
Generative Modeling with Failure in PRISM

Taisuke Sato, Yoshitaka Kameya
Tokyo Institute of Technology / CREST, JST

2-12-1 Ôokayama Meguro-ku Tokyo Japan 152-8552

Neng-Fa Zhou
The City University of New York

2900 Bedford Avenue, Brooklyn, NY 11210-2889

Abstract

PRISM is a logic-based Turing-complete symbolic-
statistical modeling language with a built-in pa-
rameter learning routine. In this paper,we enhance
the modeling power of PRISM by allowing gen-
eral PRISM programs to fail in the generation pro-
cess of observable events. Introducing failure ex-
tends the class of definable distributions but needs
a generalization of the semantics of PRISM pro-
grams. We propose a three valued probabilistic se-
mantics and show how failure enables us to pur-
sue constraint-based modeling of complex statisti-
cal phenomena.

1 Introduction
Modeling complex phenomena in the real world such as nat-
ural language understanding is a challenging task and PRISM
is a symbolic-statistical modeling language proposed for that
purpose [Sato and Kameya, 1997]. It is a relational proba-
bilistic language for defining distributions over structured ob-
jects with arbitrary complexity. Parameters in the defined dis-
tribution (probability measure) are estimated efficiently from
data using dynamic programming by a generic EM algo-
rithm1 called the gEM (graphical EM) algorithm. For ex-
ample parameter estimation for PCFGs (probabilistic context
free grammars) by PRISM is carried out with the same time
complexity as the Inside-outside algorithm, a well-known EM
algorithm for PCFGs [Sato and Kameya, 2001].2

The modeling power of PRISM comes from the fact that
the user can use arbitrary definite clause programs to define
distributions. There is no restriction on programs such as
range-restrictedness3 or finite domain. Hence theoretically
speaking, there is no limit on the complexity of modeling tar-

1The EM algorithm is a class of statistical inference algorithms
for ML (maximum likelihood) estimation which alternates expecta-
tion and maximization steps until convergence.

2The recent refinement of PRISM implementation [Zhou et al.,
2004] has made it possible to complete the parameter estimation for
a PCFG containing 860 rules from 10,000 sentences in less than 10
minutes on a PC.

3Variables appearing in the clause head must also appear in the
clause body. In particular unit clauses must be ground.

gets. Nevertheless EM learning4 is possible by the gEM algo-
rithm for a program as long as it satisfies certain conditions.
Consequently there is no or little barrier to the EM learning
of new statistical models. PRISM thus offers a new and ideal
tool to develop complex models that require both logical and
statistical knowledge.

PRISM is primarily designed for generative modeling
where a program models a process of generating observ-
able events as a chain of probabilistic choices. In early ver-
sions of PRISM, programs are assumed to be failure-free,
which means that a process never fails5 once a probabilis-
tic choice is made and thus the probabilities of observable
events sum to unity. Although typical statistical models
such as Bayesian networks, HMMs (hidden Markov models)
and PCFGs satisfy this condition, it makes constraint-based
modeling, a widely used flexible methodology, impossible in
which wrong solutions are filtered out by not satisfying con-
straints.6

The elimination of the failure-free condition was attempted
in [Sato and Kameya, 2004] but rather limited to the failure
of definite clause programs. In this paper we propose to allow
general programs,7 a super class of definite clause programs,
to fail. Although the introduction of general programs signif-
icantly increases the flexibility of PRISM modeling and ex-
pands the class of definable distributions, it comes with costs.
First as the probabilities of observable events do not sum to
unity, we have to deal with log-linear models8 [Abney, 1997;
Cussens, 2001] which require intractable computation of a
normalizing constant. We do not go into the detail of this
problem here though.

Second we are faced with a semantic problem. Compared
to definite clause programs where the least model semantics
is unanimously accepted, there is no agreed-upon semantics

4Here and henceforth EM learning is used a synonym of ML
estimation by the EM algorithm.

