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Inrecentyears, there has been much research into what makes

The Backbone of the Travelling Salesper son

Philip Kilby
ANU
Canberra, Australia
Philip.Kilby@anu.edu.au

Abstract

We study the backbone of the travelling salesper-
son optimization problem. We prove that it is in-
tractable to approximate the backbone with any
performance guarantee, assuming thaiNP/and
there is a limit on the number of edges falsely re-
turned. Nevertheless, in practice, it appears that
much of the backbone is present in close to optimal
solutions. We can therefore often find much of the
backbone using approximation methods based on
good heuristics. We demonstrate that such back-
bone information can be used to guide the search
for an optimal solution. However, the variance in
runtimes when using a backbone guided heuristic is
large. This suggests that we may need to combine
such heuristics with randomization and restarts. In
addition, though backbone guided heuristics are
useful forfinding optimal solutions, they are less
help inprovingoptimality.
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2 Backbones

In decision problems, the concept of theckbonéias proven
to be very useful in understanding problem hardness. For ex-
ample, the backbone of a satisfiability (SAT) problem is the
set of literals which are true in every mod®lonassoret al.,
1999. Backbone size appears closely correlated to problem
hardnesqParkes, 1997; Monassat al, 1999. If a SAT
problem has a large backbone, there are many opportunities
to assign variables incorrectly. Such problems tend to ba ha
therefore for systematic methods like Davis-Putnam. Adarg
backbone also means that solutions are clustered. Such prob
lems therefore can be hard to solve with local search methods
like WalkSAT.

Backbones have been less well studied in the context of
optimization. In[Slaney and Walsh, 209 1the backbone of
an optimization problem is defined to be finezen decisions
those with fixed outcomes for all optimal solutions. For ex-
ample, the backbone of asP problem is the set of edges
which occur in all tours of minimal cost. Such a concept
again seems useful in understanding problem hardness. For
instance, the cost of finding optimal (or near optimal) solu-
tions is positively correlated with backbone s[8aney and
Walsh, 2001

Computing the Backbone

a search problem hard. In decision problems, we now hav is not difficult to see that it is NP-hard to find the backbone
a rich picture based upon rapid transitions in solubilitg an of & TsP problem. If the optimal tour is unique, then the

a corresponding thrashing in search algorithms for the critbackbone is complete. A procedure to compute the backbone
ical constrained problems close to such “phase transitionsthen trivially gives the optimal tour length. Complicat®n

[Cheesemast al, 1991; Mitchellet al., 1994. The picture

arise when the optimal tour is not unique and the backbone is

is much less clear for optimization. Optimization problemsincomplete. For example, suppose there are two disjoint but

do not have a transition in solubility, since optimal saus

optimal tours. The backbone is then empty. Nevertheless, we

always exist. A strong candidate to replace the transition i can find the optimal tour length using a polynomial number
solubility is a transition in the backbone sifdonassonet

al., 1999. In this paper, we study the complexity of comput-

of calls to a procedure that determines backbone edges.
Theorem 1 The Tsp BACKBONE problem (the problem of

ing and of approximating the backbone. We also look at USHeciding if an edge is in the backbone ofap problem) is

ing such backbone information to help find optimal solutjons

NP-hard.

and to prove optimality. Throughout this paper, we focus

on the symmetric travelling salespersons¢J optimization

Proof: We rescale the 3P problem so that only one opti-

problem. This is the problem of computing the shortest tourmal tour remains. Without loss of generality, we assume that
which visits every city, where the inter-city distance mais
symmetric. However, most of our results easily generatise t cities, we multiply each inter-city distance B¢+, This
the asymmetric case.

