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The resource constrained project scheduling problen"fl
(RCPSP) is one of the most general scheduling problem th
is extensively studied in the literature. It consists in schedul
ing a project, which is a set of activities linked with prece-
dence constraints, by means of a set of limited resourc
while minimizing the total duration of the project. The de-
cision variant of the RCPSP, i.e., the problem of determinin
whether there exists a feasible project of makespan small
than a given deadline, is NP-hard in the strong sense. Th

RCPSP is a very popular and frequently studied NP-hard opthe
timization problem and the last 20 years have witnessed 6RCPSP) can be formally stated as follows.
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Abstract

This paper describes a simple complete search for
cumulative scheduling based on the detection and
resolution of minimal critical sets(MCS). The
heuristic for selecting MCSs relies on an estima-
tion of the related reduction of the search space.
An extension of the search procedure usgaif-
adapting shavings proposed. The approach was
implemented on top of classical constraint propaga-
tion algorithms and tested on resource constrained
project scheduling problems (RCPSP). We were
able to close more than 15% of the previously open
problems of the PSPLIBKolisch and Sprecher,
1994 and improve more than 31% of the best
known lower bounds on those heavily studied prob-
lems. Other new results on open-shop and cumula-
tive job-shop scheduling are reported.

Introduction

In this article, we present a pure constraint programming
approach based on the exploration of a complete search tree to
prove that the project cannot be achieved within a given dead-
line or to exhibit a feasible project if one exists. The search
procedure is based on the detection and resolutionioinal
critical sets(MCS)[Laborie and Ghallab, 199%t each node
of the search. MCSs are carefully chosen using a heuristic
that tries to minimize the size of the search space. During
the search, strong constraint propagation is enforced using
classical scheduling constraint propagation techniques such
astime-tabling edge-findingprecedence energndbalance
constraintdLaborie, 2003.

Next section recap the definition of the resource con-
strained project scheduling problem and introduces some no-
tations. Section 3 describes our basic search procedure as
well as the heuristic to select MCSs. Section 4 extends the
basic search procedure to perfosgif-adapting shavingrhe
last part of the paper consists of experimental results on clas-
sical benchmarks (general RCPSP, open-shop and cumulative
jobshop problems). For general RCPSP, we show that our ap-
proach closes more than 15% of previously open instances
nd improves more than 31% of best known lower bounds of
e famous PSPLIB instanc@&olisch and Sprecher, 1996
The same approach using exactely the same settings was used
to close all the hard open-shop instancelGféret and Prins,

999 in less than 5s CPU time and to improve the best known
ower bounds and close several instances of cumulative job-

gs,hop[Nuijten, 1996.

Model and notations

resource constrained project scheduling problem
A project is

tremendous improvement of both heuristic and exact solumade of a set of activitiesA linked by precedence con-
tion procedures (cf. e.g. the recent surveys givefiDa-
meulemeester and Herroelen, 2002; Hartmann and Kolischiected acyclic grapliy = (A, £) where each node il rep-
2004). The currently best lower bounds on the makespanesents an activity and each afd, B) € & represents a

for the general RCPSP are based on solving linear progranmsrecedence constraint betwednand B. Let d(A) denote
using adequate cutting plan¢Brucker and Knust, 2000; the fixed duration of activityd € A ands(A) (resp. e(A))
Baptiste and Demassey, 2Q04State-of-the-art techniques denote the decision variable representing the start (resp. end)
for upper-bounds rely on meta-heuristics such as Genetic Alime of activity A. A set of discrete capacity resourcRsis
gorithms, Ant Colony Optimization or Large Neighborhood considered, each resourée € R having a maximal avail-
Search. Many scheduling problems such as job shop, cumulable capacity)(R) over the entire scheduling horizon. Each
tive job shop and open-shop can be modeled as special casadtivity A € A requires a non-negative quantifyA, R) of

of RCPSP.