5A process fails if it does not lead to any observable output.
6Constraints are relations on variables such as equality, disequal-

ity and greater-than.
7A general program is a set of general clauses (non-Horn

clauses) which may contain negation in their body.
8A distribution has the form ���� � ��� ����

�
�
��������

where �� is a coefficient, ����� a feature and � a normalizing con-
stant. In our setting � is the sum of probabilities of all observable
events.

for general programs,9 much less probabilistic semantics. But
without such semantics, mathematically coherent modeling
would be hardly possible. We fill the need by generalizing
distribution semantics, the existing semantics for positive (=
definite clause) PRISM programs [Sato, 1995] to a new three-
valued semantics. It considers a ground atom as a random
variable taking on true, false and undefined, and defines a
distribution over the three-valued Herbrand interpretations of
a given general PRISM program.

There remains one thing to solve however. To perform
EM learning of a general PRISM program that may fail, we
need a ‘failure program’ which positively describes how fail-
ure occurs in the original program. We show that the fail-
ure program can be synthesized mechanically by eliminat-
ing negation using FOC (first-order compiler). FOC is a de-
terministic program transformation algorithm that compiles
negated goals into executable form with disunification con-
straints [Sato, 1989]. Once a failure program is obtained, or
more generally negation is eliminated, efficient EM learning
is possible by an appropriate modification to the gEM algo-
rithm. Our contributions are summarized as follows.

� A new three-valued semantics for probabilistic logic
programs with negation.

� A new approach to parameter learning of such programs
through automated elimination of negation by FOC.

In the remainder of this paper we discuss each of the top-
ics after reviewing PRISM briefly. Because our subject in-
tersects a variety of areas from logic programming, statistics,
program synthesis, to relational modeling, we are unable to
give a detailed and formal description due to the space limita-
tion. Necessarily the description is mostly based on examples
and proofs are omitted. The reader is assumed to be famil-
iar with logic programming [Doets, 1994] and EM learning
[McLachlan and Krishnan, 1997]. Our notation follows Pro-
log conventions. So we use ‘�’ for conjunction and ‘�’ for
disjunction. Variables begin with an upper case letter and
variables in clause heads are implicitly universally quantified.

2 PRISM modeling
Informally PRISM is Prolog augmented with probabilistic
built-ins and a parameter learning routine based on the gEM
algorithm (the reader is referred to [Sato and Kameya, 2001]
for a formal description of PRISM). The essence of PRISM
modeling is to write a logic program containing random
switches represented by the built-in predicate ������ �� where
�, the name of a switch and �, a result of random choice are
ground terms.10 The sample space for � viewed as a ran-
dom variable is declared by the predicate ��������. The
probability of each outcome of a switch, i.e. that of ������ ��
being true, is called a parameter. Parameters can be set by
the ��	 ���� predicate or learned from sample data. The
following PRISM program, which simulates a sequence of
Bernoulli trials, defines a distribution of ground atoms of the
form
����� �� where � is a list of outcomes of � coin tosses.

9We can see a variety of semantics in [Apt and Bol, 1994; Fitting,
2002].

10
��� is an acronym of ‘multi-ary random switch’.

target(ber,2). % observable event
values(coin,[heads,tails]). % outcomes
:- set_sw(coin,0.6+0.4). % parameters

ber(N,[R|Y]):-
N>0,
msw(coin,R), % probabilistic choice
N1 is N-1,
ber(N1,Y). % recursion

ber(0,[]).

Figure 1: Bernoulli program

When this program is loaded, the parameters of the switch
�
�� is set by ��	 ��: the probability of ����� is 0.6 and
that of 	���� is 0.4. There are three modes of execution
in PRISM, namely sampling execution, probability calcula-
tion, and learning. In sampling execution, this program is
executed like in Prolog except that the built-in �����
��� ��
binds probabilistically � to ����� or 	����. Probabilities
are calculated by using the ��

�� built-in. For example,
the query ?- � �
����� ������� 	������� ��

��� �� calcu-
lates the probability � of having 	���� after having �����.
Parameters are learned by using the built-in ������� which
takes a list of sample data as teacher data.

3 Three-valued distribution semantics
3.1 Two-valued distribution semantics
The Bernoulli program in Figure 1 is said to be positive be-
cause there is no negation in the program. For such posi-
tive PRISM programs, a formal semantics called distribution
semantics is proposed [Sato, 1995] that defines a �-additive
probability measure11 over the set of possible Herbrand in-
terpretations from which a distribution of each predicate is
derived. In the sequel ‘interpretation’ always means an Her-
brand interpretation.

