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Abstract a domain theory outperforms both CBR and the theory it-
self[Cainet al, 1991. In contrast to those weak theories,
This paper proposes to enhance similarity-based  strong domain theories were used to filter irrelevant festur
classification by virtual attributes from imperfect [Bergmanret al, 1994.
domain theories. We analyze how properties of the We present a new approach that exploits imperfect domain
domain theory, such as partialness and vagueness, knowledge in similarity-based classification by inferriag-
influence classification accuracy. Experiments in  ditional abstract features. Furthermore, we analyze the im
a simple domain suggest that partial knowledge is  pact of the knowledge’s vagueness and partialness.
more useful than vague knowledge. However, for The next section specifies the representation of cases, the
data sets from the UCI Machine Learning Reposi-  similarity measure, and domain theories. Section 3 gives an
tory, we show that vague domain knowledge thatin  overview over how additional features can improve classi-
isolation performs at chance level can substantially  fication accuracy. Section 4 reports experiments with two
increase classification accuracy when being incor-  domains from the UCI Machine Learning RepositfBfake
porated into similarity-based classification. and Merz, 1998 Finally, the last section concludes and out-
lines future work.

1 Introduction 2 Representation of the CBR modules
One of the most prominent challenges in machine learnin

is to identify appropriate features for representing insées, 21 Cages and the similarity mgasure.

since learning performance depends heavily on the feature® caseC' is made up of a set of attributgsly, A, ..., A, }.

used. Particularly, the performance of similarity-badedsi- ~ While the original attributes can be either discrete or nuener

fication degrades with the number of irrelevant feat(iGsf-  the additional virtual attributes in this paper are binary.

fiths and Bridge, 1996 It is also known from work on con-  Following the well-known local-global principle, we com-

structive induction (Cl) that adding features can imprdesc ~ Pute the similarity between two cases as the weighted agerag

sification accuracjAha, 1991. While Cl is a bottom-up ap- @ggregation of the attributes’ similarities:

proach, this paper proposes a top-down approach on iden- n

tifying abstract features. The focus of Cl was mainly on sim(A, B) = Z(wi % 57)

logical and rule-based processes, whereas this paper shows

how additional features can extend similarity measures for

similarity-based classification. wheres; = sim(A;, B;) are the local similarity values, and
The main contribution of this paper is to show that ad-thew; are the corresponding weights.

ditional features can be derived from domain theories tha& . ]

are imperfect. This will alleviate the knowledge acquisi-2-2 Domain knowledge:

tion bottleneck, as it reduces the requisites of obtainixg e In this paper, we examine only domain knowledge that can

pert knowledge. Although similarity-based classification be represented as a domain theory of the following form: A

only used in domains where no perfect domain theories exdomain theory is a set of inference rules that relate coscept

ist, usually there is imperfect domain knowledge and igalat to each other. These rules specify which concepts existin th

chunks of knowledgfAamodt, 1994; Bergmanat al, 1994; domain and describe how abstract concepts can be inferred

Cain et al, 1991; Porteret al, 19930. For example, in from more primitive one$Bergmannet al, 1994. For ex-

[Aamodt, 1994 open and weak domain theories were inte-ample, consider the relation in the rule «— A, A Az < Ay

grated into a case-based reasoning system. Similarlyjmatcwhich says that there are the binary attributgs A, and the

ing knowledge was used to improve the performance of therdinal attributesds, A4. Also, the rule states that, is sat-

well-known PROTOS systerfPorter et al, 1990. Fur- isfied, if A, is true andA; is smaller thand,. We assume

thermore, it was shown that the combination of CBR andthat the case representation language is compatible wéth th
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Figure 1. Properties of domain theories. The theories de-
scribe parts of the target concept, of which there are pesiti
(+) and negative (-) instances. Left: Partial knowledgdy on
parts of the concept boundaries are known. Middle: Vagu
knowledge, concept boundaries are believed to be somewhe
within the shaded areas. Right: Inconsistent knowledde, di
ferent rules make differing predictions.

