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Abstract

Hybrid approximate linear programming (HALP)
has recently emerged as a promising framework for
solving large factored Markov decision processes
(MDPs) with discrete and continuous state and ac-
tion variables. Our work addresses its major com-
putational bottleneck — constraint satisfaction in
large structured domains of discrete and continuous
variables. We analyze this problem and propose a
novel Markov chain Monte Carlo (MCMC) method
for finding the most violated constraint of a relaxed
HALP. This method does not require the discretiza-
tion of continuous variables, searches the space of
constraints intelligently based on the structure of
factored MDPs, and its space complexity is linear
in the number of variables. We test the method on a
set of large control problems and demonstrate im-
provements over alternative approaches.

I ntroduction

Milos Hauskrecht
Department of Computer Science
University of Pittsburgh
milos@cs.pitt.edu

Patrascu, 2042 However, these methods are exponential in
the treewidth of the discretized constraint space, whitiiti
their application to real-world problems. In addition, t#e
grid discretization is done blindly and impacts the quadity
the approximation. Monte Carlo methdde Farias and Roy,
2004; Hauskrecht and Kveton, 2q0dffer an alternative to
thee-grid discretization and approximate the constraint space
in HALP by its finite sample. Unfortunately, the efficiency of
Monte Carlo methods is heavily dependent on an appropriate
choice of sampling distributions. The ones that yield gged a
proximations and polynomial sample size bounds are closely
related to the optimal solutions and rarely known a pride
Farias and Roy, 2004

To overcome the limitations of the discussed constraint sat
isfaction techniques, we propose a novel Markov chain Monte
Carlo (MCMC) method for finding the most violated con-
straint of a relaxed HALP. The method directly operates in
the domains of continuous variables, takes into account the
structure of factored MDPs, and its space complexity is pro-
portional to the number of variables. Such a separation ora-
cle can be easily embedded into the ellipsoid or cuttingglan

method for solving linear programs, and therefore cortsttu

a key step towards solving HALP efficiently.

The paper is structured as follows. First, we introduce hy-
id MDPs and HALFA Guestrinet al., 2004, which are our
frameworks for modeling and solving large-scale stochasti
gaecision problems. Second, we review existing approaches t
solving HALP and discuss their limitations. Third, we com-
pactly represent the constraint space in HALP and formulate
an optimization problem for finding the most violated con-
straint of a relaxed HALP. Fourth, we design a Markov chain
to solve this optimization problem and embed it into the cut-
ting plane method. Finally, we test our HALP solver on a

dresses its major computational bottleneck — constratig-sa .
faction in the domains of discrete and continuous variables S€t of Ia_rge control problems and compare its performance to
alternative approaches.

If the state and action variables are discrete, HALP in-
volves an exponential number of constraints, and if anyef th .
variables are continuous, the number of constraints isiiafin 2 Hybrid factored MDPs
To approximate the constraint space in HALP, two technique&actored MDP$Boutilier et al., 1993 allow a compact rep-
have been proposed:-HALP [Guestrinet al, 2004 and  resentation of large stochastic planning problems by éxplo
Monte Carlo constraint samplingle Farias and Roy, 2004; ing their structure. In this section, we review hybrid faetb
Hauskrecht and Kveton, 20D4Thee-HALP formulation re-  MDPs[Guestrinet al., 2004, which extend this formalism to
laxes the continuous portion of the constraint space te-an the domains of discrete and continuous variables.
grid, which can be compactly satisfied by the methods for A hybrid factored MDP with distributed actions (HMDP)
discrete-state ALRGuestrinet al, 2001; Schuurmans and [Guestrinet al, 2004 is a 4-tupleM = (X, A, P, R), where

Markov decision processes (MDP8ellman, 1957; Puter-
man, 1994 offer an elegant mathematical framework for
solving sequential decision problems in the presence of urB
certainty. However, traditional techniques for solving RI® r
are computationally infeasible in real-world domains, ethi
are factored and contain both discrete and continuous sta
and action variables. Recently, approximate linear progra
ming (ALP) [Schweitzer and Seidmann, 198%as emerged
as a promising approach to solving large factored Miifes
Farias and Roy, 2003; Guestrt al, 2003. This work fo-
cuses on hybrid ALP (HALP)Guestrinet al, 2004 and ad-