The distribution semantics is a probabilistic generalization
of the standard least model semantics for definite clause pro-
grams. A positive PRISM program is written as �� � 	�
 ,
where 	 is a set of definite clauses and
 a set of ground ���
atoms to which a basic distribution ���� is given. Sampling
execution of �� w.r.t. a top-goal is considered as a partial ex-
ploration of the least model��	 �
 �� where
 � is a set of
true ��� atoms12 sampled from ����. In this semantics, each
ground atom is a binary random variable taking on t (true) or
f (false). As there are a countably infinite number of ground
atoms, we can use an infinite number of random variables in
a program. This fact, for example, makes it possible to model
PCFGs faithfully.

11We use ‘distribution’ and ‘probability measure’ interchangeably
for the sake of familiarity. In this paper the measurability of related
functions are assumed without proofs.

12An atom whose predicate symbol is ��� is called an ��� atom.

3.2 Negation and a new three-valued semantics
The moment negation is introduced, we are faced with numer-
ous problems concerning semantics and computation [Apt
and Bol, 1994; Fitting, 2002]. The biggest problem on the
semantic side is the lack of the canonical semantics: there ex-
ist many competing semantics for general programs. The pri-
mary computational problem is that whatever semantics we
may adopt, it is not computable in general.

We adopt Fitting’s three-valued semantics and extend it
to a three-valued probabilistic semantics following [Sato and
Kameya, 2001]. Fitting’s three-valued semantics is a fixed
point semantics similar to the least model semantics for pos-
itive programs but goals causing infinite computation are
not considered false but considered undefined. It is simpler
compared to other semantics such as stable model semantics
[Gelfond and Lifshcitz, 1988] and well-founded semantics
[Van Gelder et al., 1991]. Also it has an advantage that it
always gives a unique denotation to any general program.

Assume that our language � has countably many predicate
and function symbols for each arity. Especially it contains the
predicate symbol �����. A general PRISM program �� �
	 �
 is the union of a set 	 of general clauses and a set

 of ground ��� atoms such that no ��� atom appears as a
head in 	. ��� atoms are implicitly introduced by ��������
declarations in the program as their ground instantiations.

We associate a probability measure ���� over the set of
two-valued interpretations for
 as follows. Let � be a switch
name, �� � ���� � � � � ��� be a sample space for � declared
by ��������� ���� � � � � ����, and
�� � � � �
� are the parameters
satisfying

��

���
� � �. Let �� be a probability measure
defined over �� such that ������ �
� (� � � � �). We
define an infinite product measure � �

��� of ��s over ��
��� ��

���� �� where �� is the set of all switch names. Note
that � � ��

��� is considered a function such that ���� � ��.
Let �� be the set of interpretations for
 . We define a

mapping � � ��
��� �� �� such that ������� = true if

� � ������ �� and ���� � � for some ������ ��. Oth-
erwise ������� = false. Finally we define ���� as the
probability measure over �� induced by �. By construc-
tion it holds for the sample space ���� � � � � ��� for � that
����������� ���� � � �

���
��� 	 ���� � ��� � � ��

���
�� �
�

and ����������� ���� ������ ���� � 	 if �
� �.
A three-valued interpretation for � is a mapping which

maps a ground atom in � to t (true), f (false) or u (unde-
fined).13 We denote by ��� the set of three-valued interpre-
tations for �. Let �� � 	 �
 be a general PRISM pro-
gram. For � � �� , we denote by ����� the least fixed
point of the Fitting’s three-valued direct mapping
� [Fit-
ting, 2002] applied to the general program� � 	�
� where

� � �� 	 � 	� ��� �
�. We consider����� as a three-
valued interpretation for � where atoms not appearing in ��
receive u. Then����� is a mapping from �� to ���. �����
induces a �-additive probability measure ���� over ���. We
define ���� as the denotation of �� in our new three-valued
probabilistic semantics (denotational semantics). ���� is a

13The evaluation rule concerning u obeys Kleene’s strong three
valued logic. That is, �� � �, � � � � � � � � � if � � � �� �;
otherwise � � � � � if � � �.

probabilistic extension of Fitting’s three-valued semantics for
general logic programs. It is also a generalization of the two-
valued counter part ��� defined in [Sato and Kameya, 2001]
with a slight complication.14

4 Failure and log-linear models
Having established a probability measure ���� in Section 3,
we can now talk about various probabilities such as failure
probability on a firm mathematical basis. We show here how
failure in generative modeling leads to log-linear models.

