
 

Abstract 
This paper describes COMET, a collaborative in-
telligent tutoring system for medical problem-
based learning.  COMET uses Bayesian networks 
to model individual student knowledge and activ-
ity, as well as that of the group.  Generic domain-
independent tutoring algorithms use the models to 
generate tutoring hints.  We present an overview of 
the system and then the results of two evaluation 
studies.  The validity of the modeling approach is 
evaluated in the areas of head injury, stroke and 
heart attack. Receiver operating characteristic 
(ROC) curve analysis indicates that, the models are 
accurate in predicting individual student actions. 
Comparison of learning outcomes shows that stu-
dent clinical reasoning gains from our system are 
significantly higher than those obtained from hu-
man tutored sessions (Mann-Whitney, p = 0.011). 

1 Introduction 
The transformation from medical student to physician is a 
gradual one, requiring the assimilation of vast amount of 
knowledge as well as the development of clinical-reasoning 
skills. Clinical reasoning is the cognitive process by which 
the information contained in a clinical case is synthesized, 
integrated with the physician’s knowledge and experience, 
and used to diagnose or manage the patient’s problem 
[Newble et al., 1994]. Problem-based learning (PBL) has 
been introduced as an alternative to traditional didactic 
medical education to teach clinical-reasoning skills at the 
early stages of medical education. PBL is designed to chal-
lenge learners to build up their knowledge and develop ef-
fective clinical-reasoning skills around practical patient 
problems. PBL instructional models vary but the general 
approach is student-centered, small group, collaborative 
problem solving activities [Barrows, 1986]. The main ar-
guments for using collaborative problem solving in medical 
PBL include the wider range of ideas generated and the 
higher quality of discussion that ensues.  In addition, stu-
dents obtain training in the skill of consultation and group 
clinical problem solving, which are important for the suc-
cessful practice of clinical medicine.  But effectively im-
plementing PBL in the clinical curriculum is difficult due to 

the lack of standards for PBL tutoring [Das et al., 2002] and 
a lack of properly trained tutors.  In addition, effective PBL 
requires the tutor to provide a high degree of personal atten-
tion to the students.  In the current academic environment 
where resources are becoming increasingly scarce and costs 
must be reduced, providing such attention becomes increas-
ingly difficult.  This is exacerbated by the fact that medical 
school faculty, in particular, often have limited time to de-
vote to teaching.  As a consequence, medical students often 
do not get as much facilitated PBL training as they might 
need or want.   

There has been increasing interest in application of intel-
ligent technologies to medical training to provide rich envi-
ronments for maximizing learning while minimizing risks to 
patients, until sufficient competency is established. The ma-
jority of the work in intelligent medical training system has 
focused on particular domains, such as Radiology [Sharples 
et al., 2000] or Pathology [Crowley and Medvedeva, 2003] 
for training students in feature perception and disease classi-
fication.  Little or no work has addressed providing a gen-
eral domain-independent framework for intelligent medical 
tutoring and no work has addressed intelligent medical tu-
toring in group settings. 

We have developed a collaborative intelligent tutoring 
system for medical problem-based learning called COMET.  
COMET uses Bayesian networks to model individual stu-
dent knowledge and activity, as well as that of the group.  It 
uses generic tutoring algorithms applied to the models to 
generate tutorial hints to guide problem solving activity.  In 
previous work [Suebnukarn and Haddawy, 2004] we pre-
sented a basic Bayes net student model and details of the 
tutoring algorithms.  We also presented results of a study 
showing that the hints generated by COMET agree with 
those of a majority of human tutors.  In this paper we pre-
sent a new, more expressive Bayesian network student 
model, along with an ROC analysis evaluating of the 
model’s accuracy.  We also evaluate the overall effective-
ness of COMET in imparting clinical reasoning skills to 
medical students by comparing clinical reasoning exam 
scores of COMET tutored students to those of human tu-
tored students. 
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2 Medical Problem-Based Learning 
Problem-based learning (PBL) can be described as “the 
learning that results from the process of working toward the 
understanding or resolution of a problem” [Barrows, 1986]. 
PBL is typically carried out in three phases: (1) Problem 
analysis: In group discussion the students evaluate the pa-
tient problem presented to them exactly as they would a real 
patient, attempting to determine the possible underlying 
anatomical, physiological, or biochemical dysfunctions and 
to enumerate all possible causal paths (hypotheses and their 
causal relations) that would explain the progression of the 
patient’s problems. (2)  Self-directed study: In this phase, 
students work outside the tutorial session, using any relevant 
learning resources, e.g. literature, laboratories, specialists, to 
address any open issues identified in the first phase. (3) Syn-
thesis and application of newly acquired information: The 
students analyze data and wrap up the problem collabora-
tively after they return from their self-study period.  