straints. Precedence constraints can be represented by a di-

resourceR. The problem is to find a feasible instantiation



of the activity start times such that precedence and resourdeefinition 2 (Resolvers of a minimal critical set) If ¢ C
constraints are satisfied and the schedule makespan is mifi R) is a MCS, we call resolvers af the set of temporal

mal. More formally: constraintsRes(¢) = {u < v : (u,v) € ¢?,u # v}.
minimize  maxe(A) As described ifLaborie and Ghallab, 1995the set of re-
AcA solversRes(¢) of a MCS¢ can be simplified so as to remove
subject to : those resolverg € Res(¢) for which there exists another
VA€ A, 0 < s(A) resolverp’ € Res(¢) such thatp = o’ given the current
6(2) — s(A) + d(A) temporal network. Indeed, in such case, the resqhisrre-
B dundant. Such a simplification procedure can be achieved in
V(A,B)e &,  e(A) <s(B) O(k3) if k is the size of the MCS using the naive Algorithm
VR e RVt € Z7, a(A,R) < Q(R) 1. Line 7 allows removing resolver < v if there existsw
ACS () suchthaty < v = u fZworu < v = w <X v. In what fol-
lows, we assume that the set of resolvers of a MCS has been
whereS(¢) is the set of activities executing at time simplified.
S(t)={Ae A s(A) <t <e(A)} Algorithm 1 Resolver simplification algorithm

A resource requirement of activitd on resourcek is a  1: procedure SIMPLIFY_RESOLVERS()
triple u = (A, R,q) whereq = q(A,R) > 0. Ifu = 2 Res(¢)—10
(A, R, q) is aresource requirement, we will denotéu) = A 3:  forall win ¢ do
the activity ofu, R(u) = R the required resource(u) = ¢ 4 forall vin ¢\ {u} do
the required quantitys(u) (resp. e(u)) will denote the start keep_uv — TRUE
(resp. end) time of the activity of. We will also denote 6 forall win ¢\ {u,v} do
U(R) = {u/R(u) = R} the set of resource requirements 7’ if s(v) 2 s(w) or e(w) < e(u) then
on resourceR. If ¢ C U(R) is a subset of resource require- g keep_uv — FALSE

ments on a resourck, we will denoteq(yp) = Zua@ q(u) _ break
the global resource consumptionBfby activities ine. 10: if keep_uv then

11 Res(¢) «— Res(¢) U (u =< v)
3 SearCh 12: return R65(¢)

3.1 Branching scheme At each search node, our branching scheme consists in se-
Our branching scheme assumes that a temporal network refecting a MCS¢ and branching on its possible resolvers in
resenting the relations between the time-points of all activihe children nodes until there is no more MCS. This approach
ities (start and end) using the point algebra[¥flain and s clearly complete.
Kautz, 1986 is maintained during the search. In our im- o
plementation, this is ensured by the precedence graph cod-2 Heuristics
straint of ILOG SHEDULER [ILOG, 2009. We denote As all the resolvers consist of temporal constraints of the form
{0,<,=,=,>,=,#,7} the set of qualitative relations be- z < y wherez andy are two time-points (start or end of an
tween time points. If; andv represent two resource require- activity), we are interested in an estimation of the size of the
ments, we will denote: < v if and only if e(u) < s(v). search space after posting such a precedence constraint. The
The branching scheme relies on the notion of minimal crit-fraction of the search space that is preserved when adding a
ical sets (MCS) and their resolvers as introducefLaiborie  precedence constraint is estimated using the complementary
and Ghallab, 1995 A MCS is a minimal set of resource re- of the commitment measure introduced iimborie, 2003.
quirements on the same resouft¢hat could be executed si-  Let = andy be two time-points with respective lower and
multaneously and would, in this case, over-consume resouragpper bound for time valugz,,,in, Tmaz] @Nd [Ymins Ymaz)-
R. MCSs are a natural generalization to cumulative schedulThe size of the search space is estimated by the Cartesian
ing of the pairs of activities conflicting for the same unary product of the domain of the two variables, that is, the area
resource in disjunctive scheduling. of the rectangléx,,in, Tmaz)s [Ymin, Ymaz]- The size of the