X = {Xy,...,X,} is a state space represented by a set ofvhich is stationary and determinisfiPuterman, 1994 The
state variablesA = {4,,..., 4,,} is an action space repre- policy is greedy with respect to theptimal value function
sented by a set of action variablé¥X’ | X, A) isastochas- V*, which is a fixed point of the Bellman equatifellman,

tic transition model of state dynamics conditioned on thee pr 1957; Bertsekas and Tsitsiklis, 1996

ceding state and action choice, aRds a reward mod%el as-

signing immediate payoffs to state-action configurattons N , N
Statevariables: State variables are either discrete or contin-"’ (X):S‘;p R(x, aHWZ/X,P(X | x,2)V*(x)dxc|- (3)
uous. Every discrete variablé; takes on values from a finite x;

domainDom(X;). Following Hauskrecht and Kveton 2004, .

we assume Ehat) every continuous variable is bounded to th% Hybrid ALP

[0,1] subspace. The state is represented by a vector of valiéalue iteration, policy iteration, and linear programmizg
assignments = (xp, x¢) which partitions along its discrete the most fundamental dynamic programming (DP) methods
and continuous componerxs, andxc. for solving MDPs[Puterman, 1994; Bertsekas and Tsitsiklis,
Action variables: The action space is distributed and repre-1996. However, their computational complexity grows expo-
sented by action variables. The composite action is defined nentially in the number of used variables, which makes them
by a vector of individual action choices= (ap,ac) which  unsuitable for factored MDPs. Moreover, they are built @ th
partitions along its discrete and continuous componepts assumption of finite support for the optimal value function
andac. and policy, which may not exist if continuous variables are
Transition model: The transition model is given by the con- present. Recently, Fergg al. 2004 showed how to solve gen-
ditional probability distributionP(X’ | X, A), whereX and  eral state-space MDPs by performing DP backups of piece-
X’ denote the state variables at two successive time steps. Widse constant and piecewise linear value functions. This ap
assume that the model factors alaigasP(X’ | X,A) =  proximate method has a lower scale-up potential than HALP,
[T7, P(X] | Par(X])) and can be compactly represented bybut does not require the design of basis functions.

a dynamlc Baye3|an network (DBNIPean and Kanazawa, Linear value function: Value function approximation is a
1989. Usually, the parent setar(X/) C X U A isasmall  standard approach to solving large factored MDPs. Due to
subset of state and action variables which allows for a locaits favorable computational propertidsiear value function

parameterization of the model. approximationBellmanet al, 1963; Roy, 1998
Parameterization of transition model: One-step dynamics -
of every state variable is described by its conditional prob V¥(x) = Zwifi(x)

bility distribution P(X/ | Par(X/)). If X/ is a continuous
variable, its transition function is represented by a miif  has become extremely popular in recent resebetestrinet

beta distribution§Hauskrecht and Kveton, 20p4 al., 2001; Schuurmans and Patrascu, 2002; de Farias and Roy,
(aj + 5;) o 51 2003; Hauskrecht and Kveton, 2004; Guesgtral, 2004.
P(z | Par(X ZMF r5)" (1-2)”7%, (1)  This approximation restricts the form of the value function
J

V™ to the linear combination dfw| basis functionsf;(x),

wherer;; is the we|ght assigned to theth component of wherew is a vector of tunable weights. Every basis function
the mixttjre ands, ¢ (Par(X!)) andg; = ¢5 (Par(X!) can be defined over the complete state spacéut often is
J

are arbitrary posmve functlons of the parent set. The omaxt restricted to a subset of state variakes
of beta distributions provides a very general classofttams 31 HALP formulation

functions and yet allows closed-form solutions to the ireégy

in HALP. If X/ is a discrete variable, its transition model is
parameterized bjDom (X /)| nonnegative discriminant func-
tionsf; = fj(Par(X;)) [Guestrinet al,, 2004:

Various methods for fitting of the linear value function ap-
proximation have been proposed and analyB=itsekas and
Tsitsiklis, 1998. We adopt a variation on approximate linear
programming (ALP)Schweitzer and Seidmann, 1988y-

_ ) 0 brid ALP (HALP)[Guestrinet al,, 2004, which extends this
P(j | Par(X;)) = pom(, (2)  framework to the domains of discrete and continuous vari-
ZJ 1 0 ables. The HALP formulation is given by:
Reward model: The reward function is an additive function minimize, Z w;a;

R(x,a) = 3, R;(x;,a;) of local reward functions defined
on the subsets of state and action variablesandA ;.
Optimal value function and policy: The quality of a pol-
icy is measured by th@nfinite horizon discounted reward
E[D "2 o7, wherey € [0,1) is adiscount factorandr,  whereo; denoteeba5|s function relevance weight

is the reward obtained at the time steplhis optimality cri-

terion guarantees that there always existsimal policyr* Z x) dxc, (4)

subject to: Zwl x,a) — R(x,a) >0 Vx,a;

'General state and action space MO¥an alternative name for ] o
a hybrid MDP. The ternhybrid does not refer to the dynamics of the t(x) is astate reIevance density functiereighting the qual-
model, which is discrete-time. ity of the approximation, and’;(x,a) = f;(x) — v¢:(x,a)



is the difference between the basis functjo(x) and its dis- Monte Carlo constraint sampling: Monte Carlo methods

countedbackprojection approximate the constraint space in HALP by its finite sam-
ple. De Farias and Van Roy 2004 analyzed constraint sam-

gi(x,a) = Z/ P(x' | x,a)fi(x') dx¢. (5)  pling for discrete-state ALP and bounded the sample size for

x|, X achieving good approximations by a polynomial in the num-

ber of basis functions and state variables. Hauskrecht and
Kveton 2004 applied random constraint sampling to solve
continuous-state factored MDPs and later refined their sam-
er by heuristic§Kveton and Hauskrecht, 20D4

'Monte Carlo constraint sampling is easily applied in con-
tinuous domains and can be implemented in a space propor-
tional to the number of variables. However, proposing an effi
cient sampling procedure that guarantees a polynomialdoun
on the sample size is as hard as knowing the optimal policy
itself [de Farias and Roy, 2004To lower a high number of
sampled constraints in a relaxed HALP, Monte Carlo sam-
plers can be embedded into the cutting plane method. A tech-
nique similar to Kveton and Hauskrecht 2004 yields signifi-
Mant speedup with no drop in the quality of the approximation

We say that the HALP igselaxedif only a subset of the con-
straints is satisfied.

The HALP formulation reduces to the discrete-state ALP
[Schweitzer and Seidmann, 1985; Schuurmans and Patrasch
2002; de Farias and Roy, 2003; Guestiral, 2009 if the
state and action variables are discrete, and to the contiuo
state ALP[Hauskrecht and Kveton, 20D# the state vari-
ables are continuous. The quality of this approximation
was studied by Guestriat al. 2004 and bounded with re-
spect tominy [[V* = VY|, where[|-||  ,,; is a max-
norm weighted by the reciprocal of the Lyapunov function
L(x) = >, wF fi(x). The integrals in the objective function
(Equation 4) and constraints (Equation 5) have closed-for
solutions if the basis fet[mctions and state relevanc% deasit
are chosen appropriatdlidauskrecht and Kveton, 2004~or . .
example, the mixture of beta transition model (Equation 1)4 MCMC constraint sampling
yields a closed-form solution to Equation 5 if the basis func To address the deficiencies of the discussed constraist sati
tion f;(x’) is a polynomial. Finally, we need an efficient con- faction techniques, we propose a novel Markov chain Monte

straint satisfaction procedure to solve HALP. Carlo (MCMC) method for finding the most violated con-
, ) L straint of a relaxed HALP. Before we proceed, we compactly
3.2 Congtraint satisfaction in HALP represent the constraint space in HALP and formulate an op-

