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Abstract

Hybrid approximate linear programming (HALP)
has recently emerged as a promising framework for
solving large factored Markov decision processes
(MDPs) with discrete and continuous state and ac-
tion variables. Our work addresses its major com-
putational bottleneck – constraint satisfaction in
large structured domains of discrete and continuous
variables. We analyze this problem and propose a
novel Markov chain Monte Carlo (MCMC) method
for finding the most violated constraint of a relaxed
HALP. This method does not require the discretiza-
tion of continuous variables, searches the space of
constraints intelligently based on the structure of
factored MDPs, and its space complexity is linear
in the number of variables. We test the method on a
set of large control problems and demonstrate im-
provements over alternative approaches.

1 Introduction
Markov decision processes (MDPs)[Bellman, 1957; Puter-
man, 1994] offer an elegant mathematical framework for
solving sequential decision problems in the presence of un-
certainty. However, traditional techniques for solving MDPs
are computationally infeasible in real-world domains, which
are factored and contain both discrete and continuous state
and action variables. Recently, approximate linear program-
ming (ALP) [Schweitzer and Seidmann, 1985] has emerged
as a promising approach to solving large factored MDPs[de
Farias and Roy, 2003; Guestrinet al., 2003]. This work fo-
cuses on hybrid ALP (HALP)[Guestrinet al., 2004] and ad-
dresses its major computational bottleneck – constraint satis-
faction in the domains of discrete and continuous variables.

If the state and action variables are discrete, HALP in-
volves an exponential number of constraints, and if any of the
variables are continuous, the number of constraints is infinite.
To approximate the constraint space in HALP, two techniques
have been proposed:ε-HALP [Guestrinet al., 2004] and
Monte Carlo constraint sampling[de Farias and Roy, 2004;
Hauskrecht and Kveton, 2004]. Theε-HALP formulation re-
laxes the continuous portion of the constraint space to anε-
grid, which can be compactly satisfied by the methods for
discrete-state ALP[Guestrinet al., 2001; Schuurmans and

Patrascu, 2002]. However, these methods are exponential in
the treewidth of the discretized constraint space, which limits
their application to real-world problems. In addition, theε-
grid discretization is done blindly and impacts the qualityof
the approximation. Monte Carlo methods[de Farias and Roy,
2004; Hauskrecht and Kveton, 2004] offer an alternative to
theε-grid discretization and approximate the constraint space
in HALP by its finite sample. Unfortunately, the efficiency of
Monte Carlo methods is heavily dependent on an appropriate
choice of sampling distributions. The ones that yield good ap-
proximations and polynomial sample size bounds are closely
related to the optimal solutions and rarely known a priori[de
Farias and Roy, 2004].

To overcome the limitations of the discussed constraint sat-
isfaction techniques, we propose a novel Markov chain Monte
Carlo (MCMC) method for finding the most violated con-
straint of a relaxed HALP. The method directly operates in
the domains of continuous variables, takes into account the
structure of factored MDPs, and its space complexity is pro-
portional to the number of variables. Such a separation ora-
cle can be easily embedded into the ellipsoid or cutting plane
method for solving linear programs, and therefore constitutes
a key step towards solving HALP efficiently.

The paper is structured as follows. First, we introduce hy-
brid MDPs and HALP[Guestrinet al., 2004], which are our
frameworks for modeling and solving large-scale stochastic
decision problems. Second, we review existing approaches to
solving HALP and discuss their limitations. Third, we com-
pactly represent the constraint space in HALP and formulate
an optimization problem for finding the most violated con-
straint of a relaxed HALP. Fourth, we design a Markov chain
to solve this optimization problem and embed it into the cut-
ting plane method. Finally, we test our HALP solver on a
set of large control problems and compare its performance to
alternative approaches.

2 Hybrid factored MDPs
Factored MDPs[Boutilier et al., 1995] allow a compact rep-
resentation of large stochastic planning problems by exploit-
ing their structure. In this section, we review hybrid factored
MDPs[Guestrinet al., 2004], which extend this formalism to
the domains of discrete and continuous variables.