Figure 2: Types of virtual attributes. Left: A binary virfe-
éributes divides the instance space into instances satisty
t satisfying it. Middle: A conjunction of binary attrites.
ight: The most general type of virtual attributes is to add a
dimension to the instance space.

language of the domain theory, either by sharing primitiveg€ady existing attributes. They are useful if the monofitysc

or by using a bridging language. The formal definition of thePrinciple is violated. Ifsim(A, B) > sim(4,C) is nec-

domain theory is skipped here, since it is equivalent to Horressary to reflect class membership, then there must at least

clauses, including logical connectors, equality, and cariap Pe one pair of local similarities, so thatm(A;, B;) >

son operators. sim(A;, ;). If such a pair does not exist, the similarity
According to[Mooney and Ourston, 1991the concepts Measure must make use of interdependencies between at-

in a domain theory can be divided into three types: observiributes. For example, the similarity may not depend on two

ables are attributes that are directly represented in thesca attributesd,, A, themselves, but on their differenelg — As.

Classification goals are attributes that are to be inferred oVirtual attributes can express such interdependencies, (e.

approximated. All other attributes are called intermestiat ~ deposit(A) = income(A) — spending(A)) and can also en-
Intermediate attributes are the focus in this paper, becaugapsulate non-linear relations.

they are natural candidates for virtual attributes, thathisy We propose to use intermediate concepts of domain theo-
can be added to the similarity measure in order to enhance thies as virtual attributes. Virtual attributes can easéyadded
classification accuracy. to the set of attributes of each instance.

) ) ] Every virtual attribute forms an additional dimensions of
2.3 Propertiesof domain theories: the instance space (see Figure 2 (right)). This is most in-

Domains in which CBR is applied usually lack a perfect do-tuitive for numerical attributes. An example is the concept
main theory. Hence, the domain theories (or parts thereofyzpectedW ealthTill Retirement(C) = (65 — age(C)) *
that we work with have at least one of the following proper-income(C) Unfortunately, these dimensions can change as-
ties (cf. Figure 1): sumptions about instance distributions and are most likety
orthogonal to the other dimensions, since they are inf@rab
from other attributes.
used but not defined, or b) the relation of intermediate h In tLusf papclalr Wﬁ focus or& dt_n_naryl \Qrtual "’?tt”bUtiS' Al-
or observables to the classification goal is not known, o ough formally they are additional dimensions, they can
c) the classification goal does not exist in the rulebase af€ Visualized as separating lines within the original inséa
all. Note that these situations correspond to gaps at th pace (see Figure 2 (left)). They divide the Instance spaoe |
"top” or "bottom” of the domain theorfMooney and 0 €gions. For exampléaz Free(C) « income(C) <
Ourston, 1991L 330 may d|\_/|de some instance space into salane.s that are or
’ are not subject to paying taxes in Germany. We will show that
e Vagueness: Values can only be given within a certain virtual attributes that describe target concept boundaaie
confidence interval. If a value is picked from such anespecially useful
interval, it is likely to be incorrect. Intermediate attributes that are fully defined (i. ., that d
e Inconsistency: There are two or more rules (or even not have gaps at the bottom of the domain theory) can be
alternative theories) that make different classificationscomputed from the values of observables and other interme-
and it is not known which one is correct. CBR is of- diates. In order to use an intermediate as a virtual ate&jbut
ten used to overcome this problem, because the caséisis added to the local similarities of the similarity messu
provide knowledge on which classification is correct for thatis,s; = 1, iff both instances satisfy the intermediate con-
certain cases. cept or both do not satisfy it, angd = 0 otherwise. In the
following, virtual attributes are assumed to be discrete.
Let us look at how binary virtual attributes influence clas-
3 Virtual ib sification. Assume for sake of illustration that the ins&anc
Irtual attributes space is formed by the attributésmp andpress denoting
Virtual attriouteg Richter, 2008 are attributes that are not di- the temperature and pressure of a manufacturing oven. Let
rectly represented in the cases but can be inferred fromthe aus assume furthermore that the (to be approximated) target

e Partialness: This is the case if some parts of the do-
main are not modelled, for example a) if conditions are