If the state and action variables are discrete, HALP inwlve timization problem for finding the most violated constramt

an exponential number of constraints, and if any of the varithis representation.

ables are continuous, the number of constraints is infinite. ] )

To approximate such a constraint space, two techniques hasel Compact representation of constraints

been proposed recently:HALP [Guestrinet al, 2004 and ~ Guestrinet al. 2001 and Schuurmans and Patrascu 2002
Monte Carlo constraint samplinigle Farias and Roy, 2004; showed that the compact representation of constraints is es
Hauskrecht and Kveton, 204 sential in solving ALP efficiently. Following their ideas.ew
e-HALP: The e-HALP formulation relaxes the continuous defineviolation magnitude-* (x, a):

portion of the constraint space to asgrid by the discretiza-

tion of continuous variableX - andA¢. The new constraint 7V (x,a) = — Z w;[fi(x) —vgi(x,a)] + R(x,a)  (7)
space spans discrete variables only and can be compaetly sat i

isfied by the methods for discrete-state Aluestrinet al,
2001; Schuurmans and Patrascu, 40@br example, Schu-
urmans and Patrascu 2002 search for the most violated co
straint with respect to the solution(*) of a relaxed ALP:

to be the amount by which the solutien violates the con-
traints of a relaxed HALP. We represefit(x, a) compactly
y an influence diagram (ID), whei€ and A are decision
nodes andX’ are random variables. The ID representation is
) ) built on the transition modeP(X’ | X, A), which is already
arg mmin Zwi [fi(x) = 79i(x, )] — R(x,a) (6)  factored and contains dependencies among the variahles
' i X', andA. We extend the diagram by three types of reward
and add it to the linear program. If no violated constraint isnodes, one for each term in Equation¥; = R;(x;,a;) for
found,w(®) is an optimal solution to the ALP. every local reward functiontl; = —w; f;(x) for every basis
The space complexity of both constraint satisfaction methfunction, andG; = yw; f;(x’) for every backprojection. The
ods[Guestrinet al, 2001; Schuurmans and Patrascu, 4002 construction is completed by adding arcs that represent the
is exponential in the treewidth of the constraint space.s Thi dependencies of the reward nodes on the variables. Finally,
is a serious limitation because the cardinality of diseesti ~ we verify thatr™ (x, a) = Ep(x/|x,a)[>_; (Hi+Gi)+>_; R;l.
variables grows with the resolution of thegrid. Roughly, if ~ Therefore, the decision that maximizes the expectedyuitilit
the discretized variables are replaced by binary, the fdtbw the ID corresponds to the most violated constraint.
increases by a multiplicative factor tfg,(1/¢ + 1), where We conclude that any algorithm for solving IDs can be
(1/e + 1) is the number of discretization points in a single used to find the most violated constraint. Moreover, special
dimension. Therefore, even problems with a relatively $malproperties of the ID representation allow its further siifirpl
treewidth are intractable for small valuescofin addition, the  cation. If the basis functions are chosen conjugate to #we tr
e-grid discretization is done blindly and impacts the qualit sition model (Section 3.1), we obtain a closed-form sohutio
of the approximation. t0 Ep(x/|x.a)[G:] (EQuation 5), and thus the random variables



X'’ can be marginalized out of the diagram. This new repre
sentation contains no random variables and is knowasa
network[Guestrinet al,, 2001.

4.2 Separation oracle

To find the most violated constraint in the cost network,
we use the Metropolis-Hastings (MH) algorithiletropo-

lis et al, 1953; Hastings, 1970and construct a Markov
chain whose invariant distribution converges to the vigini
of argmax, 7%(z), wherez = (x,a) andZ = X U A

wherez_; andz* ; are the assignments to all variables Bt
in the original and proposed statesZIfis a discrete variable,

its conditionalp(z;‘ | Z,Z-) _ ZP(217~~,Zi—1~,Zi7Zi+1,-~-,2n+m)

