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Abstract

We present a method for applying local search to
overconstrained instances of the Disjunctive Tem-
poral Problem (DTP). Our objective is to gener-
ate high quality solutions (i.e., solutions that vi-
olate few constraints) in as little time as possi-
ble. The technique presented here differs markedly
from previous work on DTPs, as it operates within
the total assignment space of the underlying CSP
rather than the partial assignment space of the re-
lated meta-CSP. We provide experimental results
demonstrating that the use of local search leads to
substantially improved performance over system-
atic methods.

1 Introduction
Previous work on temporal reasoning has focused primar-
ily on exact and complete methods for efficiently solving
temporal problems (e.g., [Stergiou and Koubarakis, 1998;
Tsamardinos and Pollack, 2003; Armando et al., 2004]). The
purpose of these algorithms is to find a solution that sat-
isfies a set of constraints, or else prove, by means of ex-
haustive search, that no solution exists. Recently, there has
also been work on temporal formalisms where the goal is in-
stead to optimize an objective function; for instance, to max-
imize a user’s preference when the problem permits many
solutions [Khatib et al., 2003; Peintner and Pollack, 2004;
Morris et al., 2004], or to minimize the number of violated
constraints when no complete solution exists [Moffitt and
Pollack, 2005]. Although these algorithms are guaranteed to
find optimal solutions, they are computationally expensive,
and hence may not be applicable to large problems. Given
this, it may be advantageous to instead search for approxi-
mate solutions when strict optimality is not required.

Local search algorithms are known to be among the most
effective methods for solving computationally intractable
problems such as propositional satisfiability, scheduling, and
constraint satisfaction [Hoos and Stutzle, 2004]. While they
do not guarantee optimality, they are often able to produce
high-quality solutions within a short amount of time. Despite
the significant attention that local search has received in com-
binatorial optimization, its application to problems of quanti-
tative temporal reasoning has as yet been largely overlooked.

In this paper, we show how local search can be success-
fully applied to overconstrained instances of the Disjunctive
Temporal Problem (DTP) [Stergiou and Koubarakis, 1998], a
particularly expressive form of temporal constraint satisfac-
tion problem. While local search has been commonly applied
to finite-domain CSPs, its application to DTPs is of particular
interest, as the domains of the temporal variables are infinite,
ranging over the entire set of either integers or real numbers.
Previous work on DTP-solving has focused on a reformula-
tion of the problem, in which a meta-CSP is constructed and
searched. In contrast, we apply local search directly to the
original CSP, i.e., the DTP itself. We discuss issues such as
solution initialization, neighbor generation, and cost compu-
tation, and provide experimental results demonstrating that
the use of local search in solving overconstrained DTPs can
lead to substantially improved performance as compared to
systematic methods.

It should be noted that ours is not the first attempt to ap-
ply local search to temporal reasoning. This work is closely
related to [Beaumont et al., 2004]; however, that line of re-
search deals with a qualitative interval algebra representation,
which is strictly less expressive than that allowed by DTPs.
Nonetheless, their endpoint-ordering technique bears similar-
ity to our approach, in that it also abandons the meta-CSP
for the original CSP search space. Our work is also related
to [Walser, 1998], where local search is applied to overcon-
strained integer programs without disjunctions.

2 Disjunctive Temporal Problems
A Disjunctive Temporal Problem (DTP) is a constraint satis-
faction problem defined by a pair 〈X,C〉, where each element
Xi ∈ X designates a time point, and C is a set of constraints
of the following form:

ci1 ∨ ci2 ∨ ... ∨ cin

where in turn, each cij is of the form x − y ≤ b; x, y ∈ X
and b ∈ �. (In practice, b is often restricted to the integers.)
DTPs are thus a generalization of Simple Temporal Problems
(STPs), in which each constraint is limited to a single in-
equality [Dechter et al., 1991]. A solution to a DTP is an
assignment of values to time points such that all constraints
are satisfied.