Definition 1 (Minimal critical set) A minimal critical seton ~ S€@rch space that is preserved when adding the constraint

a resourceR is a subsets C such that: r =2y is the part of that rectan_gle above the line= y as _
urcef? | ubse € U(R), su illustrated in Figure 1. The fraction of the search space that is
1. Q(R) < q(¢) preserved can thus be estimated as follows. Let:

2. Y9 C ¢,q(p) < Q(R)

3. A(uwyeoxs 5(u) < e(v) is consistent with the current
temporal network

A = (ym,(m; - ynLin + 1)(17771(11 — Tmin + 1)

B= (ymaz — Tmin + 1)(ymam — Tmin + 2)
. . . Cinin = max(0, in — T in — T 1
Informally, the different ways to resolve a minimal critical men X0, Wmin = Tmin) Ymin = Zmin +1))
set consist in posting a precedence constraint between any Cmaz = max(0, (Ymaz — Tmaz)(Ymaz — Tmaz + 1))
two of its activities. The fraction is then equal to:



Y = is the preserved search space so far in the current (partial)

Y MCS; ¢* is the best MCS so far ang = preserved(¢*) is
1 Proserved the preserved search space of the best MCS so far. The pro-
space cedure at line 1 calls the MCS rating and selection process
* on each resource. At line 6, to rate and select MCSs for a
Yoin -4 < given resource, the procedure first sorts the relevant sets of

requirements at lines 7 and 9 by decreasing orderqgf),
! P usingid(v) to break ties in order to ensure that each MCS is
— scanned only once, starting with the smallest MCSs, that is,
the ones containing the most greedy requirements. The pro-
cedure at line 23 returns TRUE if and only if a given require-
mentu can possibly overlap all the requirements of a partial
MCS given the current temporal network. The procedure at
line 28 computes the incremental increase of preserved space
B—C,ir — Cra due to the insertion of a new requirementn the current
’ - MCS ¢. The value ofpreserved has been described in sec-
2-4 tion 3.2. The main recursive function for selecting MCSs is
In the example of Figure 1, this gives = 30, B = 56,  described at line 12.
Cin = 6, Crnaz = 2, andpreserved(xz < y) = 24/30.
If wis the size of the search space below the current searRigorithm 2 MCS selection algorithm
node, the size of the search space after posting a temporal-
constraintc < y can be estimated by - preserved(z < y). dij procedure SELECT-MCS

Figure 1: Preserved search space when addirgy

preserved(x < y) =

If ¢ is the MCS that is selected to be resolved at the cur- gj ;lf)or?? $O7O€ do
rent search node, the size of the search space to explore be; SELECTMCS(R)
low the current node can thus be estimated as the sum oéj return ¢* -

the sizes of the search space below each child node, that is™

W+ Y e pes() Preserved(p). Thereforepreserved(¢) = 6: procedure SELECTMCS(R)
peRes(p) Preserved(p) estimates the fraction of the search 7. * sort{7(R) by decreasing

space that is preserved when choosings the next MCSto  g: forall win U(R) do

solveé'. Our heuristic simply chooses to resolve next the MCS o SortUnranked(u) by decreasing
¢ that minimizespreserved(¢) that is, the one that mini- 10: for win U(R) do
mizes our estimation of the size of the explored search spacei: RSELECTMCS(R,(u),q(u),0)
Next section provides more details about the MCS selection
algorithm. 12: procedure RSELECT.MCS(R,$,q,p)
) ) 13: if ¢ > Q(R) then > ¢isaMCS
3.3 MCS selection algorithm 14: if p < p* then > ¢ is the best MCS so far
At each search node, the MCS selection procedure develofs: p*—0p
a tree of partial MCSs where the current partial M@3s 16: O — ¢
extended adding one resource requirement in each child nod&7: else > ¢ needs to be extended
By definition of preserved(¢), it is clear thaty/ C ¢ =  18: u « Last(p)
preserved(¢') < preserved(¢). Thus, if¢p* is the best MCS ~ 19: for all vin Unranked() do
found so far, once a partial MGShas been reached such that 20: if IS.UNRANKED(v,¢) then
preserved(¢*) < preserved(¢), the sub-tree of the MCS 21: dp «+— DELTA_PRESERVEDY{,¢)
selection tree rooted dtcan be abandoned. 22: RSELECTMCS(R,¢p®v,q+q(v),p+dp)