- D(Z1 50y Zim1 520, Zig 1y ees
can be derived in a closed form.4f is a continuous variable,
a closed form of its cumulative density function is not likel
to exist. To allow sampling from its conditional, we embed
another MH step within the original chain. In the experimen-
tal section, we use the Metropolis algorithm with the accep-

tance probability4(z;, z;) = min {1, ’;((f":j)) } wherez;

is a joint set of state and action variables. The Metropolisandz; correspond to the original and proposed value&of

Hastings algorithm accepts the transition from a state a
proposed state* with theacceptance probability(z, z*) =
min {17 % } whereg(z* | z) is aproposal distribu-
tion andp(z) is atarget density Under mild restrictions on
p(z) andq(z* | z), the chain always converges to the target
densityp(z) [Andrieuet al, 2003. In the rest of this sec-
tion, we discuss the choice pfz) andq(z* | z) to solve our
optimization problem.

Target density: The violation magnitude-"(z) is turned
into a density by the transformati@iiz) = exp[7V(z)]. Due

to its monotonic charactep(z) retains the same set of global
maxima asr*(z), and thus the search farg max, 7% (z)
can be performed op(z). To prove thap(z) is a density, we

of the vectorz = (zp, z¢). As the integrand is restricted
to the finite spacé, 1]/%<!, the integral is proper as long as
p(z) is bounded, and therefore it is Riemann integrable an
finite. To prove thap(z) is bounded, we bound™(z). Let
Rpax denote the maximum one-step reward in the HMDP.
If the basis functions are of unit magnitude; can be typi-
cally bounded byw;| < (1 —v)~! Riax, and consequently
|7V (z)| < (Jw]y(1 —)~! + 1)Rpax. Thereforep(z) is
bounded and can be treated as a density function.

To find the mode ofp(z), we adopt the simulating an-
nealing approactiKirkpatrick et al, 1983 and simulate a
non-homogeneous Markov chain whose invariant distriloutio
equals tg'/ "t (z), whereT; is a decreasing cooling schedule
with lim; ., T3 = 0. Under weak regularity assumptions on
p(z), p>(z) is a probability density that concentrates on the
set of global maxima op(z) [Andrieu et al, 2003. If the
cooling schedule decreases such that> ¢/log,(t + 2),
wherec is a problem-specific constant independent,dhe
chain converges to the vicinity afrg max, 7V (z) with the
probability converging to iGeman and Geman, 1984ow-
ever, this schedule can be too slow in practice, especiatly f
a high initial temperature. Following the suggestion of Ge-

man and Geman 1984, we overcome this limitation by select5

ing a smaller value of than is required by the convergence

¢

Note that sampling from both conditionals can be performed
in the space ofV(z) and locally.

Finally, we get a non-homogenous Markov chain with the
acceptance probabilityl(z, z*) = min {1 M}

) ’ pl/thl(Zi\z,i)
that converges to the vicinity of the most violated constrai
A similar chain was derived by Yuaet al. 2004 and applied
to find the maximum a posteriori (MAP) configuration of ran-
dom variables in Bayesian networks.

4.3 Constraint satisfaction

If the MCMC oracle converges to a violated constraint (not
necessarily the most violated) in a polynomial time, it guar

antees that the ellipsoid method can solve HALP in a poly-
nomial time[Bertsimas and Tsitsiklis, 1997However, con-

Jergence of our chain within an arbitrary precision recgiire

an exponential number of stepGeman and Geman, 1984
Even if this bound is too weak to be of practical interest,
it suggests that the time complexity of finding a violated
onstraint dominates the time complexity of solving HALP.
Therefore, the search for violated constraints should Ipe pe
formed efficiently. Convergence speedups that directly ap-
ply to our work include hybrid Monte Carlo (HMJ)Du-
aneet al, 1987, slice samplingHigdon, 1998, and Rao-
Blackwellization[Casella and Robert, 19P6

To evaluate the MCMC oracle, we embed it into the cutting
plane method for solving linear programs, which results in a
novel approach to solving HALP. As the oracle is not guar-
anteed to converge to the most violated constraint, we rein th
cutting plane method for a fixed number of iterations rather
than having the same stopping criterion as Schuurmans and
Patrascu 2002 (Section 3.2). Our MCMC solver differs from
the Monte Carlo solver in that it samples constraints based o
their potential to improve the existing solution, which sub
stitutes for an unknown problem-specific sampling distribu
tion. Comparing to the-HALP method, the MCMC oracle
directly operates in the domains of continuous variables an
its space complexity is linear in the number of variables.