4.1 Coin flipping with an equality constraint
Suppose we have two biased coins �
����� and �
���
�.
Also suppose we repeatedly flip them and record the outcome
only when both coins agree on their outcome, i.e. both heads
or both tails.15 The task is to estimate probabilities of each
coin showing heads or tails from a list of records such as
� ������������� ������	������ � � � �.

We generatively model this experiment by a PRISM pro-
gram 	�	
�� shown below where �����
������ �� instanti-
ates � to ����� or 	���� with probabilities specified else-
where. Assuming Prolog execution, ������� describes the
process of flipping two coins that fails if their outcomes
disagree. ������� means there is some output whereas
������� means there is no output. We denote by ��	
�����
the defined distribution.

failure :- not(success).
success :- agree(_).

agree(A):- % flip two coins and output
msw(coin(a),A), % the result only when
msw(coin(b),B), % both outcomes agree
A=B. % (equality constraint).

Figure 2: A general PRISM program 	�	
��

We say a logic program is terminating if an arbitrary
ground atom has a finite SLDNF tree [Doets, 1994]. Since
������ � 	����� �
 � is terminating for an arbitrary set
 � of
��� atoms, no atom in the least model defined by the Fitting’s

������

operator receives u (u implies an infinite computa-
tion). Consequently ��������������� ���������������� �
� holds for any parameter setting of ��� atoms. On the other
hand if some ground atom � receives u in our semantics, we
may not be able to compute ������� due to infinite com-
putation. We therefore focus on terminating programs in the
following so that no ground atom receives u and ������� is
computable for every ground atom �.

14Suppose that �	 is a definite PRISM program and let
 be a
ground atom. We have ����
 � �� � �����
 � �� but not
necessarily ����
 � �� � �����
 � ��. The reason is that when

 causes only an infinite loop, it is false in the least model semantics
whereas it is undefined in Fitting’s three-valued semantics.

15This model is a very simplified model of linguistic constraints
such as agreement in gender and number [Abney, 1997].

4.2 ML estimation for failure models
When we attempt ML estimation from observed data
such as � ������������� ������	������ � � � �, we must re-
call that our observation is conditioned on ������� be-
cause we cannot observe failure. Therefore the distribu-
tion to be used is a log-linear model �������� 	 �������� (=
�������������������������) in which the normalizing con-
stant ��������������� is not necessarily unity.

Generally speaking ML estimation of parameters for log-
linear models is computationally intractable. On the other
hand if they are defined by generative processes with failure
like �������� 	 �������� in our example, a simpler estima-
tion algorithm called the FAM algorithm is known [Cussens,
2001]. It is an EM algorithm regarding the number of occur-
rences of failure as a hidden variable. Recently, it is found
that it is possible to combine the FAM’s ability of dealing
with failure and the gEM’s dynamic programming approach
and an amalgamated algorithm called the fgEM algorithm is
proposed as a generic algorithm for EM learning of genera-
tive models with failure [Sato and Kameya, 2004]. It however
requires a positive program that describes how failure occurs
in the model. We next explain such a failure program can be
automatically synthesized by FOC (first-order compiler).