One of the main issues in PBL is the role of the tutor.  
Like a good coach, a tutor needs enough command of what-
ever the learners are working on to recognize when and 
where they most need help [Das et al., 2002]. The ideal tu-
tor should be an expert in both learning content and learning 
process, which is rare to find among human tutors. The tutor 
intervenes to as small an extent as possible, giving hints 
only when the group appears to be getting stuck or off track.  
In this way, the tutor avoids making the students dependent 
on him for their learning. 

3 A Collaborative Medical Tutor  

3.1 Conceptual Framework 
COMET is designed to provide an experience that emulates 
that of live human-tutored medical PBL sessions as much as 
possible while at the same time permitting the students to 
participate collaboratively from disparate locations. COMET 
incorporates a multi-modal interface that integrates text and 
graphics so as to provide a rich communication channel be-
tween the students and the system, as well as among students 
in the group (Fig. 1). Students collaboratively create the prob-
lem solution on the hypothesis board, shown at the bottom of 
Fig. 1.  Typically each student works from a separate com-
puter. COMET can currently support PBL problem analysis 
in the domains of Head injury, Stroke and Heart attack. Note 
that these three domains are quite different since the knowl-
edge used to reason about head injury is primarily anatomical, 
while that used to reason about stroke and heart attack is pri-
marily physiological.  Furthermore, the patho-physiology of 
the latter two diseases is more dynamic.  

Generating appropriate tutorial actions in COMET re-
quires a model of the students’ clinical reasoning for the 
problem domain. This modeling task is necessarily wrought 
with uncertainty since we have only a limited number of 
observations from which to infer each student’s level of 
understanding. Thus we have chosen to use Bayesian net-
works as our modeling technique. 

The system is implemented as a Java client/server combi-
nation, which can be used over the Internet or local area net-
works and supports any number of simultaneous PBL groups.  

The system implementation is modular and the tutoring 
algorithms are generic so that adding a new scenario requires 
only adding the appropriate model representing how to solve 
a particular case (domain clinical reasoning model). The stu-
dent clinical reasoning model, which is a probabilistic over-
lay of the domain clinical reasoning model, is then con-
structed during runtime by instantiating the nodes that repre-
sent the knowledge and activity of an individual student. The 
architecture of COMET differs from that of most ITS’s in that 
the domain model and student model are embodied in one 
representation. The domain model is contained in the part of 
the structure of the network that represents the hypotheses 
and the cause-effect relations among them.  The student 
model is contained in the part of the network that represents 
how the hypotheses are derived and in the network’s prob-
abilities.  The probabilities do not represent the likelihood of 
occurrence of the hypotheses but rather the likelihood that a 
student will be able to create the hypotheses.   

 
Figure 1. COMET student interface. 

3.2 Domain and Student Clinical Reasoning Model 
We built the domain clinical reasoning model based on the 
process of hypothesis generation in problem-based learning. 
Consider, for example, the heart attack scenario taken from 
a PBL session at Thammasat University Medical School. 
 “Mr. C, a 56-year-old who was diagnosed as having es-
sential hypertension four years ago, is complaining of chest 
pain which feels like indigestion. You have noticed that he 
is mildly obese, pale, clammy and sweating profusely…” 

Here students must enumerate possible hypotheses to ex-
plain why the patient is experiencing chest pain. Figure 2 is 
a photograph of the white board of the group PBL session, 
showing a directed acyclic graph representing cause-effect 
relationships among hypotheses.  This graph represents the 
problem solution developed by the students. Since we 
would like to reason about the state of knowledge of each 
student concerning the solution, this graph is our starting 
point for the student model. The hypothesis graph can be 
conveniently represented as a Bayesian network since 



 

Bayesian networks are also directed acyclic graphs.  In addi-
tion, Bayesian networks can represent our uncertainty about 
the state of knowledge of the students. 