A hybrid factored MDP with distributed actions (HMDP)
[Guestrinet al., 2004] is a 4-tupleM = (X,A, P,R), where



X = {X1, . . . ,Xn} is a state space represented by a set of
state variables,A = {A1, . . . , Am} is an action space repre-
sented by a set of action variables,P (X′ | X,A) is a stochas-
tic transition model of state dynamics conditioned on the pre-
ceding state and action choice, andR is a reward model as-
signing immediate payoffs to state-action configurations1.
State variables: State variables are either discrete or contin-
uous. Every discrete variableXi takes on values from a finite
domainDom(Xi). Following Hauskrecht and Kveton 2004,
we assume that every continuous variable is bounded to the
[0, 1] subspace. The state is represented by a vector of value
assignmentsx = (xD,xC) which partitions along its discrete
and continuous componentsxD andxC .
Action variables: The action space is distributed and repre-
sented by action variablesA. The composite action is defined
by a vector of individual action choicesa = (aD,aC) which
partitions along its discrete and continuous componentsaD

andaC .
Transition model: The transition model is given by the con-
ditional probability distributionP (X′ | X,A), whereX and
X

′ denote the state variables at two successive time steps. We
assume that the model factors alongX

′ asP (X′ | X,A) =
∏n

i=1 P (X ′
i | Par(X ′

i)) and can be compactly represented by
a dynamic Bayesian network (DBN)[Dean and Kanazawa,
1989]. Usually, the parent setPar(X ′

i) ⊆ X ∪ A is a small
subset of state and action variables which allows for a local
parameterization of the model.
Parameterization of transition model: One-step dynamics
of every state variable is described by its conditional proba-
bility distribution P (X ′

i | Par(X ′
i)). If X ′

i is a continuous
variable, its transition function is represented by a mixture of
beta distributions[Hauskrecht and Kveton, 2004]:

P (x | Par(X ′
i))=

∑

j

πij
Γ(αj + βj)

Γ(αj)Γ(βj)
xαj−1(1−x)βj−1, (1)

whereπij is the weight assigned to thej-th component of
the mixture, andαj = φα

ij(Par(X ′
i)) andβj = φβ

ij(Par(X ′
i))

are arbitrary positive functions of the parent set. The mixture
of beta distributions provides a very general class of transition
functions and yet allows closed-form solutions to the integrals
in HALP. If X ′

i is a discrete variable, its transition model is
parameterized by|Dom(X ′

i)| nonnegative discriminant func-
tionsθj = φθ

ij(Par(X ′
i)) [Guestrinet al., 2004]:

P (j | Par(X ′
i)) =

θj

∑|Dom(X′

i)|
j=1 θj

. (2)

Reward model: The reward function is an additive function
R(x,a) =

∑

j Rj(xj ,aj) of local reward functions defined
on the subsets of state and action variablesXj andAj .
Optimal value function and policy: The quality of a pol-
icy is measured by theinfinite horizon discounted reward
E[

∑∞
t=0 γtrt], whereγ ∈ [0, 1) is a discount factorandrt

is the reward obtained at the time stept. This optimality cri-
terion guarantees that there always exists anoptimal policyπ∗

1General state and action space MDPis an alternative name for
a hybrid MDP. The termhybriddoes not refer to the dynamics of the
model, which is discrete-time.

which is stationary and deterministic[Puterman, 1994]. The
policy is greedy with respect to theoptimal value function
V ∗, which is a fixed point of the Bellman equation[Bellman,
1957; Bertsekas and Tsitsiklis, 1996]:

V ∗(x)=sup
a



R(x,a)+γ
∑

x′

D

∫

x′

C

P (x′ | x,a)V ∗(x′)dx′
C



. (3)

3 Hybrid ALP
Value iteration, policy iteration, and linear programmingare
the most fundamental dynamic programming (DP) methods
for solving MDPs[Puterman, 1994; Bertsekas and Tsitsiklis,
1996]. However, their computational complexity grows expo-
nentially in the number of used variables, which makes them
unsuitable for factored MDPs. Moreover, they are built on the
assumption of finite support for the optimal value function
and policy, which may not exist if continuous variables are
present. Recently, Fenget al.2004 showed how to solve gen-
eral state-space MDPs by performing DP backups of piece-
wise constant and piecewise linear value functions. This ap-
proximate method has a lower scale-up potential than HALP,
but does not require the design of basis functions.
Linear value function: Value function approximation is a
standard approach to solving large factored MDPs. Due to
its favorable computational properties,linear value function
approximation[Bellmanet al., 1963; Roy, 1998]:

V w(x) =
∑

i

wifi(x)

has become extremely popular in recent research[Guestrinet
al., 2001; Schuurmans and Patrascu, 2002; de Farias and Roy,
2003; Hauskrecht and Kveton, 2004; Guestrinet al., 2004].
This approximation restricts the form of the value function
V w to the linear combination of|w| basis functionsfi(x),
wherew is a vector of tunable weights. Every basis function
can be defined over the complete state spaceX, but often is
restricted to a subset of state variablesXi.

3.1 HALP formulation
Various methods for fitting of the linear value function ap-
proximation have been proposed and analyzed[Bertsekas and
Tsitsiklis, 1996]. We adopt a variation on approximate linear
programming (ALP)[Schweitzer and Seidmann, 1985], hy-
brid ALP (HALP)[Guestrinet al., 2004], which extends this
framework to the domains of discrete and continuous vari-
ables. The HALP formulation is given by:

minimizew
∑

i

wiαi

subject to:
∑

i

wiFi(x,a) − R(x,a) ≥ 0 ∀ x,a;

whereαi denotesbasis function relevance weight:

αi =
∑

xD

∫

xC

ψ(x)fi(x) dxC , (4)

ψ(x) is astate relevance density functionweighting the qual-
ity of the approximation, andFi(x,a) = fi(x) − γgi(x,a)



is the difference between the basis functionfi(x) and its dis-
countedbackprojection:

gi(x,a) =
∑

x′

D

∫

x′

C

P (x′ | x,a)fi(x
′) dx′

C . (5)

We say that the HALP isrelaxedif only a subset of the con-
straints is satisfied.

The HALP formulation reduces to the discrete-state ALP
[Schweitzer and Seidmann, 1985; Schuurmans and Patrascu,
2002; de Farias and Roy, 2003; Guestrinet al., 2003] if the
state and action variables are discrete, and to the continuous-
state ALP[Hauskrecht and Kveton, 2004] if the state vari-
ables are continuous. The quality of this approximation
was studied by Guestrinet al. 2004 and bounded with re-
spect tominw ‖V ∗ − V w‖∞,1/L, where‖·‖∞,1/L is a max-
norm weighted by the reciprocal of the Lyapunov function
L(x) =

∑

i wL
i fi(x). The integrals in the objective function

(Equation 4) and constraints (Equation 5) have closed-form
solutions if the basis functions and state relevance densities
are chosen appropriately[Hauskrecht and Kveton, 2004]. For
example, the mixture of beta transition model (Equation 1)
yields a closed-form solution to Equation 5 if the basis func-
tion fi(x

′) is a polynomial. Finally, we need an efficient con-
straint satisfaction procedure to solve HALP.

3.2 Constraint satisfaction in HALP
If the state and action variables are discrete, HALP involves
an exponential number of constraints, and if any of the vari-
ables are continuous, the number of constraints is infinite.
To approximate such a constraint space, two techniques have
been proposed recently:ε-HALP [Guestrinet al., 2004] and
Monte Carlo constraint sampling[de Farias and Roy, 2004;
Hauskrecht and Kveton, 2004].
ε-HALP: The ε-HALP formulation relaxes the continuous
portion of the constraint space to anε-grid by the discretiza-
tion of continuous variablesXC andAC . The new constraint
space spans discrete variables only and can be compactly sat-
isfied by the methods for discrete-state ALP[Guestrinet al.,
2001; Schuurmans and Patrascu, 2002]. For example, Schu-
urmans and Patrascu 2002 search for the most violated con-
straint with respect to the solutionw(t) of a relaxed ALP:

arg min
x,a

[

∑

i

w
(t)
i [fi(x) − γgi(x,a)] − R(x,a)

]

(6)

and add it to the linear program. If no violated constraint is
found,w(t) is an optimal solution to the ALP.