5 FOC for probabilistic logic programs
5.1 Compiling universally quantified implications
FOC (first-order compiler) is a logic program synthesis al-
gorithm which deterministically compiles negation, or more
generally16 universally quantified implications of the form

� �
��� �� � ���� ��� into definite clauses with disequal-
ity (disunification) constraints such as ����� � ����� [Sato,
1989]. Since what FOC does is deductive unfold/fold trans-
formation, the compiled code is a logical consequence of the
source program. More precisely we can prove from [Sato,
1989]

Theorem 1 Let � be a source program consisting of clauses
whose bodies include universally quantified implications.
Suppose � is successfully compiled into � � by FOC and � �

is terminating. Then for a ground atom �,
comp��� � � �resp.��� iff comp�� �� � � �resp.���.17

Figure 3 is a small example of negation elimination by
FOC. As can be seen, ‘�
	’ in the source program is com-
piled away and a new function symbol �� and a new predicate
symbol ��
���� ������� are introduced during the compi-
lation process. They are introduced to handle so called con-
tinuation. Usually the compilation adds disunification con-
straints but in the current case, they are replaced by a normal
unification using sort information � � 	 � �� �� � ����� de-
clared for FOC (not included in the source program). Since
the compiled program is terminating, Theorem 1 applies.

5.2 Modifying FOC for msw
FOC was originally developed for non-probabilistic logic
programs. When programs contain ��� atoms and hence

16
�
 � �
� false�

17comp��� denotes the union of � and some additional formulas
reflecting Prolog’s top-down proof procedure [Doets, 1994].

% source program
even(0).
even(s(X)):- not(even(X)).

% compiled program
even(0).
even(s(A)):- closure_even0(A,f0).
closure_even0(s(A),_):- even(A).

Figure 3: Compilation of ���� program

probabilistic however, compilation is still possible. Suppose
we compile a universally quantified implication

� ������� ����� � �����

into an executable formula where � and � are terms and �
is some formula such that � and � possibly contain �. Al-
though ����� is a probabilistic predicate, our (three-valued)
distribution semantics allows us to treat it as if it were a non-
probabilistic predicate defined by some single ground atom,
say ������ ���. We therefore modify FOC so that it complies18

the above formula into

������ ��� �\+�� � ��� � � �� ��

where � is a new variable. We can prove this compilation
preserves our three-valued semantics when the compiled pro-
gram is terminating using Theorem 1 (proof omitted). Fig-
ure 4 shows the compiled code produced by the modified
FOC for ������� in the 	����� program in Figure 2.

failure:- closure_success0(f0).
closure_success0(A):-closure_agree0(A).
closure_agree0(_):-

msw(coin(a),A),
msw(coin(b),B),
\+A=B.

Figure 4: The compiled program for 	����� (part)

Because this program is terminating for any sampled ���

atoms, it exactly computes ����������������.
In what follows we show two examples of gener-

ative modeling with failure. They are available at
�		� � ����	
� �������	�	����������������.

6 Dieting professor
In this section, we present a new type of HMMs: HMMs with
constraints which may fail if transition paths or emitted sym-
bols do not satisfy given constraints. Here is an example.

18We here assume that
 is instantiated to some switch name at
execution time.

Suppose there is a professor who takes lunch at one of
two restaurants ‘��’ and ‘��’ everyday and probabilistically
changes the restaurant he visits. As he is on a diet, he tries to
satisfy a constraint that the total calories for lunch in a week
are less than 4000 calories. He probabilistically orders pizza
(900) or sandwich (400) at ��, and hamburger (500) or sand-
wich (500) at �� (numbers are calories). He records what he
has eaten in a week like ��� �� �� �� �� �� �� and preserves the
record if and only if he has succeeded in satisfying the con-
straint. We have a list of the preserved records and we wish
to estimate his behavioral probabilities from it.

r1r0

p,s h,s

Figure 5: An HMM model for probabilistic choice of lunch

The behavior of the dieting professor is modeled by a con-
strained HMM described above and coded as a PRISM pro-
gram below where failing to satisfy the calorie constraint on
the seventh day causes failure thereby producing no output.

failure:- not(success).
success:- hmmf(L,r0,0,7).

hmmf(L,R,C,N):- N>0,
msw(tr(R),R2), msw(lunch(R),D),
(R == r0, % pizza:900, sandwich:400
(D = p, C2 is C+900
; D = s, C2 is C+400)

; R == r1, % hanburger:400, sandwich:500
(D = h, C2 is C+400
; D = s, C2 is C+500)),

L=[D|L2], N2 is N-1,
hmmf(L2,R2,C2,N2).

hmmf([],_,C,0):- C < 4000.