 
Figure 2. A photograph of the white board after a PBL session at 
Thammasat University Medical School. The graph shows hypothe-
ses with arrows indicating cause-effect relations among them. 
(Note: Some hypotheses are written in Thai.) 

The BN structure contains two types of information: (1) the 
hypotheses and the causal links of the problem solution (Fig. 
3, right half) and (2) how students derive the hypotheses (Fig. 
3, left half). We represent the hypothesis structure following 
the model of Feltovich and Barrows [1984], which defines 
three categories of illness features:  enabling conditions, 
faults, and consequences. Enabling conditions are illness fea-
tures associated with the acquisition of illness (e.g., compro-
mised host factors, unusual travel, or hereditary factors). 
Faults are the major real malfunctions in illness (e.g., direct 
trauma, invasion of tissue by pathogenic organisms, or inade-
quate blood supply). Consequences are the secondary conse-
quences of faults within the organism, and generally comprise 
different types of signs and symptoms, e.g., chest pain, 
breathlessness, or tachycardia.  In Figure 3 (right half), we 
have five possible faults associated with the single conse-
quence chest pain: Myocardial infarction, Angina, Muscu-
loskeletal injury, Gastrointestinal disorder, and Stress. 
Atherosclerosis is the enabling condition of Myocardial in-
farction and Angina. The remaining hypothesis nodes are 
consequences of Myocardial infarction.  Each hypothesis 
node has parent nodes, which have a direct casual impact on 
it. For example, Right heart failure has parents Pulmonary 
congestion and Myocardial infarction.  All hypothesis nodes 
have two states, indicating whether or not the student knows 
that the hypothesis is a valid hypothesis for the case.  

In the PBL sessions, the students create the hypotheses as 
well as the causal links between them (Fig. 2). We would like 
to be able to reason about the probability that students know 
the correct causal links. But in a Bayes net, random variables 
are represented with nodes.  So we use link nodes to represent 
the causal links between hypotheses.  For every hypothesis 
that is a direct cause of another hypothesis (e.g.  Atheroscle-
rosis and Myocardial infarction), we have a node (e.g 
Link_14) representing the causal link between them.  The two 
hypothesis nodes (Atherosclerosis, Myocardial infarction) are 
the parents of the link node. The intuition is that the link can-

not be created unless both hypotheses are created first. Each 
link node has two states, indicating whether or not the student 
creates a causal link between two hypotheses. 

The derivation of hypotheses (Fig. 3, left half) is represented 
in terms of three kinds of nodes: goals, general medical knowl-
edge, and apply actions.  Every hypothesis node has a unique 
Apply node as one of its parents. The Apply node represents the 
application of a medical concept to a goal in order to derive the 
hypothesis.  For example the Apply_13 node indicates that the 
student is able to use knowledge of the Vessel Lumina occlu-
sion medical concept to infer that Myocardial infarction is a 
consequence of Atherosclerosis.  Each hypothesis node thus 
has a conditional probability table specifying the probability 
of the hypothesis being known conditioned on whether the 
parent hypotheses are known and whether the student is able 
to apply the appropriate piece of knowledge to determine the 
cause-effect relationship.  The conditional probability tables 
for the Apply nodes are simple AND gates.   

Our BN student model is similar to the student model used 
by Conati, et al [2002].  Their model includes five types of 
nodes: Context-Rule, Rule-Application, Fact, Goal, and Strat-
egy.  The correspondence between their node types and ours 
is: Context-Rule = Concept, Rule-Application = Apply, Fact 
= Hypothesis, and Goal = Goal.  Strategy nodes, which repre-
sent different correct solutions to a problem, are implicitly 
encoded in our model by the fact that students can enumerate 
the causal hypothesis structure in any order.  Our model con-
tains causal links among hypotheses, which are not present in 
their model.  The reason for this is that in our medical do-
mains a problem solution is represented by the hypotheses 
and causal links among them, while in their physics domains 
a problem solution is represented by a sequence of rule appli-
cations and the derived facts. 