The space complexity of both constraint satisfaction meth-
ods[Guestrinet al., 2001; Schuurmans and Patrascu, 2002]
is exponential in the treewidth of the constraint space. This
is a serious limitation because the cardinality of discretized
variables grows with the resolution of theε-grid. Roughly, if
the discretized variables are replaced by binary, the treewidth
increases by a multiplicative factor oflog2(1/ε + 1), where
(1/ε + 1) is the number of discretization points in a single
dimension. Therefore, even problems with a relatively small
treewidth are intractable for small values ofε. In addition, the
ε-grid discretization is done blindly and impacts the quality
of the approximation.

Monte Carlo constraint sampling: Monte Carlo methods
approximate the constraint space in HALP by its finite sam-
ple. De Farias and Van Roy 2004 analyzed constraint sam-
pling for discrete-state ALP and bounded the sample size for
achieving good approximations by a polynomial in the num-
ber of basis functions and state variables. Hauskrecht and
Kveton 2004 applied random constraint sampling to solve
continuous-state factored MDPs and later refined their sam-
pler by heuristics[Kveton and Hauskrecht, 2004].

Monte Carlo constraint sampling is easily applied in con-
tinuous domains and can be implemented in a space propor-
tional to the number of variables. However, proposing an effi-
cient sampling procedure that guarantees a polynomial bound
on the sample size is as hard as knowing the optimal policy
itself [de Farias and Roy, 2004]. To lower a high number of
sampled constraints in a relaxed HALP, Monte Carlo sam-
plers can be embedded into the cutting plane method. A tech-
nique similar to Kveton and Hauskrecht 2004 yields signifi-
cant speedup with no drop in the quality of the approximation.

4 MCMC constraint sampling
To address the deficiencies of the discussed constraint satis-
faction techniques, we propose a novel Markov chain Monte
Carlo (MCMC) method for finding the most violated con-
straint of a relaxed HALP. Before we proceed, we compactly
represent the constraint space in HALP and formulate an op-
timization problem for finding the most violated constraintin
this representation.

4.1 Compact representation of constraints
Guestrin et al. 2001 and Schuurmans and Patrascu 2002
showed that the compact representation of constraints is es-
sential in solving ALP efficiently. Following their ideas, we
defineviolation magnitudeτw(x,a):

τw(x,a) = −
∑

i

wi[fi(x) − γgi(x,a)] + R(x,a) (7)

to be the amount by which the solutionw violates the con-
straints of a relaxed HALP. We representτw(x,a) compactly
by an influence diagram (ID), whereX andA are decision
nodes andX′ are random variables. The ID representation is
built on the transition modelP (X′ | X,A), which is already
factored and contains dependencies among the variablesX,
X

′, andA. We extend the diagram by three types of reward
nodes, one for each term in Equation 7:Rj = Rj(xj ,aj) for
every local reward function,Hi = −wifi(x) for every basis
function, andGi = γwifi(x

′) for every backprojection. The
construction is completed by adding arcs that represent the
dependencies of the reward nodes on the variables. Finally,
we verify thatτw(x,a) = EP (x′|x,a)[

∑

i(Hi+Gi)+
∑

j Rj ].
Therefore, the decision that maximizes the expected utility in
the ID corresponds to the most violated constraint.

We conclude that any algorithm for solving IDs can be
used to find the most violated constraint. Moreover, special
properties of the ID representation allow its further simplifi-
cation. If the basis functions are chosen conjugate to the tran-
sition model (Section 3.1), we obtain a closed-form solution
to EP (x′|x,a)[Gi] (Equation 5), and thus the random variables



X
′ can be marginalized out of the diagram. This new repre-

sentation contains no random variables and is know as acost
network[Guestrinet al., 2001].