The algorithm for selecting and branching on a MCS is
more precisely described in Algorithm 2 using the following 23: procedure IS.UNRANKED (u,¢)
notations:id(u) is a unique index associated with resource24: forall vin ¢ do
requirement: used to break tiesUnranked(u) represents  25: if w <vorv=uthen
all the resource requirementsthat can possibly overlap  26: return FALSE
given the current temporal constraints, and that are such th&: return TRUE
q(v) < q(u) or ¢(v) = q(u) andid(v) < id(u). ¢ is
the (partial) MCS that is currently being extended. A (par-28: procedure DELTA_PRESERVED{,¢)
tial) MCS is represented by a list of resource requirements29: dp—0
¢ = (u,...,ux). We denoteu, = Last(¢) and define the 30: forall vin ¢ do
operatord as follows:pdu = (uq, ..., ux, u); ¢ = q¢(¢) isthe  31: dp « dp + preserved{,v) + preserved(,u)
consumption of the current (partial) MCB = preserved(¢) 32: return dp

INote that this is of course only a rough estimate and in particu-
lar, the estimated fractiopreserved(¢) can be greater than 1. The best MCS* that has been scanned by the above pro-



cedure is selected as the one to be solved at the current seasaif-adaptation in such a way that on average, among the last
node. This MCS is simplified using Algorithm 1 and the h shaving attemptsyh lead to the inference of a new prece-
search explores all of its resolvessc Res(¢*) in the child  dence. Whenever the number of successful shavemgong
nodes by decreasing order mfeserved(p). This order has the lasth ones deviates fromh, the parametes is adapted

no effect when the schedule is not feasible as in this case theccordingly: ifs < ah, 8 is decreased bys and if s > «h,
complete search tree needs to be explored but it helps finding is increased bys. For all our experiments with shaving,

a solution quicker when a solution exists. we tookh = 20, a = 0.75, ¢ = 0.01 and start with3 = 1.

4 Self-adapting shaving 5 Experimental evaluation

Shaving techniqueg¢Torres and Lopez, 2000provide a The approach has been implemented on top of ILOG
good framework for strengthening constraint propagation angscHEDULER 6.1 using thetimetable disjunctive edge-
avoiding late failures to be discovered in the search tree. Thefinder, precedence energgnd balance constraints[ILOG,
are all based on the following principle: if adding a constraint2005. All the experiments described in this section were
C' in the current node of the search leads to a failure of theun on a Dell Latitude D600 laptop, 1.4 GHz. Detailed
propagation, then, constraintC' can be inferred. Due to the results such as individual lower bounds for each prob-
cost of propagating a constraigt and the potential number |em instance and new optimal solutions are available at
of constraint' to try to shave on, shaving techniques are inhttp://scheduler.ilog.fr/
general computationally expensive.

To improve the pruning of the search tree, we implemented.1  Results on general RCPSP

the following shaving technique based on MCSs. If a MCSwe evaluated our approach on the instances of the PSPLIB
¢ with resolversRes(¢) = {p1,..., px, pr+1} 1S such that  [Kolisch and Sprecher, 199&ith 60, 90 and 120 activities

Vi € [1..k], addingp; in the current schedule leads to a (resp. sets J60, J90, J120). For each instance, we solve the
failure of the propagation, thepy ., can be inferred. The feasibility problem of finding a schedule with a makespan
complexity for shaving a given MC8 of sizen is thus in  |Jower thanT, starting with a legal lower bound faF® and
O(n*P) where P is the cost of full constraint propagation incrementingl” until either the problem is shown to be feasi-
at the current node. Potentially, there is of course an exple (in this case] is the optimal makespan) or a given time
ponential number of MCSs to shave on at each search nodgnit for solving the problem with makespdh is exceeded
and we can expect that many of those MCS do not allow in{in this case[ is a legal lower-bound but the search stops
ferring any precedence constraint. An idea to speed-up thgithout providing any legal upper-bound).