inter-city distances are integers. First, for a problemhwait

givesn(n + 1) new bits in the least significant digits of each



number. Note that this only requires polynomial space. We~or example, the approximation procedure that returns all
divide these new bits inta sections, one for each city, of O(n?) possible edges returns all the backbone. We therefore
lengthn + 1 bits. For the inter-city distance between city consider approximation procedures which limit the number
and cityj, we set theith bit in theith section and théth bitin ~ of edges falsely assigned to the backbone. An approxima-
thejth section. Each tour length now encodes the list of edgeon procedure is a “majority-approximation” iff, when the
visited. In particular, théth section of the tour length has two backbone is non-empty, more edges are returned that come
bits, say,j andk set. This represents the fact that the tour in-from the backbone than do not come from the backbone. If
cludes edges fromto: and then td:. Evenif the old distance the backbone is empty, any number of edges can be falsely
matrix had several optimal tours, the new distance matrixeturned.

only has one of them. Lef be the two cities on a tour con- tpeqrem 2 If P -4 NP then no majority-approximation pro-
nected to théth city. Then the optimal and unique tour of the .4, re can be guaranteed to return a fixed fractioror

rescgled problem is the qptimal tour of the unr.escaled. pro greater of the backbone edges in polynomial time.
lem in which (max(c;), min(eq), ..., max(c,), min(c,)) is o
lexicographically least. As the optimal tour is now unique, Proof: We show how such a procedure could determine if a
the backbone is complete. We can compute this by a polyndraph(V, E) has a Hamiltonian path with a designated start-

mial number of calls to a procedure for deciding if an edge igng and ending vertex in polynomial time, contradicting-P
in the backbone NP. We construct a 3p problem which can have two sorts of

It remains open whether thesF BACKBONE problem is ~ Shortest tours. For every Hamiltonian path between thé star

NP-complete or not. Completeness would seem to require &9 and ending vertex, there is a corresponding tour of kengt
short witness that a tour was optimal. We can, however, say it — 1 where|V| = n. These tours have a non-empty set of
is both NP-hard and NP-easy. It is NP-easy as deciding if aRackbone edges taken from somese©n the other hand, if
edge is in the backbone can be reduced to a polynomial nunibere is no Hamiltonian p_ath between the starting and ending
ber of calls to a Bpdecision procedure. Garey and Johnsonvertex, the shortest tour is of length and has a non-empty
suggest that problems which are both NP-hard and NP-eagiet of backbone edges (denot€pdisjoint with S. _
might be called NP-equivalefiGarey and Johnson, 19179 Slnce the approximation procedure returns at least a fixed
Although this class contains problems which do not belong tdraction of the backbone, it returns at least one correck-bac
NP, the class has the property of NP-complete decision prof2one edge. As it is a majority-approximation procedure, the
lems that: unless P=NP, no problem in the class can be solvéi#mber of edges in the backbone correctly returned is more
in polynomial time, and if P=NP then all problems in the classthan the number incorrectly returned. By computing the ra-
can be solved in polynomial time. In other words, thepT tio of the number of edges of the two types returned, we can

BACKBONE problem is polynomial if and only if P=NP. determine if the backbone is drawn from edges'ior from
those inl". Thatis, we can determine if there is a Hamiltonian
4 Approximating the Backbone path or not in polynomial time.

We need two special gadgets. The firstis a “backbone free”
connector. This connects together two nodes without intro-
ducing any backbone edges. For example, to connecthode
4.1 Sound approximation to nodej, we use the following small circuit which introduces

. . 3 new intermediate nodes;, k» andks. All marked edges
Suppose that we have an approximation procgdure that reie of cost 0. and all unmarked edges are of odst
turns some subset of the backbone edges. It is easy to see '

Even though computing the backbone is intractable in gen
eral, might we be able to approximate it?

that, assuming B NP, no such procedure can be guaranteed &)

to return a fixed fraction of the backbone in polynomial time: l\
First, we rescale the distance matrix as before so that the op (Dék—0)
timal tour is unique and the backbone complete. The sound ‘,
approximation procedure could be called to return at least o &3

backbone edge - sy, b). Create a new 3Pby collapsing:

andb into a single node’. The cost:(a’, z) fornoder would A tour from: to j goes through some permutation/af, k-,

be setto MIN €(a, z), c(b, x)); all other costs as before. The k3. No edge is in all possible tours, and thus no edge ap-

procedure could be repeatedly called to construct the @ptim pears in the backbone. Note that we can modify this (and the

tour edge by edge in polynomial time. other circuits) to have non-zero edges costs by increadling a
A similar argument shows that no sound approximationother edge costs appropriately. We will draw this gadget as a

procedure can be guaranteed to return at least one backborgstangular box between nodeand;.

