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Abstract

This paper proposes to enhance similarity-based
classification by virtual attributes from imperfect
domain theories. We analyze how properties of the
domain theory, such as partialness and vagueness,
influence classification accuracy. Experiments in
a simple domain suggest that partial knowledge is
more useful than vague knowledge. However, for
data sets from the UCI Machine Learning Reposi-
tory, we show that vague domain knowledge that in
isolation performs at chance level can substantially
increase classification accuracy when being incor-
porated into similarity-based classification.

1 Introduction
One of the most prominent challenges in machine learning
is to identify appropriate features for representing instances,
since learning performance depends heavily on the features
used. Particularly, the performance of similarity-based classi-
fication degrades with the number of irrelevant features[Grif-
fiths and Bridge, 1996]. It is also known from work on con-
structive induction (CI) that adding features can improve clas-
sification accuracy[Aha, 1991]. While CI is a bottom-up ap-
proach, this paper proposes a top-down approach on iden-
tifying abstract features. The focus of CI was mainly on
logical and rule-based processes, whereas this paper shows
how additional features can extend similarity measures for
similarity-based classification.

The main contribution of this paper is to show that ad-
ditional features can be derived from domain theories that
are imperfect. This will alleviate the knowledge acquisi-
tion bottleneck, as it reduces the requisites of obtaining ex-
pert knowledge. Although similarity-based classificationis
only used in domains where no perfect domain theories ex-
ist, usually there is imperfect domain knowledge and isolated
chunks of knowledge[Aamodt, 1994; Bergmannet al., 1994;
Cain et al., 1991; Porteret al., 1990]. For example, in
[Aamodt, 1994] open and weak domain theories were inte-
grated into a case-based reasoning system. Similarly, match-
ing knowledge was used to improve the performance of the
well-known PROTOS system[Porter et al., 1990]. Fur-
thermore, it was shown that the combination of CBR and

a domain theory outperforms both CBR and the theory it-
self [Cain et al., 1991]. In contrast to those weak theories,
strong domain theories were used to filter irrelevant features
[Bergmannet al., 1994].

We present a new approach that exploits imperfect domain
knowledge in similarity-based classification by inferringad-
ditional abstract features. Furthermore, we analyze the im-
pact of the knowledge’s vagueness and partialness.

The next section specifies the representation of cases, the
similarity measure, and domain theories. Section 3 gives an
overview over how additional features can improve classi-
fication accuracy. Section 4 reports experiments with two
domains from the UCI Machine Learning Repository[Blake
and Merz, 1998]. Finally, the last section concludes and out-
lines future work.

2 Representation of the CBR modules
2.1 Cases and the similarity measure:
A caseC is made up of a set of attributes{A1, A2, . . . , An}.
While the original attributes can be either discrete or numeric,
the additional virtual attributes in this paper are binary.

Following the well-known local-global principle, we com-
pute the similarity between two cases as the weighted average
aggregation of the attributes’ similarities:

sim(A,B) =

n∑

i=1

(ωi ∗ si)

wheresi = sim(Ai, Bi) are the local similarity values, and
theωi are the corresponding weights.

2.2 Domain knowledge:
In this paper, we examine only domain knowledge that can
be represented as a domain theory of the following form: A
domain theory is a set of inference rules that relate concepts
to each other. These rules specify which concepts exist in the
domain and describe how abstract concepts can be inferred
from more primitive ones[Bergmannet al., 1994]. For ex-
ample, consider the relation in the ruleA1 ← A2 ∧A3 < A4

which says that there are the binary attributesA1, A2 and the
ordinal attributesA3, A4. Also, the rule states thatA1 is sat-
isfied, if A2 is true andA3 is smaller thanA4. We assume
that the case representation language is compatible with the



Figure 1: Properties of domain theories. The theories de-
scribe parts of the target concept, of which there are positive
(+) and negative (-) instances. Left: Partial knowledge, only
parts of the concept boundaries are known. Middle: Vague
knowledge, concept boundaries are believed to be somewhere
within the shaded areas. Right: Inconsistent knowledge, dif-
ferent rules make differing predictions.

language of the domain theory, either by sharing primitives
or by using a bridging language. The formal definition of the
domain theory is skipped here, since it is equivalent to Horn
clauses, including logical connectors, equality, and compari-
son operators.