Several algorithms have been developed for solving DTPs
[Stergiou and Koubarakis, 1998; Armando et al., 1999;



Oddi and Cesta, 2000; Tsamardinos and Pollack, 2003]. Typ-
ically, these algorithms transform the problem into a meta-
CSP, in which the original DTP is viewed as a collection of
alternative STPs. Using this approach, the algorithm selects
a single disjunct from each constraint of a given DTP. The re-
sulting set forms an STP, called a component STP, which can
then be checked for consistency in polynomial time using a
shortest-path algorithm. Clearly, a DTP D is consistent if and
only if it contains at least one consistent component STP. Fur-
thermore, any solution to a consistent component STP of D
is also a solution to D itself. Consequently, it is standard in
the DTP literature to consider any consistent component STP
to be a solution of the DTP of which it belongs.

A number of pruning techniques can be used to focus
the search for a consistent component STP of a DTP, in-
cluding conflict-directed backjumping, removal of subsumed
variables, and semantic branching. The DTP solver Epilitis
[Tsamardinos and Pollack, 2003] integrated all these tech-
niques, in addition to no-good recording. At the time it
was developed, Epilitis was the fastest existing DTP solver,
though it was recently surpassed by TSAT++ [Armando et
al., 2004].

DTP solvers such as Epilitis perform total constraint sat-
isfaction — that is, their objective is to find a solution that
satisfies all the constraints of a DTP. In the event that a DTP
is inconsistent, these solvers are capable of detecting such
infeasibility, but are incapable of providing partial solutions
that come close to satisfying the problem. In response, the
DTP solver Maxilitis [Moffitt and Pollack, 2005] was de-
signed to find solutions that maximize the number of satisfied
constraints. Partial constraint satisfaction has the disadvan-
tage of being expensive, as the pruning techniques typically
used in DTP solving become weaker when relaxations are
allowed. If the overconstrained DTP is very large, the sys-
tematic search that Maxilitis performs becomes intractable,
and one must instead settle for an approximate solution. For-
tunately, Maxilitis is an anytime algorithm, and one can in-
terrupt it at any point to extract a (possibly suboptimal) par-
tial assignment. It is not, however, obvious that a systematic
search is the fastest way to find an approximate solution.

3 Local Search
When exact, systematic methods for solving hard combina-
torial problems are too expensive, local search offers an al-
ternative approach for quickly generating approximate solu-
tions. Applications of local search are numerous, and include
planning [Ambite and Knoblock, 1997], scheduling [Storer et
al., 1992], and constraint satisfaction [Minton et al., 1992].

The Satisfiability Problem (SAT) is a classic domain for
application of local search. The objective of SAT is to find
an assignment to a set of binary variables that satisfies a
Boolean formula F , typically given in Conjunctive Normal
Form (CNF). A common variation on SAT is MAX-SAT,
where the objective is to maximize the number of satisfied
clauses in F . A number of local search algorithms have been
constructed for both SAT and MAX-SAT. One of the most
successful variants is GSAT [Selman et al., 1992]. In this al-
gorithm, one begins with a random assignment of truth values

to the propositional variables, and then repeatedly chooses a
variable to flip that results in the maximal decrease in vio-
lated clauses, breaking ties randomly. To avoid getting stuck
in local minima, a technique called random restarts is of-
ten used, where the algorithm begins anew with another ran-
dom assignment. Several variants exist for GSAT; of these,
GSAT/Tabu [Mazure et al., 1997] is among those with best
performance. It maintains a tabu list of recently flipped vari-
ables, which are then temporarily prohibited from being se-
lected for another flip.

The basic method used in GSAT and GSAT/Tabu can be
applied to other problems besides SAT. Indeed, the structure
of a DTP closely resembles that of a SAT problem, and it is
for this reason that a SAT solving approach has been applied
to the problem of finding complete solutions to DTPs (as in
TSAT [Armando et al., 1999] and TSAT++ [Armando et al.,
2004]).

3.1 Application to DTPs
In applying local search to possibly overconstrained DTPs,
we again need to decide whether to work in the meta-CSP or
in the original CSP (the DTP). To illustrate these candidates,
consider the following very small problem:

C1 : {c11 : a − b ≤ 10}
C2 : {c21 : b − a ≤ −15} ∨ {c22 : c − a ≤ −25}
C3 : {c31 : b − c ≤ 10}
C4 : {c41 : a − c ≤ 20}

Clearly there is no complete solution to this problem, since
c21 conflicts with c11, and c22 conflicts with the constraint
induced by the transitive composition of c11 and c31. As a
result, our objective will be to find a solution that maximizes
the number of constraints satisfied in the DTP. We define the
cost of a solution to be the number of constraint violations it
induces; thus, low-cost solutions are better.1

