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Abstract

Abduction is a fundamental form of nonmonotonic
reasoning that aims at finding explanations for ob-
served manifestations. Applications of this pro-
cess range from car configuration to medical diag-
nosis. We study here its computational complex-
ity in the case where the application domain is de-
scribed by a propositional theory built upon a fixed
constraint language and the hypotheses and man-
ifestations are described by sets of literals. We
show that depending on the language the problem is
either polynomial-time solvable, NP-complete, or
ΣP

2
-complete. In particular, we show that under the

assumption P6=NP, only languages that are affine
of width 2 have a polynomial algorithm, and we
exhibit very weak conditions for NP-hardness.

1 Introduction
In this paper we investigate the computational complexity
of abduction, a method of reasoning extensively studied by
Peirce[1955]. Abductive reasoning is used to search for ex-
planations of observed manifestations. The importance of
this problem to Artificial Intelligence was first emphasized
by Morgan[1971] and Pople[1973].

The abductive process has demonstrated its practical im-
portance in many domains. In particular, it has been used
to formalize processes in medical diagnosis[Bylanderet al.,
1991], text interpretation[Hobbset al., 1993], system diag-
nosis[Stumptner and Wotawa, 2001] and configuration prob-
lems[Amilhastreet al., 2002].

In this paper we are interested in propositional logic-based
abduction, i.e., the background knowledge is represented by a
propositional theory. Even in this framework several formal-
izations of the problem have been studied in the literature,
depending on the syntactic restrictions imposed to the man-
ifestations and on the hypotheses over which explanations
must be formed. We use the following formalization: Given
a propositional theoryT formalizing a particular application
domain, a setM of literals describing a set of manifestations,
and a setH of literals containing possible hypotheses, find an
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explanation forM , that is, a setE ⊆ H such thatT ∪ E is
consistent and logically entailsM . This framework is more
general than most frameworks studied in the literature; an ex-
ception is the definition by Marquis[Marquis, 2000], which
allows the manifestation to be encoded by any propositional
formula.

Example 1 Consider the following example from the do-
main of motor vehicles, inspired by[Consoleet al., 1991].
T = (¬rich mixture∨¬lean mixture)∧

(rich mixture→ ¬low fuel consumption)∧
(lean mixture→overheating)∧
(low water→overheating),

H = {rich mixture, leanmixture, lowwater},
M = {¬low fuel consumption, overheating}.

ThenE = {rich mixture, lowwater} is an explanation of
M , while, e.g.,{lean mixture,lowwater} is not because it
does not explain lowfuel consumption, and{rich mixture,
lean mixture} is not because it is inconsistent withT .

Formalizations of abduction also differ in the literature
in the notions of preferred explanations: In this setting, the
aim is to compute an explanation that is minimal among all
explanations according to some criteria (e.g., inclusion or
cardinality). A good overview is given by Eiter and Gott-
lob [1995]. However we are not concerned here with these
different notions; we indeed focus on the decision problem
asking whether there exists an explanation at all for a given
instance. This problem is from now on denoted ABDUCTION.

This problem is well studied from the computational com-
plexity perspective[Eshghi, 1993; Selman and Levesque,
1990; Eiter and Gottlob, 1995; del Val, 2000b; 2000a;
Zanuttini, 2003], although with different formalizations of
the problem, as mentioned above. It has been proved that it
is ΣP

2
-complete in the general case[Eiter and Gottlob, 1995],

while propositional deduction is known to be “only” coNP-
complete[Cook, 1971]. This negative result raises the prob-
lem of identifying restricted cases in which ABDUCTION has
computational complexity lower than the general case.

The most natural way to study such restrictions is to study
restrictions on the theories representing knowledge bases.
This is also the approach followed in most of the previous
research in the area. For example, it is known that when the
knowledge baseT is a conjunction of Horn clauses, then AB-
DUCTION is NP-complete[Selman and Levesque, 1990].



The ultimate goal of this line of research is to determine the
complexity of every restricted special case of the problem.
The first result of this type was proved by Schaefer[1978],
who proved that the satisfiability problem of conjunctions of
Boolean constraints over a fixed language is either in P or NP-
complete, depending on the language. Recall the result due to
Ladner[1975] stating that if P6= NP, then there exist decision
problems in NP that are neither in P nor NP-complete. Hence
the existence of dichotomy theorems like Schaefer’s cannot
be taken for granted. Creignouet al.’s book [2001] surveys
such results.