According to[Mooney and Ourston, 1991], the concepts
in a domain theory can be divided into three types: observ-
ables are attributes that are directly represented in the cases.
Classification goals are attributes that are to be inferred or
approximated. All other attributes are called intermediates.

Intermediate attributes are the focus in this paper, because
they are natural candidates for virtual attributes, that is, they
can be added to the similarity measure in order to enhance the
classification accuracy.

2.3 Properties of domain theories:
Domains in which CBR is applied usually lack a perfect do-
main theory. Hence, the domain theories (or parts thereof)
that we work with have at least one of the following proper-
ties (cf. Figure 1):

• Partialness: This is the case if some parts of the do-
main are not modelled, for example a) if conditions are
used but not defined, or b) the relation of intermediates
or observables to the classification goal is not known, or
c) the classification goal does not exist in the rulebase at
all. Note that these situations correspond to gaps at the
”top” or ”bottom” of the domain theory[Mooney and
Ourston, 1991].

• Vagueness: Values can only be given within a certain
confidence interval. If a value is picked from such an
interval, it is likely to be incorrect.

• Inconsistency: There are two or more rules (or even
alternative theories) that make different classifications
and it is not known which one is correct. CBR is of-
ten used to overcome this problem, because the cases
provide knowledge on which classification is correct for
certain cases.

In this paper, we focus on partial and vague theories.

3 Virtual attributes
Virtual attributes[Richter, 2003] are attributes that are not di-
rectly represented in the cases but can be inferred from the al-
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Figure 2: Types of virtual attributes. Left: A binary virtual at-
tributes divides the instance space into instances satisfying or
not satisfying it. Middle: A conjunction of binary attributes.
Right: The most general type of virtual attributes is to add a
dimension to the instance space.

ready existing attributes. They are useful if the monotonicity-
principle is violated. Ifsim(A,B) > sim(A,C) is nec-
essary to reflect class membership, then there must at least
be one pair of local similarities, so thatsim(Ai, Bi) >
sim(Ai, Ci). If such a pair does not exist, the similarity
measure must make use of interdependencies between at-
tributes. For example, the similarity may not depend on two
attributesA1, A2 themselves, but on their differenceA1−A2.
Virtual attributes can express such interdependencies (e.g.,
deposit(A) = income(A)− spending(A)) and can also en-
capsulate non-linear relations.

We propose to use intermediate concepts of domain theo-
ries as virtual attributes. Virtual attributes can easily be added
to the set of attributes of each instance.

Every virtual attribute forms an additional dimensions of
the instance space (see Figure 2 (right)). This is most in-
tuitive for numerical attributes. An example is the concept
expectedWealthT illRetirement(C) = (65 − age(C)) ∗
income(C) Unfortunately, these dimensions can change as-
sumptions about instance distributions and are most likelynot
orthogonal to the other dimensions, since they are inferrable
from other attributes.

In this paper we focus on binary virtual attributes. Al-
though formally they are additional dimensions, they can
be visualized as separating lines within the original instance
space (see Figure 2 (left)). They divide the instance space into
two regions. For example,taxFree(C) ← income(C) <
330 may divide some instance space into salaries that are or
are not subject to paying taxes in Germany. We will show that
virtual attributes that describe target concept boundaries are
especially useful

Intermediate attributes that are fully defined (i. e., that do
not have gaps at the bottom of the domain theory) can be
computed from the values of observables and other interme-
diates. In order to use an intermediate as a virtual attribute,
it is added to the local similarities of the similarity measure,
that is,si = 1, iff both instances satisfy the intermediate con-
cept or both do not satisfy it, andsi = 0 otherwise. In the
following, virtual attributes are assumed to be discrete.