shaving process is thus to only try shaving on a subset of |n a first series of experiments, we use the basic search de-
MCSs for which the probability to infer a precedence con-scribed in section 3 without shaving with a time limit3sf0s.
straint is greater than a given thresheld Parametery is  The previous best lower and upper bounds we compare with
an input of the shaving algorithm. We can roughly esti-are the ones reported in the PSPLIB together with the recent
mate that the probability that adding a precedence constraifnprovements on the J60 instances reportelBaptiste and

x = y in the current schedule will lead to a failure of the Demassey, 2034 The results are summarized on Table 1
propagation is proportion@alko 1 — preserved(z = y). If  with the following columns:

pm = AGMA%c g (s Preserved(p) is the resolver of the

MCS ¢ with maximal preserved search space, we are inter- #0 : number of instances previously open
ested in the MCSs that get a high probability that all their re- #|  : number of improved lower bounds (% of #O)
solvers buf,,, will fail, that is, if we assume all the probabil- AGR: average gap (distance from the lower to the upper
ities are independent, the ones such gt re, () ¢p,.3 (1 — bound) reduction when a bound is improved
preserved(p)) is greater than a given threshold. For those #C : number of closed instances (% of #0)
MCSs, if the threshold is close enough to 1, we can as-
sume thapreserved(p) is small enough so that the first or- [Mnst | #0 | # @) [ AGR | #C C) |
der approximationll e res(¢)\{p,.} (1 — preserved(p)) = J60 98 | 39 (39.82/0) 62.93/0 21 (21.42/0)
L= X peRes(o)\ () Preserved(p) is reasonable. 1120 300 |88 (226%) [ 47 0% | 3 079

To summarize, we thus only consider for shaving those ALL | 617 | 178 (28.8%) | 53.0% | 85  (13.8%)

MCS scanned by the procedure described in Algorithm 2 that

are such thapreserved(¢) — preserved(p,,) < 3, 3 be- Table 1. Results on RCPSP without self-adapting shaving
ing a threshold. The computation of this criterion only addswith a time-limit of 300s

a negligible overhead related with the maintenance,pfor ) ]

each MCS in the MCS selection procedure. Due to the nu- Out of the617 previously open instances, we are able to
merous approximations is not taken to be constant (theo- improve178 lower-bounds with an average gap reduction of

retically equal tol — a). The threshold3 is computed by ~53% and to close5 instances. .

- To show the effect of self-adapting shaving, we run a ver-
2Note that this estimation is exact at the extreme points whersion of our approach using self-adapting shaving with the

preserved(z < y) = 0 (propagation will fail for sure) andwhen

preserved(z < y) = 1 (propagation cannot fail because< y has 3For instance the lower-bound of the PERT of temporal con-

already been discovered given the current domainsaidy). straints



[Mnst | #0 [ # (%) [ AGR | #C #C) | [Mnst | #0 | # (%) | AGR | #C C) |
J60 98 | 40 (40.8%)] 62.6% | 22 (22.4%) J60 98 | 44 (44.9%)] 72.4% | 26  (26.5%)
J90 | 129 | 52 (40.3%) | 58.3% | 26  (20.2%) J90 | 129 | 54 (41.9%)| 66.0% | 30  (23.3%)
JI20 | 390 | 90 (23.1%) | 47.3% | 38 (9.7%) J120 | 390 | 95 (24.4%) | 48.1% | 40  (10.3%)
ALL | 617 | 182 (295%)| 53.1% | 86  (13.9%) ALL | 617 | 193 (31.3%)| 61.1% | 96  (15.6%)

Table 2: Results on RCPSP with a self-adapting shaving antiable 3: Results on RCPSP with a self-adapting shaving and
a time-limit of 300s a time-limit of 1800s

same time-limit of 300s. The results are summarized on Ta- Instance] UB ] Optim. ]| Instance] UB ] Optim. ]