Figure 6: Constrained HMM for the dieting professor

We verified the correctness of our modeling empirically by
checking if the sum of probabilities of ������� and �������
becomes unity. We used the ‘original value’ given in Table 1
as checking parameters.

?- prob(success,Ps),prob(failure,Pf),
X is Ps+Pf.

X = 1.0
Pf = 0.348592596784
Ps = 0.651407403216

After checking that the sum is unity, we repeated learn-
ing experiments. In an experiment we generated 500 samples
by the program with the same parameter values used in the
checking, and then let the program estimate them using the

fgEM algorithm. Table 1 shows averages of 50 experiments
where numbers should be read that for example, the prob-
ability of ����	������ ��� is originally 	�� and the average
of estimated ones is 	�
��. Estimated parameters look close
enough to the original ones.

sw name original value average estimation
tr(r0) r0 (0.7) r1 (0.3) r0 (0.697) r1 (0.303)
tr(r1) r1 (0.7) r0 (0.3) r1 (0.701) r0 (0.299)

lunch(r0) p (0.4) s (0.6) p (0.399) s (0.601)
lunch(r1) h (0.5) s (0.5) h (0.499) s (0.501)

Table 1: EM learning

We would like to emphasize that the computational strength
of our approach is that the probability of ������� is com-
puted in a dynamic programming manner with no additional
cost just like ordinary HMMs thanks to the tabling mecha-
nism of PRISM [Zhou et al., 2004].

7 Tic-tac-toe game
This example models the tic-tac-toe game by using negation
and recursion. The purpose of this example is to illustrate
‘EM learning through negative goals’, which has never been
attempted before to our knowledge. In tic-tac-toe, the ‘o’
player has to place three ‘o’s in a row, horizontally, vertically,
or diagonally on the board of a 9 by 9 board before the oppo-
nent, the ‘x’ player, does so with ‘x’. The program in Figure 7
models the game. The basic idea of modeling is expressed by
the following clause:

win(X):- your_opponent(X,Y),not(win(Y))

which states that unless your opponent wins, you
win (or draw). In Figure 7, ‘*’ designates an

failure :- not(success).
success :-
Ini_Board = [[*,*,*],[*,*,*],[*,*,*]],
tic_tac_toe(o,Ini_Board).

tic_tac_toe(Turn,Board):-
select_move(Turn,Board,Move),
next_board(Turn,Board,Move,N_Board,S),
(S \== continue
; S == continue,

opposite_turn(Turn,N_Turn),
opponent_turn(N_Turn,N_Board)).

opponent_turn(N_Turn,N_Board):-
not(tic_tac_toe(N_Turn,N_Board)).

Figure 7: Tic-tac-toe model

empty cell. The intended meaning of ������� is
‘o’ wins or ‘o’ draws, so ������� fails if ‘x’ wins.
�����	 �
�������� �
���� �
��� probabilistically selects
and returns the next move (�
��), given ���� and �
���,

after which �� 	

��������� �
���� �
��� ! �
���� "�
judges the next board (! �
���) and returns one of the
outcomes (
 ���� ����� ���� �
�	����) through ". When
compiled by FOC, this program yields a terminating pro-
gram, and hence the probabilities of ������� and �������

are correctly computed by the compiled program. 19

Negative recursion in logic programs causes well-known
difficulties from the semantics to the implementation even in
the non-probabilistic case. Nevertheless, this example shows
that the combination of the three-valued probabilistic seman-
tics and compilation by FOC of general PRISM programs
offers a promising approach to dealing with negation in the
probabilistic context.

8 Related work and conclusion

We only discuss related work combining negation and proba-
bility in the framework of logic programming due to the space
limitation and other work related to stochastic logic program-
ing, Bayesian networks and Markov random field is omit-
ted. The most relevant one seems the formalism proposed
by Ngo and Haddawy [Ngo and Haddawy, 1997]. In their
approach negation is allowed in a program but restricted to
non-probabilistic goals. Semantics is defined locally in rela-
tion to a given problem. So no global semantics such as a
probability measure over the set of possible Herbrand inter-
pretations is given. The problem of parameter learning is not
discussed either. Poole allows negation in his ICL (indepen-
dent choice logic) programs and probabilities can be com-
puted through negative goals [Poole, 1997]. Stable model
semantics is adopted as global semantics but the problem of
learning is left open.