For each problem scenario, we consulted medical text-
books and expert PBL tutors to obtain the hypotheses, the 
causal relations among them, the goals, and the medical 
concepts used to derive the hypotheses. The conditional 
probability tables for each resulting network were obtained 
by learning from data obtained from transcripts of PBL ses-
sions. The data for this study consisted of tape recordings 
and photographs of tutorial sessions for the head injury, 
stroke and heart attack scenarios at Thammasat University 
Medical School.  A total of 15 groups of third year medical 
students were involved in this study. Each group, consisting 
of eight students with different backgrounds, was presented 
with the head injury, stroke and heart attack cases and asked 
to construct possible hypotheses for the case, under the 
guidance of a tutor.  After the sessions the tape and the re-
sults on the whiteboard were analyzed to determine whether 
or not each goal, concept, hypothesis, and link was men-
tioned.  We used the EM learning algorithm provided by the 
HUGIN Researcher software to learn the conditional prob-
abilities of each node [Lauritzen 1995].   

3.3 Individual and Collaborative Student Clinical 
Reasoning Modeling 

The domain clinical reasoning model is instantiated for each 
student by entering that student’s medical background 



 

knowledge as evidence. For example, if a student has a 
background in Thoracic anatomy, we would instantiate the 
Thoracic organ node.  Since all students have basic knowl-
edge in Anatomy, Physiology and Pathology before they 
encounter the PBL tutorial sessions, we make the assump-
tion that once a hypothesis in the domain model is created 
by one student in the group, every student knows that hy-
pothesis.  So as hypotheses are created, they are instantiated 
in each student model.   

Following commonly accepted practice in medical PBL, 
we assume that students should and generally do enumerate 
the possible hypotheses by focusing sequentially on the 
various causal paths in the domain, linking enabling condi-
tions with faults and consequences.  So for each student, we 
must determine what causal path he is reasoning along, 
which we do by identifying the path of highest probability 
in that student’s model.  This is computed as the joint prob-
ability of the nodes along the path. The most likely current 
reasoning path for each student is path that gives the maxi-
mum joint probability. Since the students work in a group, it 
is also necessary to identify a causal path that can be used to 
focus group discussion, particularly when the discussion 
seems to be diverging in different directions.  We would like 
to identify a path that has much of the attention of much of 
the group and has at least one member whose attention is 
focused on that path. We identify a set of candidate paths by 
taking the most likely path for each student.  This guaran-
tees that each candidate path has at least one student cur-
rently focused on it.  We then compute the sum of the prob-
abilities of each candidate path over all students and select 
the path with the highest sum.  This gives us the candidate 
path with the highest average attention over all students. 

3.4 Generating Tutorial Hints 
Our automated tutor takes on the role of guiding the tutorial 
group to construct possible hypotheses for the case by the 
use of open-ended questions.  From our study of the tutoring 
session transcripts, we identified and implemented seven 
hint strategies commonly used by experienced human tutors:  

(1) Focus group discussion: Members of the group may 
suggest various valid hypotheses without focusing on any 
given causal path.  When such lack of focus becomes appar-
ent, COMET intervenes by directing the students to focus 
on one of the hypotheses in the group path.  (2) Promote 
open discussion: If a student proposes a hypothesis that is 
not on the current group reasoning path, COMET provides 
positive feedback by encouraging the student to relate the 
hypothesis to the current focus of discussion.  (3) Deflect 
uneducated guessing: If a student creates an incorrect causal 
link, COMET points this out and encourages the student to 
correct the error.  (4) Avoid jumping critical steps: If a stu-
dent creates a link that jumps directly from one hypothesis 
to a down-stream consequence, leaving out intermediate 
hypotheses, COMET asks the student for the more direct 
consequences.  (5) Address incomplete information: Once 
the students have completed elaborating all hypotheses on 
the group path, COMET identifies another path for them to 
work on.  (6) Refer to experts in the group: If after COMET 
provides a general and then a more specific hint, the stu-
dents still do not respond correctly, COMET determines the 
student most likely to know the answer and refers directly to 
him.  (7) Promote collaborative discussion: If one student 
dominates the discussion, COMET asks for input from the 
other students.  If a student does not contribute after a cer-
tain number of hypotheses have been mentioned, COMET 
solicits input from that student.  

All strategies except strategies 6 and 7 have general and 
specific versions. COMET first gives a general hint using 
the parent goal node of the hypothesis that it has determined 
the students should focus on, and if there is no student re-
sponse or an incorrect response, the more specific parent 
medical concept node is used. If the students can still not 
come up with the hypothesis of interest, COMET refers di-
rectly to the student in the group most likely to know the 
answer.  If this doesn’t work, COMET identifies this as a 
learning objective for study outside the session.   