In this paper we completely classify the complexity of AB-
DUCTION in Schaefer’s framework and exhibit a trichotomy.
More precisely, we prove that ABDUCTION is:

• In P if the language is affine of width2,

• Otherwise, NP-complete if the language is Horn, dual
Horn, bijunctive or affine,

• Otherwise,ΣP
2 -complete.

As far as we know, the (only) polynomial case and the min-
imal NP-hard languages that we exhibit are all new results.
Note that the only property that guarantees a polynomial al-
gorithm is that of being affine of width2, i.e., the case where
the theory representing the domain is only a conjunction of
constants and (in)equalities between two variables. Thus the
problem is very hard as soon as sets of literals are allowed
as hypotheses and manifestations (instead of atoms or sets of
atoms as in, e.g.,[Zanuttini, 2003]).

We do not consider directly the complexity of the search
problem consisting of computing an explanation or asserting
there is none. It is however easily seen that this problem is
hard as soon as ABDUCTION is; as for languages that are
affine of width2, our proof that ABDUCTION is in P exhibits
an efficient algorithm.

2 Preliminaries
The set of alln-tuples of elements from{0, 1} is denoted by
{0, 1}n. Any subset of{0, 1}n is called ann-ary relationon
{0, 1}. The set of all finitary relations over{0, 1} is denoted
byBR. A constraint languageover{0, 1} is an arbitrary fi-
nite setΓ ⊆ BR. Constraint languages are the way in which
we impose restrictions on the knowledge bases for the AB-
DUCTION problem.

A constraintover the constraint languageΓ is an appli-
cation of a relationR in Γ to a tuple of variables, written
R(x1, . . . , xn) (possibly with repeated variables). An assign-
mentm to the variablessatisfiesthe constraintR(x1, . . . , xn)
if (m(x1), . . . ,m(xn)) is a tuple inR. Such a satisfying as-
signmentm is called amodelof R(x1, . . . , xn). A theoryT
overΓ is a conjunction of constraints overΓ; a modelm of
T is an assignment that satisfies all its constraints simultane-
ously, denotedm |= T . If there is such a model,T is said to
besatisfiable. Finally, a theoryT entailsa theoryT ′, written
T |= T ′, if every model ofT is a model ofT ′.

The unary relationsF = {(0)} andT = {(1)}, which
force the value of a variable to0 and 1 respectively, have
a special role for the ABDUCTION problem. We will often
use the shorthand notation¬x andx to denote the constraints

F (x) andT (x) respectively. Constraint languages contain-
ing F andT will be of particular importance to us. Given
a constraint languageΓ, the idempotent constraint language
corresponding toΓ is Γ ∪ {F, T } which is denoted byΓid.

Given a theoryT , V ars(T ) denotes the set of all variables
that occurs inT . Given a set of variablesV ,Lits(V ) denotes
the set of constraints

⋃
x∈V {F (x) ∪ T (x)} or, equivalently,

the set of all literals formed upon the variables inV . The
opposite of a literalℓ is written ℓ. Given a set of literalsL,
their conjunction is denoted by

∧
L.

The ABDUCTION problem restricted to the finite constraint
languageΓ is denoted by ABDUCTION(Γ) and is defined as
follows; the problem is said to beparameterizedby Γ.

Problem 2 (ABDUCTION (Γ)) An instance P of
ABDUCTION(Γ) consists of a tuple(V,H,M, T ), where:

• V is a set of variables,

• H ⊆ Lits(V ) is the set of hypotheses,

• M ⊆ Lits(V ) is the set of manifestations, and

• T is a theory overΓ with V ars(T ) = V .

The question is whether there exists an explanation forP,
i.e., a setE ⊆ H such thatT ∧

∧
E is satisfiable andT ∧∧

E |=
∧
M .

The size ofP = (V,H,M, T ) is the total number of oc-
currences of variables in it.

Recall the following standard restrictions on the constraint
languages (see, e.g.[Creignouet al., 2001]).