In this paper we first tackled the problem of defining
declarative semantics for probabilistic general logic programs
that contain negative goals, and have proposed a new three-
valued semantics which is unconditionally definable for any
programs unlike other approaches. We then tackled the sec-
ond problem, namely parameter learning. We have shown
how parameter learning is made possible by negation elim-
ination through the modified FOC (first-order compiler) that
preserves the new semantics. As a result, constraints that may
cause failure can now be utilized as building blocks of even
more complex symbolic-statistical models such as generative
HPSG models which is to be reported elsewhere.

References

[Abney, 1997] S. Abney. Stochastic attribute-value gram-
mars. Computational Linguistics, 23(4):597–618, 1997.

[Apt and Bol, 1994] K.R. Apt and R.N. Bol. Logic program-
ming and negation: A survey. Journal of Logic Program-
ming, 19/20:9–71, 1994.

19As this program merely simulates moves until ‘o’ wins or draws
without recording them, it is not usable to train parameters from the
recorded moves of a game. We therefore wrote another program that
can generate a list of moves through negative goals and conducted
an EM learning experiment and confirmed its success.

[Cussens, 2001] J. Cussens. Parameter estimation in stochas-
tic logic programs. Machine Learning, 44(3):245–271,
Sept. 2001.

[Doets, 1994] K. Doets. From Logic to Logic Programming.
The MIT Press, 1994.

[Fitting, 2002] M. Fitting. Fixpoint Semantics for Logic Pro-
gramming, A Survery. Theoretical Computer Science,
278(1-2):25–51, 2002.

[Gelfond and Lifshcitz, 1988] M. Gelfond and V. Lifshcitz.
The stable model semantics for logic programming. pages
1070–1080, 1988.

[McLachlan and Krishnan, 1997] G. J. McLachlan and
T. Krishnan. The EM Algorithm and Extensions. Wiley
Interscience, 1997.

[Ngo and Haddawy, 1997] L. Ngo and P. Haddawy. Answer-
ing queries from context-sensitive probabilistic knowledge
bases. Theoretical Computer Science, 171:147–177, 1997.

[Poole, 1997] D. Poole. The independent choice logic for
modeling multiple agents under uncertainty. Artificial In-
telligence, 94(1-2):7–56, 1997.

[Sato and Kameya, 1997] T. Sato and Y. Kameya. PRISM:
a language for symbolic-statistical modeling. In Proceed-
ings of the 15th International Joint Conference on Artifi-
cial Intelligence (IJCAI’97), pages 1330–1335, 1997.

[Sato and Kameya, 2001] T. Sato and Y. Kameya. Parameter
learning of logic programs for symbolic-statistical model-
ing. Journal of Artificial Intelligence Research, 15:391–
454, 2001.

[Sato and Kameya, 2004] T. Sato and Y. Kameya. A dy-
namic programming approach to parameter learning of
generative models with failure. In Proceedings of ICML
2004 workshop on Learning Statistical Models from Rela-
tional Data (SRL2004), 2004.

[Sato, 1989] T. Sato. First order compiler: A deterministic
logic program synthesis algorithm. Journal of Symbolic
Computation, 8:605–627, 1989.

[Sato, 1995] T. Sato. A statistical learning method for logic
programs with distribution semantics. In Proceedings of
the 12th International Conference on Logic Programming
(ICLP’95), pages 715–729, 1995.

[Van Gelder et al., 1991] A. Van Gelder, K.A. Ross, and J.S.
Schlipf. The well-founded semantics for general logic pro-
grams. The journal of ACM (JACM), 38(3):620–650, 1991.

[Zhou et al., 2004] Neng-Fa Zhou, Y. Shen, and T. Sato.
Semi-naive Evaluation in Linear Tabling . In Proceed-
ings of the Sixth ACM-SIGPLAN International Conference
on Principles and Practice of Declarative Programming
(PPDP2004), pages 90–97, 2004.