Partial Assignment Space of the Meta-CSP
One way to view a solution to overconstrained DTPs such as
the example above is as a partial assignment to the meta-CSP,
in which some of the meta-level variables are left unassigned.
For example, consider the assignment (C1, C2, C3, C4) ←
(c11, c22, ε, ε), in which the constraints C3 and C4 are not
given an assignment (indicated by ε). Here the (partial) com-
ponent STP that is selected consists of c11 and c22, and has
a cost of 2. This particular partial assignment cannot be ex-
tended to any solution of lower cost, since inclusion of either
of the disjuncts c31 or c41 would result in an inconsistency.
However, this does not mean that a solution of higher quality
does not exist. Indeed, the partial assignment (c11, ε, c31, c41)
with cost 1 is both consistent and optimal.

While search in the partial assignment space of the meta-
CSP is common to most systematic methods for solving
DTPs, it is less attractive for the application of local search.
First, systematic methods work within a backtracking tree,
where disjuncts are removed in the order in which they were

1Other cost functions – for instance, the maximum deviation
from the bound of any constraint – are possible. However, there cur-
rently exist no systematic methods to compare against that minimize
such alternative cost functions.



added.2 One technique that is commonly used in DTP solv-
ing, incremental full-path consistency [Mohr and Henderson,
1986], exploits this property by maintaining a stack of the
temporal network updates made during search, using it to
cheaply repair path dependencies when backtracking. Lo-
cal search requires the ability to modify arbitrary values in
the partial assignment, not necessarily respecting the order in
which they were originally assigned; thus it cannot exploit
the incremental approach. Second, several of the powerful
pruning techniques used by DTP solvers such as Epilitis and
Maxilitis have no meaning outside the context of a systematic
search tree. For example, semantic branching is able to ac-
quire additional network constraints by exhaustively explor-
ing particular assignments of disjuncts to constraints. In local
search, no such exhaustive search is performed, and conse-
quently it is hard to imagine how to adapt this mechanism.
Finally, in local search, the number of neighbors for a par-
tial assignment will typically be much larger than the number
of successors in systematic search, thus making evaluation of
alternatives prohibitively expensive.

Total Assignment Space of the Original CSP
An alternative approach is to perform search in the space
of total assignments to the time points in the original CSP.
For the example DTP above, one possible assignment is
(a, b, c) ← (30, 25, 0). Since this solution violates con-
straints C3 and C4 it has a cost of 2. A better solution would
be (20, 10, 0), which violates only constraint C2.

A key issue for this search space is how to define the neigh-
bors of an assignment. One approach is to include all solu-
tions whose variable assignments differ in exactly one posi-
tion; for example, (a, b, c) ← (30, 15, 0) would be a neighbor
of (a, b, c) ← (30, 25, 0), since the two differ only on the
assignment to b. However, because the value of each vari-
able may take any real (or any integer), the cardinality of the
set of possible neighbors is uncountably (or countably) infi-
nite. It is for this reason that most of the prior work on DTPs
has avoided search in this space: the infinite cardinality of
the variables’ domains precludes the use of methods for ex-
haustive search. We address this concern in the next section,
where we describe our local search algorithm in detail.

4 Localitis
In this section, we present Localitis, our algorithm for us-
ing local search to perform partial constraint satisfaction in
a DTP. Its basic framework derives from the GSAT/Tabu al-
gorithm that is commonly used for SAT and MAX-SAT in-
stances. It also bears considerable resemblance to Walk-
SAT(OIP), used in [Walser, 1998] to solve overconstrained
integer programs without disjunctions3.

2With chronological backtracking, the last disjunct added is
the first one removed; with more sophisticated techniques such as
conflict-directed backjumping, additional disjuncts may be removed
at the same time, but the removal always follows the structure of the
backtracking tree.

3While any disjunctive program can be cast as an integer pro-
gram, the conversion process requires the creation of additional vari-
ables and constraints. Our method instead operates directly on the
constraints in their disjunctive form.