4.2 Separation oracle
To find the most violated constraint in the cost network,
we use the Metropolis-Hastings (MH) algorithm[Metropo-
lis et al., 1953; Hastings, 1970] and construct a Markov
chain whose invariant distribution converges to the vicinity
of arg maxz τw(z), wherez = (x,a) and Z = X ∪ A

is a joint set of state and action variables. The Metropolis-
Hastings algorithm accepts the transition from a statez to a
proposed statez∗ with theacceptance probabilityA(z, z∗) =

min
{

1, p(z∗)q(z|z∗)
p(z)q(z∗|z)

}

, whereq(z∗ | z) is aproposal distribu-

tion andp(z) is a target density. Under mild restrictions on
p(z) andq(z∗ | z), the chain always converges to the target
densityp(z) [Andrieu et al., 2003]. In the rest of this sec-
tion, we discuss the choice ofp(z) andq(z∗ | z) to solve our
optimization problem.
Target density: The violation magnitudeτw(z) is turned
into a density by the transformationp(z) = exp[τw(z)]. Due
to its monotonic character,p(z) retains the same set of global
maxima asτw(z), and thus the search forarg maxz τw(z)
can be performed onp(z). To prove thatp(z) is a density, we
show that it has a normalizing constant

∑

zD

∫

zC
p(z) dzC ,

wherezD andzC are the discrete and continuous components
of the vectorz = (zD, zC). As the integrandzC is restricted
to the finite space[0, 1]|ZC |, the integral is proper as long as
p(z) is bounded, and therefore it is Riemann integrable and
finite. To prove thatp(z) is bounded, we boundτw(z). Let
Rmax denote the maximum one-step reward in the HMDP.
If the basis functions are of unit magnitude,wi can be typi-
cally bounded by|wi| ≤ γ(1− γ)−1Rmax, and consequently
|τw(z)| ≤ (|w| γ(1 − γ)−1 + 1)Rmax. Therefore,p(z) is
bounded and can be treated as a density function.

To find the mode ofp(z), we adopt the simulating an-
nealing approach[Kirkpatrick et al., 1983] and simulate a
non-homogeneous Markov chain whose invariant distribution
equals top1/Tt(z), whereTt is a decreasing cooling schedule
with limt→∞ Tt = 0. Under weak regularity assumptions on
p(z), p∞(z) is a probability density that concentrates on the
set of global maxima ofp(z) [Andrieu et al., 2003]. If the
cooling schedule decreases such thatTt ≥ c/ log2(t + 2),
wherec is a problem-specific constant independent oft, the
chain converges to the vicinity ofarg maxz τw(z) with the
probability converging to 1[Geman and Geman, 1984]. How-
ever, this schedule can be too slow in practice, especially for
a high initial temperaturec. Following the suggestion of Ge-
man and Geman 1984, we overcome this limitation by select-
ing a smaller value ofc than is required by the convergence
criterion. As a result, convergence to the global optimum
arg maxz τw(z) is no longer guaranteed.
Proposal distribution: We take advantage of the factored
character ofZ and adopt the following proposal distribution
[Geman and Geman, 1984]:

q(z∗ | z) =

{

p(z∗i | z−i) if z
∗
−i = z−i

0 otherwise
,

wherez−i andz
∗
−i are the assignments to all variables butZi

in the original and proposed states. IfZi is a discrete variable,
its conditionalp(z∗i | z−i) =

p(z1,...,zi−1,z∗

i ,zi+1,...,zn+m)
∑

zi
p(z1,...,zi−1,zi,zi+1,...,zn+m)

can be derived in a closed form. IfZi is a continuous variable,
a closed form of its cumulative density function is not likely
to exist. To allow sampling from its conditional, we embed
another MH step within the original chain. In the experimen-
tal section, we use the Metropolis algorithm with the accep-

tance probabilityA(zi, z
∗
i ) = min

{

1,
p(z∗

i |z−i)
p(zi|z−i)

}

, wherezi

andz∗i correspond to the original and proposed values ofZi.
Note that sampling from both conditionals can be performed
in the space ofτw(z) and locally.

Finally, we get a non-homogenous Markov chain with the

acceptance probabilityA(z, z∗) = min
{

1,
p1/Tt−1(z∗

i |z−i)

p1/Tt−1(zi|z−i)

}

that converges to the vicinity of the most violated constraint.
A similar chain was derived by Yuanet al.2004 and applied
to find the maximum a posteriori (MAP) configuration of ran-
dom variables in Bayesian networks.