 We developed algorithms to generate each of these types 
of hints, using as input the interaction log and the Bayesian 
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Figure 3. Part of the Bayesian Network clinical reasoning model of the heart attack scenario. The complete network contains 194 
nodes. The model contains five types of nodes: goal, concept, apply, hypothesis, and link. 



 

network student models. All strategies except strategy 7 use 
both the structure and the probabilities of the Bayes net 
models. Strategy 7 uses only a count of the number of inputs 
from each student. Strategies 1, 2, 5 make use of the group 
reasoning path discussed in the previous section. The fol-
lowing transcript shows the interaction with the system after 
the students read the heart attack problem scenario, de-
scribed in Section 3.2. The system selects hint strategies and 
content based on the student input on the hypothesis board.  
Students: Gastrointestinal disorder, Smoking, Hyperten-
sion, Angina, Myocardial infarction, Chest pain (Students in 
the group gradually create six hypotheses on the board, 
while analyzing the problem.) 
Tutor: What is the consequence of Myocardial infarction? 
(Strategy 1: COMET focuses group discussion by identify-
ing which causal path the group should focus on, finding the 
highest probability non-mentioned node along the path (Left 
heart failure), and providing a hint using its parent goal 
node (Consequence of Myocardial infarction).) 
Student: Cardiac output decreased (Cardiac output de-
creased is a node along the group reasoning path but not 
the node that COMET wants the group to focus on.) 
Tutor: Think about decrease in myocardial contractility. 
(Strategy 1: COMET gives the next hint using the medical 
concept parent node of Left Heart Failure.) 
Student: Right heart failure (Right heart failure is a node 
along the group reasoning path but not the node that 
COMET wants the group to focus on.) 
Tutor: It seems we have a problem. Nida, can you help the 
group? (Strategy 7: Nida is called on since she has the 
highest probability of knowing the Left heart failure node 
among the students.) 

4 Evaluation 

4.1 Evaluation of the Student Model 
In order to determine the accuracy of the model, we com-
pared the probabilities of hypotheses and causal links from 
the student model with actual student actions considered as 
a “gold standard”. We recruited 15 second-year medical 
students from Thammasat University Medical School. That 
is, they had not yet had PBL experience in Head injury, 
Stroke, or Heart attack. Stratified random sampling was 
applied to divide the students into 3 groups based on their 
background knowledge. Students were asked to answer pre-
test questions to determine their background knowledge. 
This information was used to instantiate the general student 
model for each individual student. Students participated 
individually in the problem solving sessions on head injury, 
stroke, and heart attack with COMET.  Each student was 
asked to enumerate hypotheses and the causal links without 
any help from the COMET tutor. The student actions of 
creating hypotheses and their links served as a gold standard 
for comparison with the predicted probabilities from the 
Bayesian network student model.   

Results 
To determine whether our student models are accurate in 
predicting student actions, we evaluated them by means of 
receiver operating characteristic (ROC) curve analysis. The 
area under the curve (AUC) represents an overall measure-
ment of performance of the student model, with 1.0 a per-
fect test and 0.5 representing a model with no discriminating 
capacity. 

Table 1 shows the ROC curve analysis of the student 
models for the Head injury, Stroke, and Heart attack scenar-
ios. There were more false positive cases in the Stroke sce-
nario than in the others, since the student model for the 
Stroke scenario was built from students who had already 
studied Cerebrovascular knowledge from the Head injury 
scenario, while in this study, we recruited students who had 
not yet studied any of the three scenarios. Averaging results 
over all scenarios shows high accuracy in predicting both 
hypotheses and causal links.   

Table 1. ROC analysis showing AUC for three scenarios 

Prediction Scenarios 
Hypotheses Causal links 

Head injury 0.909 0.898 
Stroke  0.765 0.838 
Heart attack 0.868 0.905 
All 0.832 0.900 

4.2 Evaluation of Student Clinical Reasoning Gains 
To evaluate the overall impact of the system on student 
learning, we designed a study to test the hypothesis that a 
COMET tutorial will result in similar student clinical rea-
soning gains to those obtained from a session with an ex-
perienced human PBL tutor.  

We compared three groups of students tutored by 
COMET with three other groups of students tutored by ex-
perienced human tutors. The study had a pre/post test con-
trol group design. All students were assessed on their clini-
cal reasoning before and after the PBL tutorial session on 
heart attack and stroke to determine the reasoning gains for 
each individual student.  