edge if the backbone is non-empty in polynomial time. The second gadget is a “switch” circuit. This uses three
. . of the backbone free connector gadgets. Four edges go into
4.2 Unsound approximation this circuit, two horizontally and two vertically. The swht

Suppose that edges returned by an approximation proceduhas two modes. In the first mode, the tour enters and exits
are not guaranteed to be in the backbone. If we do not limiby the vertical edges. In the other mode, the tour enters and
the number of edges incorrectly returned, then there existexits by the horizontal edges. The switch circuit contaibis 1

a polynomial time approximation that meets any approximanodes, all of which are visited in both modes. Note that no
tion ratio (that is, returns any given fraction of the backép  backbone edges are common between the two modes. The



gadget is show below in a). As before, all marked edges ar® Epsilon Backbone

of cost 0, and all unmarked edges are of agstWe give the Despite these negative complexity results, backbones may
two different modes of the circuitin b) and c). We will draw gij|| be easy to compute in practice. We study here the pos-
this switch gadget as a square box containing an “x". sibility of using approximation procedures. We define the

backbone of a $p problem as the set of edges which occur
in all tours within a facto(1 + ¢) of the optimal. In Figure 1,
we plot the fractional size of thebackbone (that is, the size
of thee-backbone normalized hy) againstl + ¢ for random
Euclidean BrPproblems.

a) b) c)

Epsilon vs Size of Backbone
100 trials, random Euclidean TSP, n = 100

We use these gadget to construct @ problem with the E T T T T T
required shortest tours. The problem hé&:.—1)+1 nodes, [ et ine cgrealy |
n of which correspond to vertices in the grafh £) and the
rest are inn — 1 switch gadgets. If the graptV, E) has an
edge between vertéxand; then the Bpproblem has an edge
of cost 1 between nodeand;j. We shall assume that the
starting and ending vertices/nodes are 1 angspectively.

To finish the tour, we put a zero cost edge between node 1
andn. There are alsa — 1 switch circuits. The horizon-

tal wires in theith switch circuit are connected to notland

i+ 11 <i<n-—1). The vertical wires in thgth switch T VT Y
circuit are connected to the— 1th and; + 1th switch circuit

(1 < j < n—1). The vertical wires in the 1st switch cir- ) ) )
cuit are connected to node 1 and the 2nd switch circuit. Th&igure 1: Fractional size of thebackbone (y-axis) plotted
vertical wires in then — 1th switch circuit are connected to against approximation ratio (= 1 ¢) for 100 random Eu-
then — 2th switch circuit and to node. All edge costs be- clidean Tsp problems with 100 nodes. Degree 6 regression
tween switch circuits and nodes, and between switch cicuitline fitted.

are zero except for the edge between node 1 and the horizon-
tal input to the 1st switch circuit which has coest The cost
between any two unmarked nodes:isas before.

We give an example for = 4 in which the grapHV, E)
has edges between nodes 1 and 2, 3 and 4, and 2 and 4:

o =4 o
I o ®
T [
| | |

Fraction of nodes in epsilon-backbone

o
Yy
T
|

I . .
1.03 1.04 1.05 1.06
Approximation Ratio

We see that tours within 5% of optimal have approximately
40% of the backbone of optimal tours. We observe similar
results with non-random instances taken from TSPLib. It ap-
pears that much of the backbone of aPproblem is present
when we are near to the optimal solution. As heuristics can
often find near optimal solutions in a short time, it may be
easy to compute a large part of the backbone in practice.