4.3 Constraint satisfaction
If the MCMC oracle converges to a violated constraint (not
necessarily the most violated) in a polynomial time, it guar-
antees that the ellipsoid method can solve HALP in a poly-
nomial time[Bertsimas and Tsitsiklis, 1997]. However, con-
vergence of our chain within an arbitrary precision requires
an exponential number of steps[Geman and Geman, 1984].
Even if this bound is too weak to be of practical interest,
it suggests that the time complexity of finding a violated
constraint dominates the time complexity of solving HALP.
Therefore, the search for violated constraints should be per-
formed efficiently. Convergence speedups that directly ap-
ply to our work include hybrid Monte Carlo (HMC)[Du-
aneet al., 1987], slice sampling[Higdon, 1998], and Rao-
Blackwellization[Casella and Robert, 1996].

To evaluate the MCMC oracle, we embed it into the cutting
plane method for solving linear programs, which results in a
novel approach to solving HALP. As the oracle is not guar-
anteed to converge to the most violated constraint, we run the
cutting plane method for a fixed number of iterations rather
than having the same stopping criterion as Schuurmans and
Patrascu 2002 (Section 3.2). Our MCMC solver differs from
the Monte Carlo solver in that it samples constraints based on
their potential to improve the existing solution, which sub-
stitutes for an unknown problem-specific sampling distribu-
tion. Comparing to theε-HALP method, the MCMC oracle
directly operates in the domains of continuous variables and
its space complexity is linear in the number of variables.

5 Experiments
The performance of the MCMC solver is evaluated against
two alternative constraint satisfaction techniques:ε-HALP
and uniform Monte Carlo sampling. Due to space limitations,
our comparison focuses on two irrigation-network problems
[Guestrinet al., 2004], but our conclusions are likely to gen-
eralize across a variety of control optimization tasks. The
irrigation-network problems are challenging for state-of-the-
art MDP solvers due to the factored state and action spaces



Ring topology n = 6 n = 12 n = 18

OV Reward Time OV Reward Time OV Reward Time
1/4 24.3 35.1 ± 2.3 11 36.2 54.2 ± 3.0 43 48.0 74.5 ± 3.4 85

ε-HALP ε = 1/8 55.4 40.1 ± 2.4 46 88.1 62.2 ± 3.4 118 118.8 84.9 ± 3.8 193

1/16 59.1 40.4 ± 2.6 331 93.2 63.7 ± 2.8 709 126.1 86.8 ± 3.8 1 285

10 63.7 29.1 ± 2.9 43 88.0 51.8 ± 3.6 71 113.9 57.3 ± 4.6 101

MCMC N = 50 69.7 41.1 ± 2.6 221 111.0 63.3 ± 3.4 419 149.0 84.8 ± 4.2 682

250 70.6 40.4 ± 2.6 1 043 112.1 63.0 ± 3.1 1 864 151.8 86.0 ± 3.9 2 954

MC 51.2 39.2 ± 2.8 1 651 66.6 60.0 ± 3.1 3 715 81.7 83.8 ± 4.3 5 178

Ring-of-rings topology n = 6 n = 12 n = 18

OV Reward Time OV Reward Time OV Reward Time
1/4 28.4 40.1 ± 2.7 82 44.1 66.7 ± 2.7 345 59.8 93.1 ± 3.8 861

ε-HALP ε = 1/8 65.4 48.0 ± 2.7 581 107.9 76.1 ± 3.8 2 367 148.8 104.5 ± 3.5 6 377

1/16 68.9 47.1 ± 2.8 4 736 113.1 77.6 ± 3.7 22 699 156.9 107.8 ± 3.9 53 600

10 68.5 45.0 ± 2.7 69 99.9 67.4 ± 3.8 121 109.1 39.4 ± 4.1 173

MCMC N = 50 81.1 47.4 ± 2.9 411 131.5 76.2 ± 3.7 780 182.7 104.3 ± 4.1 1 209

250 81.9 47.1 ± 2.5 1 732 134.0 78.2 ± 3.6 3 434 185.8 106.7 ± 4.1 5 708

MC 55.6 43.6 ± 2.9 2 100 73.7 74.8 ± 3.9 5 048 92.1 102.0 ± 4.2 6 897

Figure 1: Comparison of HALP solvers on two irrigation-network topologies of varying sizes (n). The solvers are compared by
the objective value of a relaxed HALP (OV), the expected discounted reward of a corresponding policy, and computation time
(in seconds). The expected discounted reward is estimated by the Monte Carlo simulation of 100 trajectories. Theε-HALP and
MCMC solvers are parameterized by the resolution ofε-grid (ε) and the number of iterations (N ).