Definition 3 (restrictions on Γ)

• Γ is Horn if every relationR in Γ is the set of models of
a CNF formula having at most one unnegated variable
in each clause,

• Γ isdual Hornif every relationR in Γ is the set of models
of a CNF formula having at most one negated variable
in each clause,

• Γ is bijunctiveif every relationR in Γ is the set of models
of a CNF formula having at most two literals in each
clause,

• Γ is affine if every relationR in Γ is the set of models of
a system of linear equations overGF (2), the field with
two elements,

• Γ is affine of width2 if every relationR in Γ is the set
of models of a system of linear equations overGF (2) in
which each equation has at most2 variables.

We emphasize thatΓ is assumed to be finite in the def-
inition of ABDUCTION(Γ). Moreover, it parameterizes the
problem, and is not part of its input. Thus we can assume
any convenient presentation of the relations inΓ is stored in
a catalog; thus we will assume, e.g., that ifΓ is Horn then a
theoryT overΓ is given as a CNF formula with at most one
unnegated variable per clause.

We now recall Schaefer’s result, which will be of great im-
portance throughout the paper. Call SAT(Γ) the problem of
deciding whether a given theory overΓ is satisfiable. Schae-
fer completely classified the complexity of SAT(Γ); we only
report the result for idempotent constraint languages.



Theorem 4 ([Schaefer, 1978]) SAT(Γid) is in P if Γ is Horn,
dual Horn, bijunctive or affine. Otherwise it is NP-complete.

Finally, we assume that the reader is familiar with the basic
notions of complexity theory, but we briefly recall the follow-
ing. P is the class of decision problems solvable in determin-
istic polynomial time. NP is the class of decision problems
solvable in nondeterministic polynomial time.ΣP

2 = NPNP

is the class solvable in nondeterministic polynomial time with
access to an NP-oracle. A problem is NP-complete (ΣP

2
-

complete) if every problem in NP (ΣP
2

) is polynomial-time
reducible to it. Throughout the paper we assume P6=NP6=ΣP

2 .

3 Polynomial case
The following proposition gives the only (maximal) polyno-
mial case of ABDUCTION(Γ). Note that, as mentioned in the
introduction, its proof gives a polynomial algorithm thatcom-
putesan explanation if there exists one.

Throughout the proof we write(ℓ = a) (a ∈ {0, 1}) for the
linear equation(x = a) if ℓ = x, and for the linear equation
x = a ⊕ 1 if ℓ = ¬x. The shorthand(ℓ = ℓ′) is used in the
same manner and is equivalent to(ℓ⊕ ℓ′ = 0).

Proposition 5 If Γ is affine of width2, thenABDUCTION(Γ)
is polynomial.

Proof Let P = (V,H,M, T ) be an instance of
ABDUCTION(Γ), whereΓ is affine of width2. If M ′ is the set
of all manifestationsm such thatT 6|= m, then obviously the
explanations ofP are exactly those of(V,H,M ′, T ). Since
T |= m can be decided efficiently with Gaussian elimination
onT ∧ (m = 0), we assumeM ′ = M .

For every manifestationm ∈ M write Em for the set of
literals{h ∈ H | T |= (h = m)}; once again everyEm can
be computed efficiently with Gaussian elimination onT ∧
(h ⊕ m = 1) for everyh ∈ H . We show thatP has an
explanation if and only ifT ∧

∧
m∈M

∧
Em is satisfiable and

noEm is empty. Since the satisfiability ofT ∧
∧

m∈M

∧
Em

can be decided efficiently with again Gaussian elimination
(onT∧

∧
m∈M

∧
h∈Em

(h = 1)), this will conclude the proof.
Assume firstP has an explanationE. ThenT ∧

∧
M is

consistent; since for everym ∈ M andh ∈ Em we have
T |= (h = m), we also haveT ∧

∧
M |= T ∧

∧
m∈M

∧
Em,

and thusT ∧
∧

m∈M

∧
Em is satisfiable. Now we also have

∀m ∈M,T |= (
∧
E → m). SinceT is affine of width2 it is

bijunctive, thus every clause entailed byT can be minimized
into a bijunctive one; sinceT ∧

∧
E is satisfiable andT 6|= m,

the only possibility is a minimal clause of the formh → m
with h ∈ E. But sinceT is affine this implies thatm → h
also is an implicate of it, and finally we haveT |= (h⊕m =
0), which shows thatEm is nonempty. For more details we
refer the reader to[Zanuttini and Hébrard, 2002]. Conversely,
assumeT ∧

∧
m∈M

∧
Em is satisfiable and noEm is empty.