Experiments

criterion. As a result, convergence to the global optimumThe performance of the MCMC solver is evaluated against

arg max, 7" (z) is no longer guaranteed.
Proposal distribution: We take advantage of the factored
character ofZ and adopt the following proposal distribution
[Geman and Geman, 1984
N ifz*, =2z_;
q(z" | 2) = { otherwise

Pz | 2-4)
0

)

two alternative constraint satisfaction techniquesHALP

and uniform Monte Carlo sampling. Due to space limitations,
our comparison focuses on two irrigation-network problems
[Guestrinet al., 2004, but our conclusions are likely to gen-
eralize across a variety of control optimization tasks. The
irrigation-network problems are challenging for statetod-

art MDP solvers due to the factored state and action spaces



Ring topology n==06 n =12 n =18
oV Reward Time ov Rewar Time [e)Y} Rewar Time
1/4] 24.3| 35.1 £ 2.3 11| 36.2| 54.2 £ 3.0 43| 48.0| 74.5+3.4 85
e-HALP = 1/8 55.4| 40.1 £2.4 46| 88.1| 62.2+ 3.4 118| 118.8| 84.94+ 3.8 193
1/16| 59.1| 40.4 £ 2.6 331 93.2| 63.7 £ 2.8 709| 126.1| 86.8 £3.8| 1285
10| 63.7] 29.1 £2.9 43| 88.0| 51.8 + 3.6 71| 113.9] 57.3+4.6 101
MCMC N = 50| 69.7| 41.1+2.6 2211 111.0] 63.3+3.4 419 149.0| 84.8 4.2 682
250| 70.6| 40.44+2.6| 1043| 112.1] 63.0£3.1| 1864| 151.8| 86.0+3.9| 2954

MC 51.2] 39.2+2.8] 1651] 66.6] 60.0+3.1] 3715 81.7| 83.8+£4.3] 5178
Ring-of-rings topology n==56 n =12 n =18
oV Reward Time oV Rewar Time oV Rewar Time

1/4| 28.4] 40.1 £2.7 82| 44.1| 66.7 £2.7 345 959.8] 93.1+£3.8 861

e-HALP &= 1/8| 65.4| 48.0£2.7| 581| 107.9| 76.1 £3.8| 2367| 148.8| 104.5+3.5| 6377
1/16| 68.9| 47.1 £2.8| 4736| 113.1| 77.6 £3.7| 22699| 156.9| 107.8 £ 3.9| 53 600

10| 68.5| 45.0 £2.7 69| 99.9| 67.4+£38 121| 109.1| 39.4+4.1 173

MCMC N = 50| 81.1| 474+2.9| 411| 131.5| 76.2+3.7 780| 182.7| 104.3 +4.1| 1209
250 81.9| 47.1£2.5| 1732 134.0| 782£3.6| 3434| 185.8| 106.7£4.1| 5708

MC 55.6( 43.6 2.9 2100 73.7| 74.8+£3.9] 5048 92.1| 102.0£4.2| 6897

Figure 1: Comparison of HALP solvers on two irrigation-netkwtopologies of varying sizes]. The solvers are compared by
the objective value of a relaxed HALP (OV), the expectedalisted reward of a corresponding policy, and computatioe ti
(in seconds). The expected discounted reward is estimgtétetMonte Carlo simulation of 100 trajectories. ThelALP and
MCMC solvers are parameterized by the resolution-gfid (¢) and the number of iterationsv).