We used the Clinical Reasoning Problem (CRP) approach 
for clinical reasoning assessment [Groves et al., 2002]. Each 
CRP consisted of a clinical scenario that was vetted for clini-
cal accuracy and realism by a specialist physician. Four cases 
in the pre-test set measured each student’s initial ability to 
solve the problems. Four other post-test cases measured their 
ability to generalize the clinical reasoning acquired from tuto-
rial session to the new related cases. Participants were asked 
to nominate the two diagnoses they considered most likely, to 
list the features of the case that they regarded as important in 
formulating their diagnoses, and to indicate whether these 
features were positively or negatively predictive. To establish 
reference scores, ten volunteer general practitioners (GPs) 
were asked to complete both sets of CRPs. 

Results 
There were no statistically significant differences between 
pre- and post-test scores obtained from the GPs, indicating 



 

that the pre- and post-tests were of approximately equal 
difficulty (Table 2).  The GPs’ scores varied from 88.20 to 
91.50 indicating that the questions were not trivial. Reliabil-
ity, the measure of the reproducibility of a test, was meas-
ured using Cronbach’s alpha. Cronbach’s alpha for pre-and 
post-test student scores were 0.901 and 0.921 respectively. 
A reliability coefficient of 0.80 or higher is commonly con-
sidered as acceptable.  

Table 2. Mean score for all CRPs (CRPs 1.1, 1.2, 2.1, 2.2 are chest 
pain cases.  CRPs 1.3, 1.4, 2.3, 2.4 are stroke cases.) 

Student’s score (SD) CRPs GP’s score 
(SD) COMET Human tutor 

1.1 88.70 (2.45) 34.67 (4.51) 34.00 (2.70) 
1.2 91.50 (2.46) 34.00 (3.27) 34.78 (2.73) 
1.3 88.20 (1.69) 37.72 (2.21) 38.61 (3.39) 

 

1.4 89.80 (3.49) 39.17 (2.18) 38.22 (3.54) 
2.1 89.50 (3.37) 62.28 (2.11) 58.11 (1.94) 
2.2 87.70 (4.42) 63.94 (1.95) 58.67 (2.40) 
2.3 90.60 (2.63) 64.06 (1.94) 65.00 (2.74) 

 

2.4 89.50 (3.27) 65.56 (1.98) 64.05 (2.39) 

Table 3 shows that there were no statistically significant 
differences between pre-test mean scores of the COMET 
and human tutored groups. The post-test mean scores were 
significantly higher than the pre-test mean scores in both 
COMET and human tutored groups (Wilcoxon, p = 0.000), 
indicating that significant learning occurred. But the average 
post-test score for the COMET groups (64.96) was signifi-
cant higher than that obtained for the human tutored groups 
(60.46) (Mann-Whitney, p = 0.011), indicating that students 
were learning more in the COMET sessions than in the hu-
man tutored sessions.  

Table 3. Mean CRP score for each cohort 

Mean score (SD) Cohort 
Pre-test Post-test 

COMET (1) 36.38 (3.45) 66.12 (3.38) 
COMET (2) 37.00 (4.11) 64.33 (2.78) 
COMET (3) 35.54 (4.24) 65.42 (3.10) 
COMET (all) 36.31 (3.90) 64.96 (3.08) 
Human tutor (1) 36.42 (2.95) 60.96 (2.49) 
Human tutor (2) 37.42 (2.37) 62.63 (1.99) 
Human tutor (3) 35.38 (3.42) 58.79 (2.68) 
Human tutor (all) 36.40 (3.68) 60.46 (2.40) 

5 Discussion 
The results showing that clinical reasoning gains for 
COMET tutored students are higher than those for human 
tutored students were unexpected.  This is particularly true 
in light of our earlier study showing that on average 74% of 
human tutors used the same hint strategy and content as 
COMET [Suebnukarn and Haddawy, 2004].  We believe the 
explanation lies primarily in the 26% disagreement.  Human 
tutors often give up after providing a general hint, jumping 
right to identifying the hypothesis as a learning objective. In 
contrast, COMET is more relentless in pushing the students, 

always following the sequence of general hint, specific hint, 
referring to expert, and finally identifying as a learning ob-
jective.   It is generally agreed that students should generate 
as many hypotheses as possible in a PBL session, leaving 
only the truly difficult issues as learning objectives. 
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