6 Approximation Methods

We now see if BP heuristics can be used as the basis of an
approximation method for computing the backbone. To com-
pute if an edge is in the backbone or not, we can commit to
the edge and compute the optimal tour, and then throw the
edge out and re-compute the optimal tour. The edge is in the
The TSP Problem  Derived graph backbone iff the first tour is shorter in Iength than the sec-
ond. Suppose now that instead of computing the two optimal
If there is a Hamiltonian path in the graph, we follow the tour lengths, we run some good heuristic method [iki
corresponding path in thesPstarting with node 1 and ending and Kernighan, 197For a polynomially bounded time. If it
at noden. We then exit from node, and enter the vertical is true that the heuristic is good, it will frequently find st
wire in then — 1th switch, and continue through the vertical to optimal length tours (though we have no guarantee that it
wires to switch 1 where we exit and take the zero cost edgéoes). This yields a simple approximation method for com-
back to node 1. This completes a tour of length- 1. On  puting edges that are likely to be in the backbone.
the other hand, if there is not a Hamiltonian path, the sisbrte  Tests were run on random Euclideaafiproblems of size
tour visits nodes 1 ta by alternating with thex — 1 switch 100, 250 and 500 nodes. Most problems have unique solu-
circuits. It then takes the zero cost edge from nodmck to  tions, and hence complete backbones. Exceptions were: 6
node 1. This completes a tour of lengtho problems of size 100, 16 of size 250 and 19 of size 500 had
Similar arguments show that if £ NP then no majority- backbones of size: n. Table 1 shows the percentage of the
approximation procedure can be guaranteed to return dt lealsackbone correctly identified using the heuristic proceedu
one backbone edge when the backbone is non-empty in polas well as the percentage of “false positive” results. Thne Li
nomial time Kernighan heuristic is very accurate at these problem séres




n=100 n=250 n=500 Mean Median
Ave Approx Ratio| 1.0000 1.0002 1.0008 Method | Times/s| Nodes| Time/s | Nodes
Correct 10%| 99.0 69.4 28.8 bb 60.9| 685.8 3.0 5.0
(%) Median| 100.0 100.0 75.8 freqbb 98.5| 1618.1 5.0| 174.0
90% | 100.0 100.0 100.0 long 34.0| 436.8 0.0 4.0
False 10%| 0.0 0.0 0.0 longish 21.8| 332.0 0.0 5.0
Positive Median| 0.0 0.0 0.0 next 38.0| 642.8 1.0 19.0
(%) 90% 1.0 0.4 0.6 rand 58.1| 980.5 2.0 40.0
short 61.1| 909.8 7.0| 113.0

Table 1: Estimation of backbone using the Lin-Kernighan
heuristic. 100 trials of random Euclideansi prob-  Table 2: Branching heuristics — finding the optimal solution
lems at each size. Approx Ratio is mean (heuristic-

solution)/(optimal-solution) of original problem. Mean Median imit
Method | Time/s| Nodes| Time/s | Nodes| exceeded
approximation ratios were small. The heuristic is very good bb 199.11 2559.8|  35.0] 244.0 12
at identifying backbone edges and gives few false-positive | freqbb | 206.5| 3284.9|  28.5| 422.0 14
Its main weakness is missing backbone edges. long 360.3| 4816.7| 51.6| 755.0 26
longish 87.7| 1946.1 12.5| 130.0 4
N . s . rand 179.1| 2859.3 24.4| 348.0 10
One motivation for identifying backbone is to try to reduce| ghort 199.8| 2921.9 358| 413.0 11

search. For example, Climer and Zhang use backbone vari=
ables in asymmetric 3 problems to preprocess and simplify . o ) o
[Climer and Zhang, 2002As a second example, Duboisand ~ Table 3: Branching heuristics — proving optimality
Dequen use a backbone guided heuristic to solve 700 variable

hard random 3 SAT probleniiBubois and Dequen, 20Q1in of each edge is updated. Edges with higher frequency are

