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Abstract
We consider a class of games with real-valued
strategies and payoff information available only in
the form of data from a given sample of strategy
profiles. Solving such games with respect to the un-
derlying strategy space requires generalizing from
the data to a complete payoff-function representa-
tion. We address payoff-function learning as a stan-
dard regression problem, with provision for captur-
ing known structure (symmetry) in the multiagent
environment. To measure learning performance,
we consider the relative utility of prescribed strate-
gies, rather than the accuracy of payoff functions
per se. We demonstrate our approach and evalu-
ate its effectiveness on two examples: a two-player
version of the first-price sealed-bid auction (with
known analytical form), and a five-player market-
based scheduling game (with no known solution).

1 Introduction
Game-theoretic analysis typically begins with a complete de-
scription of strategic interactions, that is, the game. We con-
sider the prior question of determining what the game actually
is, given a database of game experience rather than any direct
specification. This is one possible target of learning applied
to games [Shoham et al., 2003]. When agents have few avail-
able actions and outcomes are deterministic, the game can
be identified through systematic exploration. For instance,
we can ask the agents to play each strategy profile in the en-
tire joint strategy set and record the payoffs for each. If the
joint action space is small enough, limited nondeterminism
can be handled by sampling. Coordinating exploration of the
joint set does pose difficult issues. Brafman and Tennenholtz,
for example, address these carefully for the case of common-
interest stochastic games [Brafman and Tennenholtz, 2003],
as well as the general problem of maintaining an equilib-
rium among learning algorithms [Brafman and Tennenholtz,
2004].

Further difficulties are posed by intractably large (or infi-
nite) strategy sets. We can make this problem tractable by
reducing the number of profiles that agents are allowed to
play, but this comes at the cost of transforming the game of
interest into a different game entirely. Instead, we seek to

identify the full game (or at least a less restrictive game) from
limited data, entailing some generalization from observed in-
stances. Approximating payoff functions using supervised
learning (regression) methods allows us to deal with contin-
uous agent strategy sets, providing a payoff for an arbitrary
strategy profile. In so doing, we adopt functional forms con-
sistent with prior knowledge about the game, and also ad-
mit biases toward forms facilitating subsequent game analysis
(e.g., equilibrium calculation).

In this paper, we present our first investigation of approxi-
mating payoff functions, employing regression to low-degree
polynomials. We explore two example games, both with in-
complete information and real-valued actions. First is the
standard first-price sealed bid auction, with two players and
symmetric value distributions. The solution to this game is
well-known [Krishna, 2002], and its availability in analytical
form proves useful for benchmarking our learning approach.
Our second example is a five-player market-based schedul-
ing game [Reeves et al., 2005], where time slots are allocated
by simultaneous ascending auctions [Milgrom, 2000]. This
game has no known solution, though previous work has iden-
tified equilibria on discretized subsets of the strategy space.

2 Preliminaries
2.1 Notation
A generic normal form game is formally expressed as
[I, {∆(Si)}, {ui(s)}], where I refers to the set of players and
m = |I | is the number of players. Si is the set of strategies
available to player i ∈ I , and the set ∆(Si) is the simplex of
mixed strategies over Si. Finally, ui(s) : S1×· · ·×Sm → R
is the payoff function of player i when all players jointly
play s = (s1, . . . , sm), with each sj ∈ Sj . As is com-
mon, we assume von Neumann-Morgenstern utility, allow-
ing an agent i’s payoff for a particular mixed strategy pro-
file to be ui(σ) =

∑
s∈S [σ1(s1) · · ·σm(sm)]ui(s), where

σj : Sj → [0, 1] is a mixed strategy of player i, assign-
ing a probability to each pure strategy sj ∈ Sj such that
all probabilities over the agent’s strategy set add to 1 (i.e.,
σj ∈ ∆(Sj)).

It will often be convenient to refer to the strategy (pure
or mixed) of player i separately from that of the remaining
players. To accommodate this, we use s−i to denote the joint
strategy of all players other than player i.