Then since(h ⊕ m = 0) |= (h → m) it is easily seen that∧
m∈M

∧
Em is an explanation forP. 2

4 NP-complete cases
We now exhibit the NP-complete cases of ABDUCTION(Γ).
SinceT ∧

∧
E |=

∧
M holds if and only ifT ∧

∧
E ∧ ℓ is

unsatisfiable for everyℓ ∈M , the following result is obvious.

Lemma 6 If SAT(Γid) is in P, thenABDUCTION(Γ) is in NP.

We first establish NP-completeness for particular lan-
guages. In Section 5 we will establish more general results.

LetR¬x∨y = {(1, 1), (0, 1), (0, 0)}, i.e., the set of models
of ¬x ∨ y. Observe thatR¬x∨y is both Horn and dual Horn.

Proposition 7 ABDUCTION({R¬x∨y}) is NP-complete.

Proof Membership in NP follows from Theorem 4 and
Lemma 6. As regards hardness, we give a reduction from the
NP-complete problem MONOTONE-SAT [Garey and John-
son, 1979], i.e., the satisfiability problem for CNF formu-
las where each clause contains either only positive literals
or only negative literals. Letψ =

∧k

i=1
Ni ∧

∧ℓ

i=1
Pi be

such a formula, where eachNi is a negative clause, written
Ni =

∨νi

j=1
¬xj

i , and everyPi is a positive clause written

Pi =
∨πi

j=1
y

j
i . We build the instanceP = (V,H,M, T ) of

ABDUCTION(R¬x∨y ) where:

• V = {γi | i = 1, . . . , k} ∪ {δi | i = 1, . . . , ℓ} ∪
V ars(ψ); ¬γi will intuitively represent satisfaction of
clauseNi andδi, that of clausePi

• T =
∧k

i=1

∧νi

j=1
(xj

i ∨¬γi)∧
∧ℓ

i=1

∧πi

j=1
(¬yj

i ∨δi); this

encodes the implications¬xj
i → ¬γi andyj

i → δi, i.e.,
the fact thatNi (Pi) is satisfied if at least one of the¬xj

i

(yj
i ), j ∈ {1, . . . , νi} (j ∈ {1, . . . , πi}) is

• H = Lits(V ars(ϕ))

• M =
∧k

i=1
¬γi ∧

∧ℓ

i=1
δi.

Obviously enough, the theoryT is over the language
{R¬x∨y}. Now it is easily seen that ifψ has at least one
model, saym, thenE = {ℓ | m |= ℓ} is an explanation for
P, and that ifP has an explanationE, then any assignment
m to V ars(ψ) with ∀ℓ ∈ E,m |= ℓ is a model ofψ. 2

Similarly, we now prove that ABDUCTION(Γ) is NP-
complete if Γ is the singleton language containing only
Rx∨y = {(1, 1), (1, 0), (0, 1)}.

Proposition 8 ABDUCTION({Rx∨y}) is NP-complete.

Proof SinceRx∨y is dual Horn, membership in NP fol-
lows from Theorem 4 and Lemma 6. As for hardness, we
give a reduction from MONOTONE-SAT (see the proof of
Proposition 7), where positive clauses in an instance of this
problem are restricted to contain at most two literals. Thus
an instance of this problem is a formula of the formψ =
∧k

i=1
Ni ∧

∧ℓ

i=1
(y1

i ∨ y2
i ), where theyj

i ’s are variables and
everyNi is a negative clause writtenNi =

∨νi

j=1
¬xj

i . The
NP-completeness of this restricted problem follows directly
from Schaefer’s result[1978].

Given an instance ψ of MONOTONE-SAT as
above we build the instanceP = (V,H,M, T ) of
ABDUCTION({Rx∨y}) where:

• V = {γi | i = 1, . . . , k} ∪ V ars(ψ); γi will intuitively
represent satisfaction of clauseNi



• T =
∧k

i=1

∧νi

j=1
(xj

i ∨ γi) ∧
∧ℓ

i=1
(y1

i ∨ y2

i ); clauses

(xj
i ∨ γi) encode the implications¬xj

i → γi

• H = Lits(V ars(ϕ))

• M =
∧k

i=1
γi.