thhe fpl{pwing ssctri]orll,fwle spo;\( that \t/yhilslt bfl(:tkbone E]éjl:?edmore likely to be backbone edges, so the branch choice is the
euristics can be helpful in finding optimal solutions, Westnu g 40.c it 'the greatest frequency,

use them with care. Median runtime are good, but there aré next The next unused edge in the tour is chosen

a few long runs (suggesting that a randomization and restart . .
g (sugg g long The longest unused edge in the tour is chosen

strategy may be useful). In addition, we show both exper- . .
imentaily and theoretically, that backbone guided heiggst ~ Snort The shortest unused edge in the tour is chosen

can be very poor when it comes to proving optimality. To longish A me_thod suggested by the results of this test.
make the demonstration very direct, we use a method fok/Selongfor the firstn branches, then useext o
solving TsP problems that relies heavily on the branching rand A random edge is chosen. As this is non-
heuristic. The method does not use the “cuts” that characdeterministic, the heuristic was run five times on each prob-
terise state-of-the-art solvers. However, it lets us campa lem.
directly the efficacy of various branching decisions. Abranch-and-bound solver has two phases: finding the op-
We use a branch and bound solver with lower bounds protimal solution, and proving optimality. Different heuiist do
vided by Lagrangean relation with 1-trefReinelt, 1994 better in different phases, so we report the results seglgrat
Upper bounding is by a single, deterministic run of Or-optin Table 2, and Table 3. We used 50 node random Euclidean
[Or, 197§ testing all forward and reverse moves of blocks of TSP problems with a time limit of 1000 seconds on each run.
sizen/2 down to 1. The MST bound is enhanced by elim- Table 3 shows the number of times this limit was exceeded.
inating all other edges into a node if two incident edges ard he time and node resuliaclude problems for which the
already forced into the solution. Depth-first search is usedtime limit was exceeded.
with the node having the least lower bound explored. The These results show a “heavy-tailed” distributi@omeset
algorithm branches on an edge currently in the tour repreal., 200d with many problems being solved quickly (hence
senting the upper bound. The edge can be chosen in one aflow median) but a few taking a very long time (hence
several ways: a high average). Randomised algorithms and restarts have
bb We exclude in turn every possible edge from the solu-been shown to reduce the average time in NP-hard problems
tion. A comparison is then made between the new objectivéMeisels and Kaplansky, 2004; Selmanal, 1994. How-
and the current upper bound. If the new objective is reduced;ver, we wished to look at the “pure” algorithms for compar-
then an improvement to the upper bound has been found. I6on.
such an improving move is found, the edge giving the largest These results show that the bb heuristic is quite effective a
improvement is chosen. If no such improvement is foundfinding the optimal in terms of the median number of nodes
then the edge giving the largantreasein objective is most  visited. However, the average is quite large, indicating th
likely to be in the backbone, so that edge is chosen. method could benefit from multiple restarts. This reduced
fregbb A frequency table is kept during search. As eachnumber of nodes comes at a price in terms of runtime. Other
new upper-bound tour is created, the frequency of appeareneethods, such akng outperform it in runtime. In terms



of proving optimality, thebb heuristic performed relatively
poorly, being little better than random.

8 Pathological Example 20

As a further caution to using backbone guided branching &
heuristics, we present a pathological instance of tls® T
problem. If we branch on a non-backbone edge, this instance
can be solved in &ingle branch. However, if we branch
first on backbone edges, we visit arponentialnumber of

branches before proving optimality. Since a search space @) (b)
is defined by a particular algorithm, we must define & solu- 1o oplem.”Optimal tour The Minimum  Spannin
tion method. The following algorithm is sensible, but simpl is12.. 10 —'cost 200 Tree — cost 130 P J

enough that we can predict its behavior theoretically.dk&a
the refined LP-based cuts that allow modersPcodes to
solve huge problems, but is a fairly standard basic algorith
([Reinelt, 1994). It has the following features:

1. Uses branch and bound.

2. Stops when the lower bound equals the upper bound.

3. Upper bound provided by current best tour. 20
4

. Lower bound provided by 1-tree relaxation. A 1-tree is ®
simply a minimum spanning tree (MST) with one extra ,,
edge added from a leaf to another node already in the
tree. The 1-tree contains exactly one cycle, which may
be a complete tour.