In this paper, we focus on partial and vague theories.
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boundaries are known, the less partial it is.
Adding virtual attributes that correctly specify a boundar
Pressure of the target concept makes the misclassifications at those
boundaries disappear (see Figure 3 (bottom)). Thus, by
Figure 3: Distribution of errors for the target concept 2dding virtual attributes that describe a boundary carect
hardened(C) — temp(C) > 100 A temp(C) < 150 A the classification accuracy is increased (see Figure 4).

00 10 20 30 40

press(C) > 2 A press(C) < 3 without virtual attributes Obviously, even partial knowledge (e.g. adding only one
(top) and with the virtual attribute’(C)) — press(C) <= 2 virtual attribute) can improve classification accuracy.wHo
(bottom). ever, in this experiment we assumed that the virtual atiegbu

were correct. In the next experiment we analyzed the influ-

ence of the correctness of virtual attributes.
concept ishardened(C) «— temp(C) > 100 A temp(C) <
150 A press(C) > 2 A press(C) < 3. 3.2 Correctness:

The error distribution of an unWeighted kNN-classifier for Vague know'edge can be informa”y described as knowing
the target concept is depicted in Figure 3 (top). Not SWpristhat an attribute should be more or less at a certain value.
ingly, the misclassifications occur at the boundaries ofdhe The h|gher the vagueness, the h|gher is the probabmty for
get concept. ) _high incorrectness. We operationalize correctness oftaalir

Now let us analyze the effect of different amounts and dif-attribute as its distance from the correct value. We created
ferent qualities of domain knowledge on the classificationyirtual attributes of the formi/ (C') — X(C) < ¢, where
In order to control the independent variables like pargak . was varied from 0 to 100 at steps of 5. Remember that the
and correctness of the domain knowledge, we created a singorrect X-value (which was used in the domain theory to gen-
ple test domain. There were two continuous attribufeand  erate the cases) was 30. The accuracy of classification when
Y, uniformly distributed over the interval [0,100]. The tatg  adding these virtual attributes is depicted in Figure 5.
concept wad'(C) — X(C) > 30A X(C) <T0AY(C) > The results are a bit disappointing. The accuracy drops
30 AY/(C) < 70. We used a square centered in the instanceapidly if the virtual attribute is inaccurate. Fortungtehe
space as target concept, because it is one of the few concepfgcuracy with inaccurate virtual attributes is not muchdow
for which the optimal weight setting for kNN-classification than using no virtual intermediates (the similarity measur
can be calculated analytically. The optimal weight setfotg  with no virtual attribute is equivalent to setting= 0 or
the target concept is to use equal weightiig and Wang, . = 100). The second peak & = 70 which is the other
1997. Thus, the accuracy of 1-NN with equal weights is the houndary on the X-attribute is due to the fact that simyarit
optimal accuracy that can be achieved without adding addihased classification is direction-less: only the positibthe
tional attributes. There were 100 randomly generated CB.SGIS concept boundary has to be known, the side on which positive
the case-base and 200 test cases were used. Each experimgid negative instances are located is encoded in the cases.
was repeated 1000 times with random cases in the CaSE'baseThese experiments with a Simp]e domain Suggest that par-
and random test cases. tial knowledge is more useful than vague knowledge. Adding
. . partial knowledge is likely to increase the classificatioow
3.1 Partialnessof thedomain theory: racy, whereas vague knowledge is only useful if there is good
We operationalize the partialness of the domain knowledgevidence that the knowledge is correct.
as number of known target concept boundaries. The more In the next section we will evaluate the influence of virtual
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Figure 6: The domain theory of the JCS domain (top) and of

attributes in several domains from the UCI Machine Learninghe PGS domain (bottom).
Repository[Blake and Merz, 1998