4.1 Generating the Initial Solution
Typically in algorithms such as GSAT, the initial solution
is chosen by selecting random assignments for each of the
Boolean variables. A similar initialization can be done with
DTPs: each time point can be randomly assigned a value
within some interval [L,U ]. If one employs random restarts,
this initialization can be done several times to ensure adequate
exploration of the search space.

A potentially better alternative is to make a greedy assign-
ment to the time points, so that the algorithm begins with
a reasonable solution. We adopt this approach in Localitis.
To generate the initial solution, we make use of the Maxilitis
solver. Recall that Maxilitis searches in the meta-CSP space.
We invoke it and let it run until it generates its first solution, in
which every constraint is assigned either a disjunct or ε. Since
this solution is not necessarily optimal, Maxilitis would nor-
mally continue, but we instead terminate it, and project an as-
signment to time points from the component STP it has com-
puted, making random assignments to all time points outside
the scope of the component STP. Because of the variable and
value ordering heuristics used by Maxilitis, the first solution
it encounters is likely to be better than what a purely random
assignment would provide. One could repeat this process for
random restarts, placing bias on the selection of assignments
so that the set of disjuncts chosen differs between runs.

4.2 The Neighborhood
As described earlier, the most obvious way to define the
neighbor(s) of an assignment is as the set of assignments
that differ in the value of only one time point (for example,
(a, b, c) ← (30, 25, 0) and (a, b, c) ← (30, 15, 0)). Unfor-
tunately, this definition results in each assignment having in-
finitely many neighbors. The key to reducing the size of the
search space is to note that if we hold fixed the values of all
the variables but one (b in the current example), then only a
small set of new values for the selected variable are signifi-
cant. Specifically, we only need to consider those values for
which the slack of a disjunct belonging to some constraint
becomes zero — that is, when an inequality becomes a strict
equality. This is somewhat similar to a pivot step in the sim-
plex method for linear programming, which maintains a ba-
sic feasible solution that corresponds to an “active system” of
constraints in the LP. For instance, in our running example,
suppose we are given the assignment of (30, 25, 0). Then the
significant values for b are 20, 15, and 10, as they would make
the disjuncts c11, c21, and c31 active, respectively. Some of
these values may satisfy several new disjuncts at once (for in-
stance, if b is assigned the value 10, it satisfies disjuncts c21

and c31 simultaneously). No other values for b are capable of
satisfying a set of constraints that one of the these significant
values cannot.

We can impose yet another restriction on the set of neigh-
bors; namely, that they include only those new, significant
values that change the resulting set of satisfied constraints.
For instance, while the assignment of 20 to b is significant in
that it makes the slack for c11 zero, it does not change the set
of satisfied constraints. As a result, this new assignment is
not particularly interesting, and need not be considered in the
set of neighbors of this assignment.



4.3 Neighbor Selection and Tabu Moves
Since our objective is to satisfy the maximum number of con-
straints, selection of which neighbor to explore is a fairly
straightforward process: choose the candidate that satisfies
the maximum number of constraints possible. This is identi-
cal to GSAT, where the variable chosen to flip is the one that
will minimize the number of unsatisfied clauses. In the case
that several assignments would result in the same minimal
number of violations, one is selected at random.

When a local search process is required to continually
make greedy moves, it can easily get stuck in local minima.
To avoid this, we adopt a common variation on the technique
of tabu search [Glover and Laguna, 1997], and forbid local
search to change the values of variables that were recently
modified. A parameter tt, called the tabu tenure, determines
the duration (in search steps) for which this restriction ap-
plies. When tabus are applied to SAT, no variable flipped at
iteration number i is allowed to flip again until tt steps have
passed. We introduce tabu moves into Localitis in a similar
way. If the value of a variable x is changed at step i, its value
is then fixed until tt steps have passed. To efficiently deter-
mine the tabu status of each variable x, we maintain an array
it, where itx stores the search step number when variable x
was last changed. A variable is tabu if and only if i−itx < tt.

4.4 Efficient Cost Computation
The simplest way to compute the cost of a neighbor assign-
ment is to temporarily enforce the assignment being consid-
ered, and subsequently test all constraints for satisfiability,
counting the number that are not satisfied. However, this
straightforward implementation has been shown to be rather
inefficient, since many of the constraints will not be affected
by the local modification [Selman et al., 1992].