We show thatψ has a model if and only ifP has an ex-
planation. Assume first thatψ has a modelm; then it is
easily seen thatE = {ℓ | m |= ℓ} is an explanation for
P. Now assumeP has an explanationE. Then from
∀i = 1, . . . , k, T ∧

∧
E |= γi it follows that for every

i = 1, . . . , k E contains at least one¬xj
i , and thus any as-

signment satisfyingE satisfies every negative clause ofψ; on
the other hand, sinceT ∧

∧
E is satisfiable there is a model

m of T ∧
∧
E that satisfies every positive clause ofψ, and

thism thus satisfiesψ. 2

The following proposition can be shown with the same
proof as Proposition 8 with all variables renamed.

Proposition 9 Let R¬x∨¬y = {(1, 0), (0, 1), (0, 0)}.
ABDUCTION({R¬x∨¬y}) is NP-complete.

We finally prove that ABDUCTION(Γ) is NP-complete for
a particular affine language. This will be achieved by re-
ducing to it another important problem in nonmonotonic rea-
soning, namely the inference problem for propositional cir-
cumscription. A modelm = (m1, . . . ,mn) of a formula
ϕ is said to be aminimal modelof ϕ if there is no model
m′ = (m′

1
, . . . ,m′

n) of ϕ such thatm 6= m′ and ∀i =
1, . . . , n,m′

i ≤ mi.
Durand and Hermann proved that the inference problem

for propositional circumscription of affine formulas is coNP-
complete. In the process, they proved the following theorem.

Theorem 10 ([Durand and Hermann, 2003]) The problem
of deciding whether there is a minimal model of a given affine
formulaϕ that does not satisfy a given negative clause(¬q1∨
. . . ∨ ¬qn) (∀i = 1, . . . , n, qi ∈ V ars(ϕ)) is NP-complete.

A careful reading of their proof shows that the theorem
remains true even if the linear equations in the input affine
formulas are all restricted to contain at most6 variables. We
thus define the languageΓ6aff to be the set of allk-ary affine
relations withk ≤ 6. Obviously,Γ6aff is finite, which is nec-
essary for problem ABDUCTION(Γ6aff ) to be well-defined.

Proposition 11 ABDUCTION(Γ6aff ) is NP-complete.

Proof Membership in NP follows from Theorem 4 and
Lemma 6. As for hardness, letϕ be a formula and
q1, . . . , qn ∈ V ars(ϕ). We show that the clause(¬q1 ∨ . . .∨
¬qn) is false in some minimal model ofϕ if and only if the
abduction problem withT = ϕ, M = {q1, . . . , qn}, and
H = {¬x | x ∈ V ars(ϕ)\{q1, . . . , qn}} has an explanation,
which will conclude by Theorem 10 and the above remark.

Assume first that(¬q1 ∨ . . . ∨ ¬qn) is false in a minimal
modelm of ϕ. DefineE to be{¬xi | m |= ¬xi}. Sincem |=
ϕ by assumption andm |=

∧
E by construction,ϕ ∧

∧
E is

satisfiable. Now assume for sake of contradiction that there
is m′ satisfyingϕ ∧

∧
E ∧ (¬q1 ∨ . . . ∨ ¬qn). Then since

m′ |=
∧
E andE is negative we get∀x ∈ E,m′(x) ≤ m(x);

now for x ∈ V ars(ϕ) \ V ars(E) we have by assumption

m(x) = 1 and thusm′(x) ≤ m(x) again. Finally, we have
∃qi,m

′(qi) = 0 < 1 = m(qi), which contradicts the mini-
mality of m. Thusϕ ∧

∧
E |= (q1 ∧ . . . ∧ qn) andE is an

explanation.
Conversely, assume thatE is an explanation. Thenϕ ∧∧
E is satisfiable; writem for one of its minimal models.

By assumption the formulaϕ ∧
∧
E ∧ (¬q1 ∨ . . . ∨ ¬qn) is

unsatisfiable, thusm 6|= (¬q1∨. . .∨¬qk). We also havem |=
ϕ by assumption. Finally, assume for sake of contradiction
thatm is not a minimal model ofϕ, and letm′ be such that
m′ |= ϕ, m′ ≤ m andm′ 6= m. Then sinceE is negative
(becauseH is) andm |=

∧
E we havem′ |=

∧
E, thus

m′ |= ϕ∧
∧
E, which contradicts the minimality ofm among

the models ofϕ ∧
∧
E. 2

5 Classification
We finally put together the results in the previous sections
for obtaining our complete classification. The concept of a
relational cloneis central to our approach.