4.2 Thevirtual attributes:

4 Experiments _ .

. The domain theories of JCS and PGS have been created by
4.1 Thedomains: domain experts for real world applications. Hence, they do
The domain of the previous section allowed us to vary thenot separate positive from negative instances in a perfagt w
correctness and partialness of the domain theory. Howevefhe accuracy of the JCS domain theory is 81%, the accuracy
since the domain was handcrafted and simple, we ran addéf the PGS domain theory is only 50%. The structure of both
tional experiments with two data sets from the UCI Machinetheories is depicted in Figure 6.
Learning Repository. Note that some data sets in the reposi- Most of the concepts process several observables. For ex-
tory come along with perfect domain models, as the instanceample rejectedage unstablework processes the observables
were created by those models. However, we used only datageandnumberyears:

sets whose domain theories were imperfect. rej ect ed_age_unst abl e_work(S) : -

e Japanese Credit Screening (JCS): This domain comes  age_test (S, N1),

with a domain theory that was created by interviewing 59 < N1,
domain experts. Accordingly, the theory is imperfect nunber _years_test(S, N2),
and classifies only 81% of the cases correctly. N2 < 3.

e Promoter gene sequences (PGS): This domain theory re- Although the concepts are very imperfect (i. ., they mis-
flects the knowledge of domain experts in the field of categorize training cases), our experiments describeedn s
promoter genes. It is highly inaccurate and performs atjon 4.4 show that these concepts can improve classification
chance level when used in isolatibfowelletal, 1990.  accuracy when used as virtual attributes.

We included this domain to serve as a worst case sce-
nario, since the domain knowledge is most inaccurate. 4.3 Weighting methods:

It is known that not all intermediate concepts will increaseAccording to the classification of weighting methods as pro-
classification accuracy when used as virtual attrib{&sf- posed in[Wettschereclet al, 1997, we selected four meth-
fens, 2004 Hence, mechanisms to select or weight virtualpds with performance bias, and six with preset bias (i. &, st
attributes are necessary. In this paper we investigatehehet tistical and information-theoretic methods).
weighting virtual attributes is more appropriate than ciihg
them. In the experiments we apply several existing weightin  This attribute denotes the number of years that the applicant
approaches which will be described in section 4.3. worked at the same company.



* Performance bias: Weighting methods with a perfor_TabIe 1: Classification accuracies of the non-extended and

mance bias classify instances in a hill-climbing fashion. e
They update weights based on the outcome of the classi'® €xtended similarity measures. The columns report the
ccuracies for the unweighted classification and for sévera

fication process. The performance bias performs well ifA¢C hii hod
there are many irrelevant featurBettschereclet al, ~ Welghting methods.

1997. Since the intermediate concepts of the domain Domain | unw. | EACH RELIEF 1B4  ISAC
theories can be assumed to be relevant, we expected PeT3cg (Wlo) | 74.19| 7419  78.23 7419 7258

formance bias methods to perform badly. JCS (W) | 74.19| 7258  79.03 7258  79.03

1. EACH [Salzberg, 199 increases the weight of pGs (w/o)| 86.79| 89.62  96.23 88.68 50.0
matching features and decreases the weight of mis- pGS (w/) | 85.85| 93.40 96.23 90.57 96.23
matching features by a hand-coded value.