2.2 Nash Equilibrium
In this paper, we are concerned with one-shot normal-form
games, in which players make decisions simultaneously and
accrue payoffs, upon which the game ends. This single-shot
nature may seem to preclude learning from experience, but
in fact repeated episodes are allowed, as long as actions can-
not affect future opportunities, or condition future strategies.
Game payoff data may also be obtained from observations of
other agents playing the game, or from simulations of hypo-
thetical runs of the game. In any of these cases, learning is
relevant despite the fact that the game is to be played only
once.

Faced with a one-shot game, an agent would ideally play
its best strategy given those played by the other agents. A
configuration where all agents play strategies that are best re-
sponses to the others constitutes a Nash equilibrium.

Definition 1 A strategy profile s = (s1, . . . , sm) constitutes
a (pure-strategy) Nash equilibrium of game [I, {Si}, {ui(s)}]
if for every i ∈ I , s′i ∈ Si, ui(si, s−i) ≥ ui(s′i, s−i).
A similar definition applies when mixed strategies are al-
lowed.

Definition 2 A strategy profile σ = (σ1, . . . , σm) con-
stitutes a mixed-strategy Nash equilibrium of game
[I, {∆(Si)}, {ui(s)}] if for every i ∈ I , σ′i ∈ ∆(Si),
ui(σi, σ−i) ≥ ui(σ′i, σ−i).

In this study we devote particular attention to games that
exhibit symmetry with respect to payoffs.

Definition 3 A game [I, {∆(Si)}, {ui(s)}] is symmetric if
∀i, j ∈ I, (a) Si = Sj and (b) ui(si, s−i) = uj(sj , s−j)
whenever si = sj and s−i = s−j

Symmetric games have relatively compact descriptions and
may present associated computational advantages. Given a
symmetric game, we may focus on the subclass of symmet-
ric equilibria, which are arguably most natural [Kreps, 1990],
and avoid the need to coordinate on roles. In fairly general
settings, symmetric games do possess symmetric equilibria
[Nash, 1951].

3 Payoff Function Approximation
3.1 Problem Definition
We are given a set of data points (s, v), each describing an
instance where agents played strategy profile s and realized
value v = (v1, . . . , vm). For deterministic games of complete
information, v is simply u. With incomplete information or
stochastic outcomes, v is a random variable, more specifically
an independent draw from a distribution function of s, with
expected value u(s).

The payoff function approximation task is to select a func-
tion û from a candidate set U minimizing some measure of
deviation from the true payoff function u. Because the true
function u is unknown, of course, we must base our selection
on evidence provided by the given data points.

Our goal in approximating payoff functions is typically not
predicting payoffs themselves, but rather in assessing strate-
gic behavior. Therefore, for assessing our results, we measure

approximation quality not directly in terms of a distance be-
tween û and u, but rather in terms of the strategies dictated
by û evaluated with respect to u. For this we appeal to the
notion of approximate Nash equilibrium.

Definition 4 A strategy profile σ = (σ1, . . . , σm) constitutes
an ε-Nash equilibrium of game [I, {∆(Si)}, {ui(s)}] if for
every i ∈ I , σ′i ∈ ∆(Si), ui(σi, σ−i) + ε ≥ ui(σ′i, σ−i).

We propose using ε in the above definition as a mea-
sure of approximation error of û, and employ it in evaluat-
ing our learning methods. When u is known, we can com-
pute ε in a straightforward manner. Let s∗i denote i’s best-
response correspondence, defined by s∗i (σ−i) = {x : x ∈
arg maxsi ui(si, σ−i)}. For clarity of exposition, we take
s∗i (σ−i) to be single-valued. Let σ̂ be a solution (e.g., a Nash
equilibrium) of game [I, {∆(Si)}, {ûi(s)}]. Then σ̂ is an ε-
Nash equilibrium of the true game [I, {∆(Si)}, {ui(s)}], for
ε = maxi∈I [ui(s

∗
i (σ̂−i), σ̂−i)− ui(σ̂i, σ̂−i)] .

Since in general u will either be unknown or not amenable
to this analysis, we developed a method for estimating ε from
data. We will describe it in some detail below.

For the remainder of this report, we focus on a special case
of the general problem, where action sets are real-valued in-
tervals, Si = [0, 1]. Moreover, we restrict attention to sym-
metric games and further limit the number of variables in
payoff-function hypotheses by using some form of aggrega-
tion of other agents’ actions.1 The assumption of symmetry
allows us to adopt the convention for the remainder of the
paper that payoff u(si, s−i) is to the agent playing si.