Definition 12 (relational clone) Let Γ ⊆ BR. The rela-
tional clone ofΓ is written 〈Γ〉 and is the set of all relations
that can be expressed using relations fromΓ ∪ {=} (= is
the equality relation on{0, 1}), conjunction, and existential
quantification.

Intuitively, the constraints over〈Γ〉 are those which can be
simulated by constraints overΓ.

The following result states that when studying the com-
plexity of ABDUCTION(Γ) it is enough to consider constraint
languages that are relational clones.

Lemma 13 Let Γ be a finite constraint language andΓ′ ⊆
〈Γ〉 finite. ThenABDUCTION(Γ′) is polynomial-time re-
ducible toABDUCTION(Γ).

Proof Let (V ′, H ′,M ′, T ′) be an instance of
ABDUCTION(Γ′). By the definition of a relational clone
there is a set of variablesW disjoint fromV ′ and a theory
T= over Γ ∪ {=} with V ars(T=) = V= = V ′ ∪ W and
such thatT ′ is logically equivalent to the formula∃W,T=.
SinceW is disjoint fromV ′ there is no variable occurring in
H ′ or M ′ and inW at the same time, and it is then easily
seen that the abduction problem(V=, H

′,M ′, T=) has an
explanation if and only if(V ′, H ′,M ′, T ′) has one. Now for
every constraint(xi = xj) (i < j) it is enough to replacexj

with xi everywhere inV=, T=,M
′ andH ′ and to remove the

constraint fromT= for obtaining a still equivalent instance
(V,H,M, T ) of ABDUCTION(Γ), which concludes. 2

We can reduce even further the set of constraints languages
to be considered, namely to idempotent ones.

Lemma 14 Let Γ be a finite constraint language.
ABDUCTION(Γid) is polynomial time reducible to
ABDUCTION(Γ).

Proof Let P = (V,H,M, T ) be an instance of
ABDUCTION(Γid). We build an instanceP ′ =
(V,H ′,M ′, T ′) of ABDUCTION(Γ) by removing every con-
straintF (x) or T (x) from T and adding it toH andM . It
is then easy to see that(V,H ′,M ′, T ′) has an explanation if
and only if(V,H,M, T ) has one. 2
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Figure 1: Lattice of all idempotent Boolean relational clones.

Given these two lemmas, our classification of the complex-
ity of A BDUCTION(Γ) heavily relies on Post’s remarkable
classification of all Boolean relational clones[Post, 1941].
Post proved in particular that the relational clones form a lat-
tice under set inclusion. An excellent introduction to Post’s
lattice can be found in the recent survey articles[Böhler et
al., 2003; 2004].

Lemmas 13 and 14 say that for any finiteΓ′ ⊆
〈Γid〉, ABDUCTION(Γ′) is polynomial-time reducible to
ABDUCTION(Γ). In other words, when studying the com-
plexity of ABDUCTION(Γ) it is enough to consider constraint
languages that are idempotent relational clones. The lattice
of all idempotent Boolean relational clones is given on Fig-
ure 1. Those that are most relevant to our classification are
the following:

• BR, the set of all Boolean relations,

• IE2, the set of all Horn relations,

• IV2, the set of all dual Horn relations,

• ID2, the set of all bijunctive relations,

• IL2, the set of all affine relations,

• ID1, the set of all affine relations of width2,

• IM2, the set of all relations that are Horn and dual Horn.

Thus, according to Post’s lattice there is only one idempotent
relational clone that is not Horn, not dual Horn, not affine,
and not bijunctive, namely the relational clone consistingof
all Boolean relationsBR. Hence the following result follows
intuitively from the result due to Eiter and Gottlob[1995]
stating that ABDUCTION is ΣP

2 -complete for the general case
of theories given by CNF formulas.

Proposition 15 If Γ is not Horn, not dual Horn, not affine
and not bijunctive thenABDUCTION(Γ) is ΣP

2
-complete.