2. 1B4 [Aha, 1992 is a parameter-free extension of CCF_PCF M cb VD cvb
EACH. It makes use of the concept distributionand 72.58 72.58 74.19 74.19 7258 71.77
is thus sensitive to skewed concept distributions. It 73.39 75.0 75.0 7742 75.0 75.0
assumes that the values of irrelevant features are85.85 87.74 68.87 88.68 77.36 83.02
uniformly distributed. 91.51 86.79 98.11 88.68 97.17 87.74

3. RELIEF [Kira and Rendell, 1992is a feature

selection- rather than feature weighting-algorithm. I oo
It calculates weights based on the instance’s mos}n For most of the weighting methods, the extended similarity

L . . easure performs better than the non-extended one. Inltable
tsrlirkr)]lljlg rsn\?\;ﬁgsbgrsvgrgi?;ha%asbzﬁ) r\;\? ;h?]grf]'ggg daet(;wg-:- underline the accuracy of the extelndled _similarity measur
threshold. We used extensions for non-binary tar—'f it outperformed the npn—extended similarity measure whe
get classés and kNN with > 1 as proposed in using the_ same weighting method. In the_: PGS_do_ma_un, seven
[Kononenko, 1994 of ten weighting me.thoo!s perforrr_l better if the S|m|Iar|tyaf1e

' . . sure is extended with virtual attributes. Even more so, @ th
4. ISAC [Bonzanoet al, 1997 increases weights of 3¢5 gomain the accuracies of eight of ten weighting methods
matching attributes and decreases weights of misyqre improved by using virtual attributes.
maiching attributes by a value that is calculated |, s optimal setting, with an accuracy of 98.11% our ap-
from the ratio of the prior use of the instance. The nrq4ch performs also better than the results from the Jitera
more often the instance was retrieved for correclyre reported for the PGS domain. The accuracy of KBANN
classifications, the higher the update value. in [Towell et al, 1994 is 96.23%, which to our knowledge
e Preset bias: The bias of the following methods is basedavas the highest accuracy reported so far and also used the
on probabilistic or information-theoretic concepts. Theyleave-one-out evaluation. We found no classification accu-
process each training instance exactly once. racy results for JCS in the literatdre

1. CCF[Creecyet al, 1997 binarizes attributes and _ ©OPviously, these improvements are not restricted to a cer-
weights them according to the classes’ probabilityté?'” class of weighting methpds. Me_thods with _perfprma_mce
given a feature. bias (most notably ISAC), information-theoretic bias (i.e

2. PCF[Creecyet al, 1997 is an extension of CCF MI), and with a statistical correlation bias (e.g. VD) bene-

which takes the distribution of the feature’s valuesf't E&Tnﬁmgssgg \égtrlriglir? tmgtijrtr? Sfovements are substantial
over classes into account. It calculates different.l_ ’ P )

weights for different classes his _is surprising, s_i_nce the domain knowledge is the worst
’ possible and classifies at chance level when used for rule-
3. Mi [Daelemans' and van den .BOSCh’ 11993'?”'. based classification. This is a promising result as it shbass t
lates the reduction of entropy in the class distribu-g 4ing intermediate concepts may increase accuracy even if
tion by attributes and uses it as the attribute weightye gomain theory is very inaccurate. We hypothesize that
4. CD[Nunezetal, 2007 creates a correlation matrix this is due to the fact that even vague rules-of-thumb pevid

of the discretized attributes and the classes. Th&ome structure in the instance space which will be exploited
weight of an attribute increases with the accuracypy the similarity measure.

of the prediction from attribute value to class.
5. VD [Nunezet al, 2004 extends CD in thatitcon- 5 Conclusion and future work
siders both the best prediction for a class and th

predictions of all attributes ®rhe main contribution of this paper is to show that imperfect
6. CVDIN 1. 2004 ' bi CD and VD domain knowledge can benefit similarity-based classificati
' unezet al, combines LU an * This facilitates knowledge elicitation from domain exseas
4.4 Resllts it removes the rgquirem_ents pf complete_ness and accurate-
ness. Our experiments in a simple domain suggest that par-

For brevity, we will refer to the similarity measure whictess -, knowledge is more useful than vague knowledge. How-

only observables as tm®n-extendetheasure. The similarity
measure which uses virtual attributes will be caka¢ended >The domain often referred to as ’credit screening’ with 690 in-
We used the leave-one-out evaluation method. stances is actually the credit card application domain.
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