; ; gpO6-03 | 1255 | 1255* || gp09-02 | 1112 | 1110°
blg 2. Out of thes17 prewouslylopen instances, we are al_ole 9p06-07 | 1290 | 1290 [ gp09-03 | 1117 | 1115*
to improve 182 lower-bounds with an average gap reduction gp06-00 | 1243 | 1243 || gp09-06 | 1093 | 1093*
of 53.1% and to close’6 instances. The main conclusion is gpgg—ég ﬁgg ﬁgg gpgg-g; 128(75 ﬂgg
. . . _ . . oy _ . gp | * gp | *

that, within the same time-limit, the addition of self-adapting 9p07-02 | 1185 | 1185 [ gp09-09 | 1126 | 1123"
shaving slightly increases the performances. The two curves gp07-04 | 1167 | 1167% || gp09-10 | 1120 | 1110%
below respectively show, on a particular instani®(_5_2), gp07-06 [ 1193 [ 1193 || gpl0-01 [ 1099 | 1093*
the number of search nodes with a given depth in the search gp07-08 | 1180 | 1180" || gp10-02 | 1099 | 10977
. gp07-09 | 1220 | 1220° || gpl0-03 | 1081 | 1081

tree and, for each node dept_h, the ratio betwgen the number gp08-02 | 1135 | 1135" || gpl0-04 | 1089 | 1077
of selected MCSs that effectively lead to the inference of a gp08-04 | 1154 | 1153* [ gp10-05 [ 1080 [ 1071
new precedence and the total number of MCSs selected for gp08-06 | 1116 | 1115* [ gpl0-06 | 1072 | 1071*
. X . gp08-07 | 1126 | 1126* || gpl0-07 | 1081 | 1079
shaving. One clearly see that in the region of the search space gp08-08 | 1148 | 1148* || gp10-08 | 1098 | 1003
where most of the nodes are concentrated (between depths gp08-10 | 1161 | 1161* || gpl0-09 | 1120 | 1112*
10 and 35), this ratio is effectively close to the target ratio gp09-01 | 1135 | 1129” || gp10-10 | 1092 | 1092*

of 0.75. In this instance, 4667 nodes where explored, 484
MCSs where selected for shaving and among them, 3291 e
fectively lead to the inference of a new precedence.

[able 4: Results on open-shop with a self-adapting shaving
and a time-limit of 5s

388 L ‘ ‘ ‘ ‘ ‘ T approach, with the same settings as in previous section on
250 — the open-shop problems instances proposelGiseret and
200 - Prins, 1999 Those instances are considered to be very
150 -~ . hard instances of open-shop problems and serve as classi-
100 |- B cal benchmark in open-shop scheduling (see for instance re-
58 B {umber Ofln(’dels e — cent work in[Blum, 2003). The benchmark consists of 80
instances ranging from 3 jobs 3 machines problems until
0 5 10 15 20 25 30 35 40 10 jobsx 10 machines problems. Out of these 80 problems,
Search depth 34 instances are still open. Using our approach, we were able
1 x x x to close all those instances in less than 5s CPU time. The op-
08 L timal makespan for the 34 previously open instances is sum-
’ marized on Table 4 where the coluriB corresponds to the
0.6 - currently best known upper-bound for which no optimality
0.4 - A | shavi . proof did exist.
0.2 - T;ﬁlglgt 2hgz$§ ﬁggg ] We also experimented with the open instances of the
0 ! 1 ! I 1 benchmark of[Brucker et al, 1999. We closed 3 of

0 5 10 15 20 25 30 35 40 these 6 open instances: namgB-per0-2 (optimal
makespan: 1052)8-per10-0 (optimal makespan 1017)

_ Search depth _ andj8-perl0-1  (optimal makespan 1000).