Let us look at how binary virtual attributes influence clas-
sification. Assume for sake of illustration that the instance
space is formed by the attributestemp andpress denoting
the temperature and pressure of a manufacturing oven. Let
us assume furthermore that the (to be approximated) target



Figure 3: Distribution of errors for the target concept
hardened(C) ← temp(C) > 100 ∧ temp(C) < 150 ∧
press(C) > 2 ∧ press(C) < 3 without virtual attributes
(top) and with the virtual attributeV (C)← press(C) <= 2
(bottom).

concept ishardened(C) ← temp(C) > 100 ∧ temp(C) <
150 ∧ press(C) > 2 ∧ press(C) < 3.

The error distribution of an unweighted kNN-classifier for
the target concept is depicted in Figure 3 (top). Not surpris-
ingly, the misclassifications occur at the boundaries of thetar-
get concept.

Now let us analyze the effect of different amounts and dif-
ferent qualities of domain knowledge on the classification.
In order to control the independent variables like partialness
and correctness of the domain knowledge, we created a sim-
ple test domain. There were two continuous attributesX and
Y , uniformly distributed over the interval [0,100]. The target
concept wasT (C)← X(C) > 30 ∧X(C) < 70 ∧ Y (C) >
30 ∧ Y (C) < 70. We used a square centered in the instance
space as target concept, because it is one of the few concepts
for which the optimal weight setting for kNN-classification
can be calculated analytically. The optimal weight settingfor
the target concept is to use equal weights[Ling and Wang,
1997]. Thus, the accuracy of 1-NN with equal weights is the
optimal accuracy that can be achieved without adding addi-
tional attributes. There were 100 randomly generated casesin
the case-base and 200 test cases were used. Each experiment
was repeated 1000 times with random cases in the case-base
and random test cases.

3.1 Partialness of the domain theory:
We operationalize the partialness of the domain knowledge
as number of known target concept boundaries. The more

Figure 4: Percentage of correctly classified cases with differ-
ent numbers of target concept boundaries described by virtual
attributes.

boundaries are known, the less partial it is.
Adding virtual attributes that correctly specify a boundary

of the target concept makes the misclassifications at those
boundaries disappear (see Figure 3 (bottom)). Thus, by
adding virtual attributes that describe a boundary correctly,
the classification accuracy is increased (see Figure 4).

Obviously, even partial knowledge (e. g. adding only one
virtual attribute) can improve classification accuracy. How-
ever, in this experiment we assumed that the virtual attributes
were correct. In the next experiment we analyzed the influ-
ence of the correctness of virtual attributes.

3.2 Correctness:
Vague knowledge can be informally described as knowing
that an attribute should be more or less at a certain value.
The higher the vagueness, the higher is the probability for
high incorrectness. We operationalize correctness of a virtual
attribute as its distance from the correct value. We created
virtual attributes of the formV (C) ← X(C) < c, where
c was varied from 0 to 100 at steps of 5. Remember that the
correct X-value (which was used in the domain theory to gen-
erate the cases) was 30. The accuracy of classification when
adding these virtual attributes is depicted in Figure 5.

The results are a bit disappointing. The accuracy drops
rapidly if the virtual attribute is inaccurate. Fortunately, the
accuracy with inaccurate virtual attributes is not much lower
than using no virtual intermediates (the similarity measure
with no virtual attribute is equivalent to settingc = 0 or
c = 100). The second peak atX = 70 which is the other
boundary on the X-attribute is due to the fact that similarity-
based classification is direction-less: only the position of the
concept boundary has to be known, the side on which positive
and negative instances are located is encoded in the cases.

These experiments with a simple domain suggest that par-
tial knowledge is more useful than vague knowledge. Adding
partial knowledge is likely to increase the classification accu-
racy, whereas vague knowledge is only useful if there is good
evidence that the knowledge is correct.