3.2 Polynomial Regression
One class of models we consider are the nth-degree separable
polynomials:

u(si, φ(s−i)) = ans
n
i + · · ·+ a1si+

+ bnφ
n(s−i) + · · ·+ b1φ(s−i) + d,

(1)

where φ(s−i) represents some aggregation of the strategies
played by agents other than i. For two-player games, φ is
simply the identity function. We refer to polynomials of the
form (1) as separable, since they lack terms combining si and
s−i. We also consider models with such terms, for example,
the non-separable quadratic:

u(si, φ(s−i)) = a2s
2
i + a1si + b2φ

2(s−i)+

+ b1φ(s−i) + csiφ(s−i) + d.
(2)

Note that (2) and (1) coincide in the case n = 2 and c =
0. In the experiments described below, we employ a simpler
version of non-separable quadratic that takes b1 = b2 = 0.

One advantage of the quadratic form is that we can ana-
lytically solve for Nash equilibrium. Given a general non-
separable quadratic (2), the necessary first-order condition
for an interior solution is si = −(a1 + cφ(s−i))/2a2. This
reduces to si = −a1/2a2 in the separable case. For the
non-separable case with additive aggregation, φsum(s−i) =

1Although none of these restrictions are inherent in the approach,
one must of course recognize the tradeoffs in complexity of the hy-
pothesis space and generalization performance.



∑
j 6=i sj , we can derive an explicit first-order condition for

symmetric equilibrium: si = −a1/(2a2 + (m− 1)c).
While a pure-strategy equilibrium will necessarily exist for

any separable polynomial model, it is only guaranteed to ex-
ist in the non-separable case when the learned quadratic is
concave. In the experiments that follow, when the learned
non-separable quadratic does not have a pure Nash equilib-
rium, we generate an arbitrary symmetric pure profile as the
approximate Nash equilibrium.

Another difficulty arises when a polynomial of a degree
higher than three has more than one Nash equilibrium. In
such a case we select an equilibrium arbitrarily.

3.3 Local Regression
In addition to polynomial models, we explored learning using
two local regression methods: locally weighted average and
locally weighted quadratic regression [Atkeson et al., 1997].
Unlike model-based methods such as polynomial regression,
local methods do not attempt to infer model coefficients from
data. Instead, these methods weigh the training data points
by distance from the query point and estimate the answer—in
our case, the payoff at the strategy profile point—using some
function of the weighted data set. We used a Gaussian weight
function: w = e−d

2

, where d is the distance of the training
data point from the query point and w is the weight that is
assigned to that training point.

In the case of locally weighted average, we simply take the
weighted average of the payoffs of the training data points as
our payoff at an arbitrary strategy profile. Locally weighted
quadratic regression, on the other hand, fits a quadratic re-
gression to the weighted data set for each query point.

3.4 Support Vector Machine Regression
The third category of learning methods we used was Support
Vector Machines (SVMs). For details regarding this learn-
ing method, we refer an interested reader to [Vapnik, 1995].
In our experiments, we used SVM light package [Joachims,
1999], which is an open-source implementation of SVM clas-
sification and regression algorithms.

3.5 Finding Mixed Strategy Equilibria
In the case of polynomial regression, we were able to find ei-
ther analytic or simple and robust numeric methods for com-
puting pure Nash equilibria. With local regression and SVM
learning we are not so fortunate, as we do not have access
to a closed-form description of the function we are learning.
Furthermore, we are often interested in mixed strategy ap-
proximate equilibria, and our polynomial models and solution
methods yield pure strategy equilibria.

When a particular learned model is not amenable to a
closed-form solution, we can approximate the learned game
with a finite strategy grid and find a mixed-strategy equi-
librium of the resulting finite game using a general-purpose
finite-game solver. We employed replicator dynamics [Fu-
denberg and Levine, 1998], which searches for a symmetric
mixed equilibrium using an iterative evolutionary algorithm.
We treat the result after a fixed number of iterations as an
approximate Nash equilibrium of the learned game.