Given that self-adapting shaving slightly improves the per-

formances within the same time limit of 300s, we used thi A

configuration with an extended time-limit of 1800s. The re-ss'3 Results on cumulative jobshop problems

sults are summarized on Table 3. Out of &1& previously = We tested our approach, with the same settings, on the cu-

open instances, we improu®3 lower-bounds (that is more mulative job-shop problem benchmark describefNnijten,

than31% of the previously open instances) with an average1994. These instances are derived from classical jobshop

gap reduction 061.1% and closed6 instances (that is more scheduling problems by multiplying the number of jobs (and

than 15% of the previously open instances). thus the number of activities) and the capacity of the re-
sources by a given factokx or x3). Our results are summa-
5.2 Results on open-shop problems rized on Table 5 wheré B is the lower bound using the con-

Open-shop problems can be represented as a special caséstency checking described [Nuijten, 1996 and New LB

of RCPSP where all resources have a unit capacity and adhe new lower bound of our approach. We were able to close
ditional unary resources are used to model the fact that adhe ft06 x2 andft06 x3 instances as well as to improve
tivities of the same job cannot not overlap. We tested ourl2 lower bounds out of these 38 open instances.



[ Instance] LB [ NewLB J[ Instance[ LB | NewlB | References
fto6x 2 53 55* ft06x 3 53 55* i .
fflox2 | 835 837 || flox3 | 828 828 [Baptiste and Demassey, 2QOR. Baptiste and S. Demassey.
:agixg 232 232 :agixg 238 ggg Tight LP bounds for resource constrained project schedul-
alax al4x H .
62 | 888 59 T Tal6<3 | 884 557 ing. OR Spectrum26:251-262, 2004.
lal7x2 | 754 754 || lal7xs | 753 53 [Blum, 200§ C. Blum. Beam-ACO - hybridizing ant colony
lal8x2 | 783 803 |[ 1al8x3 | 776 783 it . ] e
Ao T 731 755 1 Talox3 | 724 740 optimization with beam search: an application to open-
[a20x2 | 830 849 || 1a20x3 | 829 842 shop scheduling. Computers & Operations Reseaych
la21x?2 1017 1017 1a21x3 1010 1012 32(6)21565—1591 2005.
la22x2 | 913 913 || la22x3 | 913 913 ’ _
la24x2 | 885 885 || 1a24x3 | B84 884 [Brucker and Knust, 20Q0P. Brucker and S. Knust. A lin-
la25x2 | 907 907 || 1a25¢3 | 903 903 ear programming and constraint propagation-based lower
la29x 2 1117 1117 1a29x 3 1116 1116 .
362 | 1229 1559 [ 12363 | 1227 1257 bound for the RCPSPEuropean Journal of Operational
a37<2 | 1378 1378 || 1a37x3 | 1370 1370 Research127:355-362, 2000.
1a38x 2 1092 1092 1a38x 3 1087 1087 . .
[a39x2 | 1221 1221 || 1a39x3 | 1221 1221 [Bruckeret al,, 199? P. Brucker, J. HUI’II”Ik., B. Jurisch, and
l240x2 | 1180 1180 [[ 1a40x3 | 1176 1176 B. Wostmann. A branch & bound algorithm for the open-

o i i shop problem.Discrete Applied Mathematic§6:43-59,
Table 5: Results on cumulative job-shop with a self-adapting 1997.

shaving and a time-limit of 1800s
9 [Demeulemeester and Herroelen, 2D@® Demeulemeester

and W. HerroelenProject scheduling - A research hand-
6 Conclusions book Kluwer Academic Publishers, 2002.

) . [Garaixetal, 2003 T. Garaix, C. Artigues, and S. De-
We presented a simple complete search procedure imple- massey. Bornes bass sur les ensembles interdits pour le

mented on top of classical constraint propagation algorithms  hropeme d’ordonnancement de progetmoyens limiés.
and applied it to resource constrained project scheduling |n ROADEF’2005 2005.

problems. In average, this approach outperforms the best al-_ , . , .

gorithms for finding lower bounds on those scheduling probTGueret and Prins, 1999C. Giéret and C. Prins. A new
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