In the next section we will evaluate the influence of virtual
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Figure 5: Accuracy of similarity measures using the virtual
attributeV (c) ← X(C) < c, wherec forms the horizontal
axis. c-axis is stretched at the positions of the concept bound-
aries.

attributes in several domains from the UCI Machine Learning
Repository[Blake and Merz, 1998].

4 Experiments
4.1 The domains:
The domain of the previous section allowed us to vary the
correctness and partialness of the domain theory. However,
since the domain was handcrafted and simple, we ran addi-
tional experiments with two data sets from the UCI Machine
Learning Repository. Note that some data sets in the reposi-
tory come along with perfect domain models, as the instances
were created by those models. However, we used only data
sets whose domain theories were imperfect.

• Japanese Credit Screening (JCS): This domain comes
with a domain theory that was created by interviewing
domain experts. Accordingly, the theory is imperfect
and classifies only 81% of the cases correctly.

• Promoter gene sequences (PGS): This domain theory re-
flects the knowledge of domain experts in the field of
promoter genes. It is highly inaccurate and performs at
chance level when used in isolation[Towell et al., 1990].
We included this domain to serve as a worst case sce-
nario, since the domain knowledge is most inaccurate.

It is known that not all intermediate concepts will increase
classification accuracy when used as virtual attributes[Stef-
fens, 2004]. Hence, mechanisms to select or weight virtual
attributes are necessary. In this paper we investigate whether
weighting virtual attributes is more appropriate than selecting
them. In the experiments we apply several existing weighting
approaches which will be described in section 4.3.
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Married Problema-
tic region
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Figure 6: The domain theory of the JCS domain (top) and of
the PGS domain (bottom).

4.2 The virtual attributes:

The domain theories of JCS and PGS have been created by
domain experts for real world applications. Hence, they do
not separate positive from negative instances in a perfect way.
The accuracy of the JCS domain theory is 81%, the accuracy
of the PGS domain theory is only 50%. The structure of both
theories is depicted in Figure 6.

Most of the concepts process several observables. For ex-
ample,rejectedageunstableworkprocesses the observables
ageandnumberyears1:

rejected_age_unstable_work(S) :-
age_test(S, N1),
59 < N1,
number_years_test(S, N2),
N2 < 3.

Although the concepts are very imperfect (i. e., they mis-
categorize training cases), our experiments described in sec-
tion 4.4 show that these concepts can improve classification
accuracy when used as virtual attributes.

4.3 Weighting methods:

According to the classification of weighting methods as pro-
posed in[Wettscherecket al., 1997], we selected four meth-
ods with performance bias, and six with preset bias (i. e., sta-
tistical and information-theoretic methods).

1This attribute denotes the number of years that the applicant
worked at the same company.



• Performance bias: Weighting methods with a perfor-
mance bias classify instances in a hill-climbing fashion.
They update weights based on the outcome of the classi-
fication process. The performance bias performs well if
there are many irrelevant features[Wettscherecket al.,
1997]. Since the intermediate concepts of the domain
theories can be assumed to be relevant, we expected per-
formance bias methods to perform badly.

1. EACH [Salzberg, 1991] increases the weight of
matching features and decreases the weight of mis-
matching features by a hand-coded value.

2. IB4 [Aha, 1992] is a parameter-free extension of
EACH. It makes use of the concept distribution and
is thus sensitive to skewed concept distributions. It
assumes that the values of irrelevant features are
uniformly distributed.

3. RELIEF [Kira and Rendell, 1992] is a feature
selection- rather than feature weighting-algorithm.
It calculates weights based on the instance’s most
similar neighbors of each class and then filters at-
tributes whose weights are below a hand-coded
threshold. We used extensions for non-binary tar-
get classes and kNN withk > 1 as proposed in
[Kononenko, 1994].

4. ISAC [Bonzanoet al., 1997] increases weights of
matching attributes and decreases weights of mis-
matching attributes by a value that is calculated
from the ratio of the prior use of the instance. The
more often the instance was retrieved for correct
classifications, the higher the update value.