3.6 Strategy Aggregation
As noted above, we consider payoff functions on two-
dimensional strategy profiles in the form u(si, s−i) =
f(si, φ(s−i)). As long as φ(s−i) is invariant under different
permutations of the same strategies in s−i, the payoff func-
tion is symmetric. Since the actual payoff functions for our
example games are also known to be symmetric, we constrain
that φ(s−i) preserve the symmetry of the underlying game.

In our experiments, we compared three variants of φ(s−i).
First and most compact is the simple sum, φsum(s−i). Sec-
ond is the ordered pair (φsum, φss), where φss(s−i) =∑

j 6=i(sj)
2. The third variant, φidentity(s−i) = s−i, sim-

ply takes the strategies in their direct, unaggregated form. To
enforce the symmetry requirement in this last case, we sort
the strategies in s−i.

4 First-Price Sealed-Bid Auction
In the standard first-price sealed-bid (FPSB) auction game
[Krishna, 2002], agents have private valuations for the good
for sale, and simultaneously choose a bid price representing
their offer to purchase the good. The bidder naming the high-
est price gets the good and pays the offered price. Other
agents receive and pay nothing. In the classic setup first ana-
lyzed by Vickrey [1961], agents have identical valuation dis-
tributions, uniform on [0, 1], and these distributions are com-
mon knowledge. The unique (Bayesian) Nash equilibrium of
this game is for agent i to bid m−1

m xi, where xi is i’s valua-
tion for the good.

Note that strategies in this game (and generally for games
of incomplete information), bi : [0, 1] → [0, 1], are func-
tions of the agent’s private information. We consider a re-
stricted case, where bid functions are constrained to the form
bi(xi) = kixi, ki ∈ [0, 1]. This constraint transforms the
action space to a real interval, corresponding to choice of
parameter ki. We can easily see that the restricted strategy
space includes the known equilibrium of the full game, with
si = ki = m−1

m for all i, which is also an equilibrium of the
restricted game in which agents are constrained to strategies
of the given form.

We further focus on the special case m = 2, with corre-
sponding equilibrium at s1 = s2 = 1/2. For the two-player
FPSB, we can also derive a closed-form description of the
actual expected payoff function:

u(s1, s2) =





0.25 if s1 = s2 = 0,
(s1−1)[(s2)2−3(s1)2]

6(s1)2 if s1 ≥ s2,
s1(1−s1)

3s2
otherwise.

(3)

The availability of known solutions for this example fa-
cilitates analysis of our learning approach. Our results are
summarized in Figure 1. For each of our methods (classes of
functional forms), we measured average ε for varying train-
ing set sizes. For instance, to evaluate the performance of
separable quadratic approximation with training size N , we
independently draw N strategies, {s1, . . . , sN}, uniformly
on [0, 1]. The corresponding training set comprises O(N 2)
points: ((si, sj), u(si, sj)), for i, j ∈ {1, . . . , N}, with u as
given by (3). We find the best separable quadratic fit û to



these points, and find a Nash equilibrium corresponding to û.
We then calculate the least ε for which this strategy profile is
an ε-Nash equilibrium with respect to the actual payoff func-
tion u. We repeat this process 200 times, averaging the results
over strategy draws, to obtain each value plotted in Figure 1.
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Figure 1: Epsilon versus number of training strategy points
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Figure 2: Learned and actual payoff function when the
other agent plays 0.5. The learned function is the separable
quadratic, for a particular sample with N = 5.

As we can see, both second-degree polynomial forms we
tried do quite well on this game. For N < 20, quadratic
regression outperforms the model labeled “sample best”, in
which the payoff function is approximated by the discrete
training set directly. The derived equilibrium in this model
is simply a Nash equilibrium over the discrete strategies in
the training set. At first, the success of the quadratic model
may be surprising, since the actual payoff function (3) is
only piecewise differentiable and has a point of discontinu-
ity. However, as we can see from Figure 2, it appears quite
smooth and well approximated by a quadratic polynomial.
The higher-degree polynomials apparently overfit the data, as

indicated by their inferior learning performance displayed in
this game.