(Figure 1). The goal of an irrigation network operator is to
select discrete water-routing actionsAD to optimize contin-
uous water levelsXC in multiple interconnected irrigation
channels. The transition model is parameterized by beta dis-
tributions and represents water flows conditioned on the op-
eration modes of regulation devices. The reward function is
additive and given by a mixture of two normal distributions
for each channel. The optimal value function is approximated
by a linear combination of four univariate piecewise linear
basis functions for each channel[Guestrinet al., 2004]. The
state relevance density functionψ(x) is uniform. A compre-
hensive description of the irrigation-network problems can be
found in Guestrinet al.2004.

The ε-HALP solver is implemented with the method of
Schuurmans and Patrascu 2002 as described in Section 3.2.
The Monte Carlo solver uniformly generates one million con-
straints and establishes a baseline for the comparison to an
uninformatively behaving sampling method. The chain of
the MCMC oracle is simulated for 500 steps from the ini-
tial temperaturec = 0.2, which yields a decreasing cooling
schedule fromT0 = 0.2 to T500 ≈ 0.02. These parameters
were chosen empirically to demonstrate the characteristics of
our approach rather than to maximize the performance of the
MCMC oracle. All experiments were performed on a Dell
Precision 340 workstation with 2GHz Pentium 4 CPU and
1GB RAM. All linear programs were solved by the simplex
method in the LPSOLVE package. The results of the exper-
iments are reported in Figure 1.

Based on our results, we draw the following conclusions.
First, the MCMC solver (N = 250) achieves the highest ob-
jective values on all problems. Higher objective values canbe
interpreted as closer approximations to the constraint space in
HALP since the solvers operate on relaxed versions of HALP.
Second, the quality of the MCMC policies (N = 250) sur-
passes the Monte Carlo ones while both solvers consume ap-
proximately the same computation time. This result is due to

the informative search for violated constraints in the MCMC
solver. Third, the quality of the MCMC policies (N = 250)
is close to theε-HALP ones (ε = 1/16), but does not surpass
them significantly. In the irrigation-network problems, the ε-
HALP policies (ε = 1/16) are already close to optimal, and
therefore hard to improve. Even if the MCMC solver reaches
higher objective values than theε-HALP solver, the policies
may not improve due to the suggestive relationship between
our true objectiveminw ‖V ∗ − V w‖∞,1/L and the objective
of HALP minw ‖V ∗ − V w‖1,ψ

[Guestrinet al., 2004].
Finally, the computation time of theε-HALP solver is se-

riously affected by the topologies of tested networks, which
can be explained as follows. For a smallε and largen, the
time complexity of formulating cost networks grows approx-
imately by the rates of(1/ε + 1)2 and (1/ε + 1)3 for the
ring and ring-of-rings topologies, respectively. Theε-HALP
solver spends a significant amount of time by formulating
cost networks, which makes its decent time complexity on
the ring topology (quadratic in1/ε + 1) deteriorate on the
ring-of-rings topology (cubic in1/ε + 1). A similar cross-
topology comparison of the MCMC solver shows that its
computation times differ only by a multiplicative factor of2.
This difference is due to the increased complexity of sampling
p(z∗i | z−i), which is caused by more complex local depen-
dencies, and not the treewidth of the ring-of-rings topology.

6 Conclusions

Development of scalable algorithms for solving large factored
MDPs is a challenging task. The MCMC approach presented
in this paper is a small but important step in this direction.In
particular, our method overcomes the limitations of existing
approaches to solving HALP and works directly with con-
tinuous variables, generates constraints based on their poten-
tial to improve the existing solution, and its space complexity
is linear in the number of variables. Moreover, the MCMC



solver seems to be less affected by larger treewidth than the
ε-HALP method while delivering substantially better results
than uniform Monte Carlo sampling. Empirical results on
two large control problems confirm the expected benefits of
the approach and its potential to tackle complex real-world
optimization problems. The objective of our future research
is to eliminate the assumptions placed on the transition model
and basis functions, which would make the framework appli-
cable to a broader class of problems.
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