instance of
ABDUCTION(I). By the definition of a relational clone
there is a set of variabldd’ disjoint from V' and a theory
T_ overT' U {=} with Vars(T=) = V- = V' UW and

SinceW is disjoint fromV”’ there is no variable occurring in
H’' or M’ and inW at the same time, and it is then easily
seen that the abduction probleff_, H', M’,T_) has an
explanation if and only ifV’, H', M’,T") has one. Now for
every constrainfz; = z;) (i < j) itis enough to replace;
with z; everywhere in/_, T_, M’ and H' and to remove the
constraint from7- for obtaining a still equivalent instance
(V,H, M, T) of ABDUCTION(T"), which concludes. O

We can reduce even further the set of constraints languages

to be considered, namely to idempotent ones.
Lemmal4 Let T' be a finite constraint
ABDUCTION(T™) is polynomial time
ABDUCTION(T).

Proof Let &
ABDUCTION(T?).

language.
reducible to

(V,H,M,T) be an instance of
We build an instance %’

satisfiable. Now assume for sake of contradiction that theréV, H', M’, T") of ABDUCTION(T") by removing every con-

is m’ satisfyingp A AE A (-g1 V ...V —g,). Then since
m’ = A\ E andF is negative we gétzr € F,m’'(z) < m(z);
now forz € Vars(y) \ Vars(E) we have by assumption

straint F'(z) or T'(z) from T and adding it toH and M. It
is then easy to see th@, H', M’,T') has an explanation if
and only if(V, H, M, T) has one. |



Proposition 15 If T' is not Horn, not dual Horn, not affine
and not bijunctive thedBbucTION(T) is X5 -complete.

Proof Itis well-known that for any CNF formula there is a

set of variable3V disjoint fromVars(¢) and a CNF formula

Y overVars(y))UW with at most3 variables per clause such
that the formulag) and3W+’ are logically equivalent. That
fact together with a proof similar to that of Lemma 13 show
that the abduction problem for general CNF theories reduces
to ABDUCTION(T'3), wherel's is the (finite) set of all ternary
relations. Sincé's is not Horn, not dual Horn, not affine and
not bijunctive, we havel'y!) = BR, and Lemma 13 and
Lemma 14 concludes. ]

We are finally able to completely classify the complexity
of ABbucTION(T).

Theorem 16 (classification)LetI" be a constraint language.
ABDUCTION(T) is:

e In P if ' is affine of width2,

e Otherwise, NP-completelifis Horn, dual Horn, bijunc-
tive or affine,

e Otherwise XY -complete.

Proof Proposition 5 shows the result for languages that are
Figure 1: Lattice of all idlempotent Boolean relational @en  affine of width2. Now it can be seen that the relatioRs,.,,
R;vy and R,y -, Of Propositions 7, 8 and 9 are in the re-
. o lational clonesl M, 152, and I5%,, respectively; this can
_ Giventhese two lemmas, our classification of the complexpe yerified by checking that they are invariant under the op-
ity of ABDUCTION(I') heavily relies on Post's remarkable grations defining the corresponding clones (for more detail
classification of all Boolean relational clongRost, 1941 see[Bohler et al, 2003; 200%). Moreover, the language
Post proved in particular that the relational clones formta | - 1 i1 of Proposi’tion 11 is affine. thus it is ifL,. Con-
tice under set inclusion. An excellent introduction to Post seauently Figure 1 shows that t,he minimal idempotent re-
lattice can be found in the recent survey artidiBéhler et lational cl,ones that are not affine of widgh namely Mo,
al., 2003; 2004 - IS2,, 1S3, and I L, are NP-complete. On the other hand,
Lemmas 13 and 14 say that for any fini€ C e know from Theorem 4 and Lemma 6 that the relational
(I'"**), AspucTIoN(I") is polynomial-time reducible to clonesI L, (affine), I D (bijunctive), IE» (Horn) andIVs
ABDUCTION('). In other words, when studying the com- (3] Horn) are in NP. Thus #BoucTion(T') is NP-complete
plexity of ABDUCTION(T') itis enough to consider constraint |, hen (DY containsI Ms, 1S2,, 152, or IL, and is con-
languages that are idempotent relational clones. Theeatti tained in/L,. 1D, IE,, or 10‘2/2 This covers exactly the

of all idempotent Boolean relational clones is givg_n on Fig'languages that are Horn, dual Horn, bijunctive, or affine and
ure 1. Those that are most relevant to our classification argat are not affine of width.

the following: Finally, Proposition 15 concludes the proof. O
e BR, the set of all Boolean relations,
e [FE,, the set of all Horn relations, 6 Discussion and future work
e [V, the set of all dual Horn relations, We have completely classified the complexity of proposi-

tional abduction in Schaefer’s framework when manifesta-
tions and hypotheses are described by sets of literals. This
e L5, the set of all affine relations, result can prove useful in helping the designers of knowdedg
e 1D, the set of all affine relations of width based systems to deal with the expressivity/tractabiiigte-

. off when choosing a language for their system. Our result
e IM>, the set of all relations that are Horn and dual Horn.; , yaaq completes the picture of the complexity of reason-
Thus, according to Post’s lattice there is only one idemptote ing for propositional constraint languages. In particuvee
relational clone that is not Horn, not dual Horn, not affine,have shown that this problem is very hard, in the sense that
and not bijunctive, namely the relational clone consistiig only languages that are affine of wid2hallow for polyno-

all Boolean relation®3 R. Hence the following result follows mial abduction. Also note that in many cases NP-hardness
intuitively from the result due to Eiter and Gottldh995 remains even when restricting further the problem; e.g., to
stating that BpucTIoN is XF -complete for the general case H = Lits(V\Vars(M)) (see the proofs of Propositions 7—
of theories given by CNF formulas. 9).

e [Ds, the set of all bijunctive relations,



It is important to note that the complexity of abduction for [del Val, 20004 A. del Val. The complexity of restricted
a constraint language given in extension (i.e., by the set of consequence finding and abduction. Rroc. AAAI'0Q
all tuples in every relation) can be determined efficiertthg pages 337-342, 2000.

case of Theorem 16 in which a language falls can indeed bgye| vial, 20009 A. del Val. On some tractable classes in
determined efficiently by using the closure properties ef th dedu,ction and abductionArtificial Intelligence 116(1-
concerned co-clones (see, e[@ohleret al, 2004). 2):297-313, 2000

It would be interesting to try to extend this work into at ' ’ '
least three directions. First of all, besides the problemesf ~[Durand and Hermann, 20D3\. Durand and M. Hermann.
ciding the existence of an explanation for a given instaote, ~ The inference problem for propositional circumscription
great importance are the problems of relevance and negessit Of affine formulas is coNP-complete. Broc. STACS'03
which ask whether a given hypothesis is part of at least one Pages 451-462, 2003.
(resp. of all) preferred explanation(s). These problems in[Eiter and Gottlob, 1995T. Eiter and G. Gottlob. The com-
volve a preference criterion which can have a great impact on plexity of logic-based abductionl. of the ACM 42(1):3—
their complexity; for more details we refer the readdier 42,1995.
and Gottlob, 1995 Hence, it would be interesting to inves- [Eiter and Makino, 200R T. Eiter and K. Makino. On com-

tigate the complexity of these problems. In the same vein, : . . ;
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