The results of this game provide an optimistic view of how
well regression might be expected to perform compared to
discretization. This game is quite easy for learning since
the underlying payoff function is well captured by our lower-
degree model. Moreover, our experimental setup eliminated
the issue of noisy payoff observations, by employing the ac-
tual expected payoffs for selected strategies.

5 Market-Based Scheduling Game
The second game we investigate presents a significantly more
difficult learning challenge. It is a five-player symmetric
game, with no analytic characterization, and no (theoreti-
cally) known solution. The game hinges on incomplete infor-
mation, and training data is available only from a simulator
that samples from the underlying distribution.

The game is based on a market-based scheduling scenario
[Reeves et al., 2005], where agents bid in simultaneous auc-
tions for time-indexed resources necessary to perform their
given jobs. Agents have private information about their job
lengths, and values for completing their jobs by various dead-
lines. Note that the full space of strategies is quite complex: it
is dependent on multi-dimensional private information about
preferences as well as price histories for all the time slots.
As in the FPSB example, we transform this policy space to
the real interval by constraining strategies to a parametrized
form. In particular, we start from a simple myopic policy—
straightforward bidding [Milgrom, 2000], and modify it by
a scalar parameter (called “sunk awareness”, and denoted by
k) that controls the agent’s tendency to stick with slots that
it is currently winning. Although the details and motivation
for sunk awareness are inessential to the current study, we
note that k ∈ [0, 1], and that the optimal setting of k involves
tradeoffs, generally dependent on other agents’ behavior.

To investigate learning for this game, we collected data
for all strategy profiles over the discrete set of values k ∈
{0, 0.05, . . . , 1}. Accounting for symmetry, this represents
53,130 distinct strategy profiles. For evaluation purposes, we
treat the sample averages for each discrete profile as the true
expected payoffs on this grid.

The previous empirical study of this game by Reeves
et al. [2005] estimated the payoff function over a dis-
crete grid of profiles assembled from the strategies
{0.8, 0.85, 0.9, 0.95, 1}, computing an approximate Nash
equilibrium using replicator dynamics. We therefore
generated a training set based on the data for these
strategies (300000 samples per profile), regressed to the
quadratic forms, and calculated empirical ε values with
respect to the entire data set by computing the maxi-
mum benefit from deviation within the data: εemp =
maxi∈I maxsi∈Si [ui(si, ŝ−i)− ui(ŝ)] , where Si is the
strategy set of player i represented within the data set. Since
the game is symmetric, the maximum over the players can be
dropped, and all the agent strategy sets are identical.

From the results presented in Table 1, we see that the Nash
equilibria for the learned functions are quite close to that pro-
duced by replicator dynamics, but with ε values quite a bit



lower. (Since 0.876 is not a grid point, we determined its
ε post hoc, by running further profile simulations with all
agents playing 0.876, and where one agent deviates to any
of the strategies in {0, 0.05, . . . , 1}.)

Method Equilibrium si ε
Separable quadratic 0.876 0.0027

Non-separable quadratic 0.876 0.0027
Replicator Dynamics (0,0.94,0.06,0,0) 0.0238

Table 1: Values of ε for the symmetric pure-strategy equilib-
ria of games defined by different payoff function approxima-
tion methods. The quadratic models were trained on profiles
confined to strategies in {0.8,0.85,0.9,0.95,1}.

In a more comprehensive trial, we collected 2.2 million ad-
ditional samples per profile, and ran our learning algorithms
on 100 training sets, each uniformly randomly selected from
the discrete grid {0, 0.05, . . . , 1}. Each training set included
profiles generated from between five and ten of the twenty-
one agent strategies on the grid. Since in this case the pro-
file of interest does not typically appear in the complete data
set, we developed a method for estimating ε for pure sym-
metric approximate equilibria in symmetric games based on
a mixture of neighbor strategies that do appear in the test set.
Let us designate the pure symmetric equilibrium strategy of
the approximated game by ŝ. We first determine the closest
neighbors to ŝ in the symmetric strategy set S represented
within the data. Let these neighbors be denoted by s′ and
s′′. We define a mixed strategy α over support {s′, s′′} as
the probability of playing s′, computed based on the relative
distance of ŝ from its neighbors: α = 1− |ŝ− s′|/|s′ − s′′|.
Note that symmetry allows a more compact representation of
a payoff function if agents other than i have a choice of only
two strategies. Thus, we define U(si, j) as the payoff to a
(symmetric) player for playing strategy si ∈ S when j other
agents play strategy s′. If m − 1 agents each independently
choose whether to play s′ with probability α, then the proba-
bility that exactly j will choose s′ is given by

Pr(α, j) =

(
m− 1

j

)
αj(1− α)m−1−j .