A common technique is to instead compute the relative
change in cost by testing only those clauses that contain the
variable in question. This can be facilitated by a preprocess-
ing step which creates a list for each variable, containing in-
dices for those constraints that it participates in.

4.5 The Algorithm
Figure 1 provides the pseudocode for Localitis. The function
Maxilitis-First-Path() is used to generate the initial assign-
ment (line 1). The algorithm then performs local search, gen-
erating the neighbors of the current assignment by looking at
the non-tabu variables in each disjunct of the DTP (lines 4-5),
and considering “moves”, i.e., assignments to significant val-
ues (line 6) that change the set of satisfied constraints (line 7).
(The notation X/Y, where Y is an assignment Z ← z, denotes
the substitution of Y for the original assignment to Z in X .
The function Sat() returns the set of constraints in the DTP
that are satisfied by its argument.) The set moves stores the
set of minimal-cost neighbors (lines 8-13), from which one
is eventually selected at random (lines 19-20). After storing
the value of the best solution seen to date (lines 21-22) and
updating tabu tenures (line 24), the process iterates.

5 Experimental Results
We implemented Localitis and conducted a set of experiments
whose primary goals were 1) to determine the influence of

Localitis(DTP D)

1. Best-Assign ← Assign ← Maxilitis-First-Path(D)
2. For it = 1 to max-steps
3. min cost ←∞, moves ←�
4. For each disjunct d: x − y ≤ b
5. If x not tabu
6. move ← (x ← y + b)
7. If Sat(Assign) �= Sat(Assign/move)
8. If cost(Assign/move) = min cost
9. moves ← moves ∪ {move}

10. EndIf
11. If cost(Assign/move) < min cost
12. moves ← {move}
13. min cost ← cost(Assign/move)
14. EndIf
15. EndIf
16. EndIf
17. Repeat lines 5 – 16 for y (i.e., y ← x − b)
18. EndFor
19. new-move ← Random-Member(moves)
20. Assign ← Assign/new-move
21. If cost(Assign) < cost(Best-Assign)
22. Best-Assign ← Assign
23. EndIf
24. Update tabu count for the time point in new-move
25. EndFor
26. return Best-Assign

Figure 1: Localitis, a local search algorithm for DTPs

the way in which the initial assignment is made, 2) to analyze
the effect of various neighborhood functions and tabu tenures,
and 3) to compare the anytime quality of this solver against its
cousin Maxilitis, which performs an exhaustive search of the
DTP in the meta-CSP space. No random restarts were used
for these tests. To benchmark our algorithm, we used DTPs
created by a random generator used in testing previous DTP
solvers [Stergiou and Koubarakis, 1998]. The test case gen-
erator takes as arguments the parameters 〈k,N,m,L〉, where
k is the number of disjuncts per constraint, N is the number
of time points, m is the number of constraints, and L is the
constraint width, i.e., a positive integer such that for each dis-
junct x − y ≤ b, b ∈ [−L,L] with uniform probability. In
our experiments, we set k = 2, N = 25, m = 175, and
L = 100. A derived parameter R (the ratio of constraints
over variables, m/N ) expressing constraint density was thus
7. For this set of parameters, 50 random problems were gen-
erated. The domains of the variables are integers instead of
reals, which again is standard in DTP literature. Our imple-
mentation of Localitis was developed in Java, and our exper-
iments were conducted on a 3 GHz Intel Pentium 4 machine
running Windows XP and having 1 GB of memory.

In our first experiment, we tested 5 different values for the
tabu tenure to measure its effect on solution quality as a func-
tion of time. In Figure 2, we plot a curve for each tabu tenure
in the set {0, 1, 2, 3, 4}. The number of seconds elapsed is
shown on the x-axis, and the number of constraint violations
in the solution (averaged over the 50 test cases) is shown on
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Figure 2: Anytime curves for various tabu tenures

the y-axis. We also show the optimal solution cost, which ex-
presses the average number of violations in the optimal solu-
tion (i.e., what Maxilitis reported when run until completion).
Convergence is slowest for when the tabu tenure is 0 (this ef-
fectively corresponds to the absence of tabu search), and is
also somewhat slow for when the tabu tenure is 1. For values
2, 3, and 4, convergence is almost identical. Larger values
(not shown) displayed no improvement over these curves, and
so a tabu tenure of 2 was used for all subsequent tests.