Proof It is well-known that for any CNF formulaψ there is a
set of variablesW disjoint fromV ars(ψ) and a CNF formula
ψ′ overV ars(ψ)∪W with at most3 variables per clause such
that the formulasψ and∃Wψ′ are logically equivalent. That
fact together with a proof similar to that of Lemma 13 show
that the abduction problem for general CNF theories reduces
to ABDUCTION(Γ3), whereΓ3 is the (finite) set of all ternary
relations. SinceΓ3 is not Horn, not dual Horn, not affine and
not bijunctive, we have〈Γid

3
〉 = BR, and Lemma 13 and

Lemma 14 concludes. 2

We are finally able to completely classify the complexity
of ABDUCTION(Γ).

Theorem 16 (classification)LetΓ be a constraint language.
ABDUCTION(Γ) is:

• In P if Γ is affine of width2,

• Otherwise, NP-complete ifΓ is Horn, dual Horn, bijunc-
tive or affine,

• Otherwise,ΣP
2

-complete.

Proof Proposition 5 shows the result for languages that are
affine of width2. Now it can be seen that the relationsR¬x∨y,
Rx∨y andR¬x∨¬y of Propositions 7, 8 and 9 are in the re-
lational clonesIM2, IS2

02
and IS2

12
, respectively; this can

be verified by checking that they are invariant under the op-
erations defining the corresponding clones (for more details
see[Böhler et al., 2003; 2004]). Moreover, the language
Γ6aff of Proposition 11 is affine, thus it is inIL2. Con-
sequently, Figure 1 shows that the minimal idempotent re-
lational clones that are not affine of width2, namelyIM2,
IS2

02
, IS2

12
and IL2 are NP-complete. On the other hand,

we know from Theorem 4 and Lemma 6 that the relational
clonesIL2 (affine), ID2 (bijunctive), IE2 (Horn) andIV2

(dual Horn) are in NP. Thus ABDUCTION(Γ) is NP-complete
when 〈Γid〉 containsIM2, IS2

02, IS2
12 or IL2 and is con-

tained inIL2, ID2, IE2, or IV2. This covers exactly the
languages that are Horn, dual Horn, bijunctive, or affine and
that are not affine of width2.

Finally, Proposition 15 concludes the proof. 2

6 Discussion and future work
We have completely classified the complexity of proposi-
tional abduction in Schaefer’s framework when manifesta-
tions and hypotheses are described by sets of literals. This
result can prove useful in helping the designers of knowledge
based systems to deal with the expressivity/tractability trade-
off when choosing a language for their system. Our result
indeed completes the picture of the complexity of reason-
ing for propositional constraint languages. In particular, we
have shown that this problem is very hard, in the sense that
only languages that are affine of width2 allow for polyno-
mial abduction. Also note that in many cases NP-hardness
remains even when restricting further the problem; e.g., to
H = Lits(V \V ars(M)) (see the proofs of Propositions 7–
9).



It is important to note that the complexity of abduction for
a constraint language given in extension (i.e., by the set of
all tuples in every relation) can be determined efficiently;the
case of Theorem 16 in which a language falls can indeed be
determined efficiently by using the closure properties of the
concerned co-clones (see, e.g.,[Böhleret al., 2004]).

It would be interesting to try to extend this work into at
least three directions. First of all, besides the problem ofde-
ciding the existence of an explanation for a given instance,of
great importance are the problems of relevance and necessity,
which ask whether a given hypothesis is part of at least one
(resp. of all) preferred explanation(s). These problems in-
volve a preference criterion which can have a great impact on
their complexity; for more details we refer the reader to[Eiter
and Gottlob, 1995]. Hence, it would be interesting to inves-
tigate the complexity of these problems. In the same vein,
Eiter and Makino recently studied the problem of enumerat-
ing all the explanations of a Horn abduction problem[Eiter
and Makino, 2002]; it would be interesting to try to extend
their work to other classes of formulas.

Secondly, although Schaefer’s framework is quite general,
there are restrictions on propositional formulas that it can-
not express. For instance, Eshghi[1993] and del Val[2000a]
study such restrictions that yield polynomial cases of the ab-
duction problem. It would thus be of great interest to try to
identify still more such tractable classes.

Finally, it would be interesting to study the case where the
domains of variables are more general, e.g., for conjunctions
of constraints over finite domains.
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Hébrard. A unified framework for structure identification.
Information Processing Letters, 81(6):335–339, 2002.

[Zanuttini, 2003] B. Zanuttini. New polynomial classes for
logic-based abduction.J. Artificial Intelligence Research,
19:1–10, 2003.