We can thus approximate ε of the mixed strategy α by

max
si∈S

m−1∑

j=0

Pr(α, j) (U(si, j)− αU(s′, j)− (1− α)U(s′′, j)) .

Using this method of estimating ε on the complete data
set, we compared results from polynomial regression to the
method which simply selects from the training set the pure
strategy profile with the smallest value of ε. We refer to
this method as “sample best”, differentiating between the
case where we only consider symmetric pure profiles (la-
beled “sample best (symmetric)”) and all pure profiles (la-
beled “sample best (all)”).2

2It is interesting to observe in Figures 3 and 4 that when we re-
strict the search for a best pure strategy profile to symmetric profiles,
we on average do better in terms of ε then when this restriction is not
imposed.
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Figure 3: Effectiveness of learning a separable quadratic
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From Figure 3 we see that regression to a separable
quadratic produces a considerably better approximate equi-
librium when the size of the training set is relatively small.
Figure 4 shows that the non-separable quadratic performs
similarly. The results appear relatively insensitive to the de-
gree of aggregation applied to the representation of other
agents’ strategies.

The polynomial regression methods we employed yield
pure-strategy Nash equilibria. We further evaluated four
methods that generally produce mixed-strategy equilibria:
two local regression learning methods, SVM with a Gaussian
radial basis kernel, and direct estimation using the training
data. As discussed above, we computed mixed strategy equi-
libria by applying replicator dynamics to discrete approxima-
tions of the learned payoff functions.3 Since we ensure that

3In the case of direct estimation from training data, the data itself



the support of any mixed strategy equilibrium produced by
these methods is in the complete data set, we can compute ε
of the equilibria directly.

As we can see in Figure 5, locally weighted average
method appears to work better than the other three for most
data sets that include between five and ten strategies. Ad-
ditionally, locally weighted regression performs better than
replicator dynamics on four of the six data set sizes we con-
sidered, and SVM consistently beats replicator dynamics for
all six data set sizes.4

It is somewhat surprising to see how irregular our results
appear for the local regression methods. We cannot explain
this irregularity, although of course there is no reason for us
to expect otherwise: even though increasing the size of the
training data set may improve the quality of fit, improvement
in quality of equilibrium approximation does not necessarily
follow.
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Figure 5: Effectiveness of learning local and SVM regres-
sion to estimate mixed strategy symmetric equilibria, with
φ(s−i) = (φsum, φss).

6 Conclusion
While there has been much work in game theory attempting to
solve particular games defined by some payoff functions, lit-
tle attention has been given to approximating such functions
from data. This work addresses the question of payoff func-
tion approximation by introducing regression learning tech-
niques and applying them to representative games of inter-
est. Our results in both the FPSB and market-based schedul-
ing games suggest that when data is sparse, such methods

was used as input to the replicator dynamics algorithm. For the other
three methods we used a fixed ten-strategy grid as the discretized
approximation of the learned game.

4Note that we do not compare these results to those for the poly-
nomial regression methods. Given noise in the data set, mixed-
strategy profiles with larger supports may exhibit lower ε simply due
to the smoothing effect of the mixtures.

can provide better approximations of the underlying game—
at least in terms of ε-Nash equilibria—than discrete approxi-
mations using the same data set.

Regression or other generalization methods offer the po-
tential to extend game-theoretic analysis to strategy spaces
(even infinite sets) beyond directly available experience. By
selecting target functions that support tractable equilibrium
calculations, we render such analysis analytically convenient.
By adopting functional forms that capture known structure of
the payoff function (e.g., symmetry), we facilitate learnabil-
ity. This study provides initial evidence that we can some-
times find models serving all these criteria.

In future work we expect to apply some of the methods
developed here to other challenging domains.
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