In our second experiment, we studied two different strate-
gies for generating the initial set of temporal values: one us-
ing random assignments, uniformly chosen from the range
[−L,L], and the other using Maxilitis to greedily generate
an initial solution, as described previously. The results are
shown in Figure 3 (among other results that will be addressed
momentarily). Once again, the x- and y-axes represent the
seconds elapsed and the solution cost, respectively. The curve
labeled ‘Localitis (Normal)’ uses the greedy selection, and
the curve labeled ‘Localitis (Random Initialization)’ does not.
The former begins with an average cost of 11.64 violated con-
straints, where the latter begins with a drastically higher av-
erage of 43.60 not shown on the graph. The randomly initial-
ized search is able to make up the difference fairly quickly,
although it continues to lag for the duration of the search. The
shape of the curves are roughly identical, despite the horizon-
tal displacement. Thus, it appears that the greedy initializa-
tion does indeed improve the starting solution, although the
effect on the convergence rate is negligible.

In our third experiment, we tested two different neighbor-
hood criteria: the first includes all assignments of significant
values (ones that force the slack of some disjunct to be zero),
while the second also requires that there be some change in
the set of satisfied constraints in the DTP. The results are
shown in Figure 3. The curve labeled ‘Localitis (Normal)’
uses the more restricted definition, and the curve labeled ‘Lo-
calitis (Any 0-Slack move)’ does not. While the two begin at
the same initial point (as they should, since both use greedy
initialization), the ‘Localitis (Normal)’ curve is able to gen-
erate solutions of higher quality much earlier. For instance,
after 5 seconds, ‘Localitis (Any 0-Slack move)’ has gener-
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Figure 3: Anytime curves for Maxilitis & Localitis variations

ated an average solution cost of 5.3. Only 1.28 seconds were
required for ‘Localitis (Normal)’ to obtain this same average.
As a result, it seems that one can expect significantly better
results when the neighborhood is restricted to only those can-
didates which modify the partial assignment of the meta-CSP.

Finally, we compare the anytime quality of our Localitis
solver to that of the systematic solver Maxilitis, which is (at
present) the only other existing method for performing par-
tial constraint satisfaction of DTPs. The results are again
shown in Figure 3. The curves of interest are labeled ‘Locali-
tis (Normal)’ and ‘Maxilitis.’ By inspection, it seems that de-
spite its numerous pruning techniques and sophisticated con-
straint propagation methods, Maxilitis is far slower at pro-
ducing high quality solutions. For instance, at the end of the
5 seconds shown, Maxilitis has generated an average solution
cost of about 7.12. For Localitis to produce the same average
cost requires only 0.29 seconds. To reach the average cost
of 4 that Localitis achieves after 5 seconds requires 104 sec-
onds of Maxilitis runtime. Based on these observations, the
speedup achieved appears to be roughly 17 to 20 times faster.

6 Discussion and Future Work

In this paper, we have presented a method for applying local
search to overconstrained instances of the Disjunctive Tem-
poral Problem. In contrast to previous algorithms for solv-
ing DTPs, our technique abandons the meta-CSP and instead
explores the total assignment space of the underlying CSP.
Our results show that the computation time required to gener-
ate high-quality solutions is significantly reduced in compar-
ison to traditional branch-and-bound algorithms for perform-
ing partial constraint satisfaction.

Given the freedom allowed by this alternative search space,
one particularly interesting avenue of research would be to
extend this approach toward more expressive cost functions.
Whereas this paper concentrates on minimizing the number
of violated constraints, one could instead capture the amount
by which the constraints are violated. This would give higher
value to those solutions whose assignments come close to
falling within the prescribed bounds.



Another appealing possibility is to apply this same local
search technique to underconstrained rather than overcon-
strained temporal formalisms. The recent addition of pref-
erences to DTPs, appropriately labeled DTPs with Prefer-
ences (DTPPs) [Peintner and Pollack, 2004], allows pref-
erence functions to be defined over particular values of the
temporal differences. As no efficient optimal algorithm is
yet known for maximizing the weighted sum of preferences
in DTPPs, greedy methods are currently being developed to
generate approximate solutions. Local search may indeed
prove to be a competitive alternative to these algorithms.
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