• Preset bias: The bias of the following methods is based
on probabilistic or information-theoretic concepts. They
process each training instance exactly once.

1. CCF[Creecyet al., 1992] binarizes attributes and
weights them according to the classes’ probability
given a feature.

2. PCF[Creecyet al., 1992] is an extension of CCF
which takes the distribution of the feature’s values
over classes into account. It calculates different
weights for different classes.

3. MI [Daelemans and van den Bosch, 1992] calcu-
lates the reduction of entropy in the class distribu-
tion by attributes and uses it as the attribute weight.

4. CD[Nunezet al., 2002] creates a correlation matrix
of the discretized attributes and the classes. The
weight of an attribute increases with the accuracy
of the prediction from attribute value to class.

5. VD [Nunezet al., 2002] extends CD in that it con-
siders both the best prediction for a class and the
predictions of all attributes.

6. CVD [Nunezet al., 2002] combines CD and VD.

4.4 Results:
For brevity, we will refer to the similarity measure which uses
only observables as thenon-extendedmeasure. The similarity
measure which uses virtual attributes will be calledextended.
We used the leave-one-out evaluation method.

Table 1: Classification accuracies of the non-extended and
the extended similarity measures. The columns report the
accuracies for the unweighted classification and for several
weighting methods.

Domain unw. EACH RELIEF IB4 ISAC

JCS (w/o) 74.19 74.19 78.23 74.19 72.58
JCS (w/) 74.19 72.58 79.03 72.58 79.03
PGS (w/o) 86.79 89.62 96.23 88.68 50.0
PGS (w/) 85.85 93.40 96.23 90.57 96.23

CCF PCF MI CD VD CVD

72.58 72.58 74.19 74.19 72.58 71.77
73.39 75.0 75.0 77.42 75.0 75.0
85.85 87.74 68.87 88.68 77.36 83.02
91.51 86.79 98.11 88.68 97.17 87.74

For most of the weighting methods, the extended similarity
measure performs better than the non-extended one. In table1
we underline the accuracy of the extended similarity measure
if it outperformed the non-extended similarity measure when
using the same weighting method. In the PGS domain, seven
of ten weighting methods perform better if the similarity mea-
sure is extended with virtual attributes. Even more so, in the
JCS domain the accuracies of eight of ten weighting methods
were improved by using virtual attributes.

In its optimal setting, with an accuracy of 98.11% our ap-
proach performs also better than the results from the litera-
ture reported for the PGS domain. The accuracy of KBANN
in [Towell et al., 1990] is 96.23%, which to our knowledge
was the highest accuracy reported so far and also used the
leave-one-out evaluation. We found no classification accu-
racy results for JCS in the literature2.

Obviously, these improvements are not restricted to a cer-
tain class of weighting methods. Methods with performance
bias (most notably ISAC), information-theoretic bias (i. e.
MI), and with a statistical correlation bias (e. g. VD) bene-
fit from processing virtual attributes.

Even in the PGS domain, the improvements are substantial.
This is surprising, since the domain knowledge is the worst
possible and classifies at chance level when used for rule-
based classification. This is a promising result as it shows that
adding intermediate concepts may increase accuracy even if
the domain theory is very inaccurate. We hypothesize that
this is due to the fact that even vague rules-of-thumb provide
some structure in the instance space which will be exploited
by the similarity measure.

5 Conclusion and future work
The main contribution of this paper is to show that imperfect
domain knowledge can benefit similarity-based classification.
This facilitates knowledge elicitation from domain experts as
it removes the requirements of completeness and accurate-
ness. Our experiments in a simple domain suggest that par-
tial knowledge is more useful than vague knowledge. How-

2The domain often referred to as ’credit screening’ with 690 in-
stances is actually the credit card application domain.



ever, we showed in the domains from the Machine Learn-
ing Repository that even highly inaccurate domain knowledge
can be exploited to drastically improve classification accu-
racy. Future work includes experiments in further domains
and transforming intermediate attributes by feature genera-
tion [Fawcett and Utgoff, 1992].
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