5. If two edges are forced to be incident to a single node, (@ (b)
then the lower-bounding procedure does not consider Force (1,2) — MST cost 180, Force (5,6) —MST cost 120,

any other edges incident to that node. 1-tree bound 200 1-tree bound 140

6. Preprocessing identifies nodes which have only two Figure 3: Forcing edges. Forced edges in bold.
“useful” incident edges. These two are forced into the

solution. A “useful” edge here is defined to be an edge

with cost less than any available upper bound (an edg@' forcing edgec (5,6) into the solution. Forcing (5,6) give
with cost greater than an estimate for the entire tour will&" MST with cost 140. The 1-tree is connected using an edge

never be used in an optimal solution). An initial upper:'fke (6,7) or (3,4) with cost 20, giving a lower bound of 160.
bound can be calculated using the tour (1, 2, 3, ...). there were other clones of 6, when they were forced into
o . the solution, then the lower bound would not approach the
_The Tsp problem is given in Figure 2(a). Node 6 can be ypper hound until edges betwealhclones have been forced.
cloned” arbitrarily many times, and has been cloned at sodegqcing out (5,6) leaves a problem that looks very similar to
7 and 8. The clones connect to each neighbour at cost 2ye original. It still has backbone edges round the perimete
node 1 at cost 10, and all other clones at cost 21. Arcs nq{;t an MST/1-tree which uses the “spoke’-type edges around
shown have cost 1000 + 20and hence will never be used in node 1 and hence gives an unachievable lower bound.
an optimal solution. The upper bound for this gr_aph is given o, backtracking, forcing out (5,6) gives the same lower
by the tour 1, 2, .. 10, 1 with cost 200. The minimum span-phoynd as the parent problem. A new upper bound can be
ning tree is shown in Figure 2(b) and has cost 130. The bolg,ng ysing the cost 21 edges. As the lower-bound is stil les
edges (10,1) and (10,9) are fixed in due to the preprocessinghan the upper, we can not stop. A recursive argument shows
The one-tree adds, for example (3,4) at cost 20. The lowefy4t the right branch must be completely explored before it
bound is therefore 150. ) can be excluded. It is not until all backbone edges are forced
Forcing the non-backbone edge (1,2) excludes the “spoke, *or forced out, and the algorithm moves on to branch on
edges at nodes 1, as node 1 now has 2 edges incident. TBgge (1,2) or (1,3) that the optimal is deterimend. Hence the
MST (shown in Figure 3(a)) now has cost 180, and the 1-tre,ckpone heursitic would need to visit an exponential numbe
bound (using edge (8,9) or (3,4) to connect) is 200. As theyt pranches to solve the problem.
lower bound is the same as the upper bound, the branch and
bound algorithm completes. So if (1,2) (or, by a symmetric
argument (1,3)) were chosen as the branch node, the procg- Related Work
dure terminates immediately. On the other hand, branchin§laney and Walsh demonstrated that the cost of finding op-
on backbone edges would force in edges like (5,6). If 6 werdimal (or near optimal) solutions is postively correlateithw
cloned as described above, there could be arbitrarily mény doackbone siz€Slaney and Walsh, 20Q.1However, they also
these edges. Figure 3(b) shows the effect on the lower bourghowed that the cost of proving optimality is negatively-cor

Figure 2: The BrPproblem, and its MST




related with backbone size. If we have a small backbone, theis clear that other concepts are still needed. A number of can
there are many optimal and near-optimal tours. An algorithndidate measures have been proposed for decision problems
like branch and bound has to do a lot of work to ensure theré¢e.g. backdoor variables) that have yet to be explored fer op
are no shorter tours. timization.
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