(Figure 1). The goal of an irrigation network operator is tothe informative search for violated constraints in the MCMC
select discrete water-routing actioAs, to optimize contin-  solver. Third, the quality of the MCMC policies\ = 250)
uous water levelX in multiple interconnected irrigation is close to the-HALP ones € = 1/16), but does not surpass
channels. The transition model is parameterized by beta dishem significantly. In the irrigation-network problemseth
tributions and represents water flows conditioned on the opHALP policies € = 1/16) are already close to optimal, and
eration modes of regulation devices. The reward function igherefore hard to improve. Even if the MCMC solver reaches
additive and given by a mixture of two normal distributions higher objective values than theHALP solver, the policies

for each channel. The optimal value function is approximiate may not improve due to the suggestive relationship between
by a linear combination of four univariate piecewise linearour true objectiveniny, ||[V* — V%[, ,; and the objective
basis functions for each chanri@uestrinet al, 2004. The  of HALP min,, V=V, [Guestrinet al, 2004.

state relevance density functigr{x) is uniform. A compre- Finally, the computation time of the HALP solver is se-

hensiv_e descrip_tion of the irrigation-network problems ba riously affected by the topologies of tested networks, Wwhic
found in Guestriret al. 2004. can be explained as follows. For a smaknd largen, the
The e-HALP solver is implemented with the method of time complexity of formulating cost networks grows approx-
Schuurmans and Patrascu 2002 as described in Section 3jgately by the rates of1/e + 1) and (1/¢ + 1)? for the
The Monte Carlo solver uniformly generates one million con-ring and ring-of-rings topologies, respectively. ThelALP
straints and establishes a baseline for the comparison to &plver spends a significant amount of time by formulating
uninformatively behaving sampling method. The chain ofcost networks, which makes its decent time complexity on
the MCMC oracle is simulated for 500 steps from the ini- the ring topology (quadratic it/ + 1) deteriorate on the
tial temperature: = 0.2, which yields a decreasing cooling ring-of-rings topology (cubic in /e + 1). A similar cross-
schedule fronily = 0.2 to T509 ~ 0.02. These parameters topology comparison of the MCMC solver shows that its
were chosen empirically to demonstrate the charactesisic computation times differ only by a multiplicative factor f

our approach rather than to maximize the performance of thehis difference is due to the increased complexity of sangpli
MCMC oracle. All experiments were performed on a Dell 5(2* | z_;), which is caused by more complex local depen-

Precision 340 workstation with 2GHz Pentium 4 CPU an dencies, and not the treewidth of the ring-of-rings topglog
1GB RAM. All linear programs were solved by the simplex
method in the LESOLVE package. The results of the exper-
iments are reported in Figure 1.

Based on our results, we draw the following conclusions Development of scalable algorithms for solving large feati
First, the MCMC solver § = 250) achieves the highest ob- MDPs is a challenging task. The MCMC approach presented
jective values on all problems. Higher objective valueslman in this paper is a small but important step in this direction.
interpreted as closer approximations to the constrairtespe. ~ particular, our method overcomes the limitations of ergti
HALP since the solvers operate on relaxed versions of HALPapproaches to solving HALP and works directly with con-
Second, the quality of the MCMC policiesvV(= 250) sur-  tinuous variables, generates constraints based on theinpo
passes the Monte Carlo ones while both solvers consume apal to improve the existing solution, and its space comityex
proximately the same computation time. This result is due tas linear in the number of variables. Moreover, the MCMC

6 Conclusions



solver seems to be less affected by larger treewidth than the of the 20th Conference on Uncertainty in Artificial Intelligence
e-HALP method while delivering substantially better result ~ pages 154-161, 2004.

than Uniform Monte Carlo Sampling. Empirical reSUltS on [Geman and Geman, lgB@tuart Geman and Donald Geman.
two large control problems confirm the expected benefits of Stochastic relaxation, Gibbs distribution, and the Bayesian
the approach and its potential to tackle complex real-world restoration of images.IEEE Transactions on Pattern Analysis
optimization problems. The objective of our future resharc  and Machine Intelligences(6):721-741, 1984.

is to eliminate the assumptions placed on the transitionehod [Guestrinet al, 2001 Carlos Guestrin, Daphne Koller, and Ronald
and basis functions, which would make the framework appli- Parr. Max-norm projections for factored MDPs. Rroceedings

cable to a broader class of problems. of the 17th International Joint Conference on Atrtificial Intelli-
gence pages 673—682, 2001.
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