
Complete MCS-Based Search:
Application to Resource Constrained Project Scheduling

Philippe Laborie
ILOG

9, rue de Verdun, 94253 Gentilly Cedex, France
plaborie@ilog.fr

Abstract

This paper describes a simple complete search for
cumulative scheduling based on the detection and
resolution of minimal critical sets (MCS). The
heuristic for selecting MCSs relies on an estima-
tion of the related reduction of the search space.
An extension of the search procedure usingself-
adapting shavingis proposed. The approach was
implemented on top of classical constraint propaga-
tion algorithms and tested on resource constrained
project scheduling problems (RCPSP). We were
able to close more than 15% of the previously open
problems of the PSPLIB[Kolisch and Sprecher,
1996] and improve more than 31% of the best
known lower bounds on those heavily studied prob-
lems. Other new results on open-shop and cumula-
tive job-shop scheduling are reported.

1 Introduction

The resource constrained project scheduling problem
(RCPSP) is one of the most general scheduling problem that
is extensively studied in the literature. It consists in schedul-
ing a project, which is a set of activities linked with prece-
dence constraints, by means of a set of limited resources
while minimizing the total duration of the project. The de-
cision variant of the RCPSP, i.e., the problem of determining
whether there exists a feasible project of makespan smaller
than a given deadline, is NP-hard in the strong sense. The
RCPSP is a very popular and frequently studied NP-hard op-
timization problem and the last 20 years have witnessed a
tremendous improvement of both heuristic and exact solu-
tion procedures (cf. e.g. the recent surveys given in[De-
meulemeester and Herroelen, 2002; Hartmann and Kolisch,
2005]). The currently best lower bounds on the makespan
for the general RCPSP are based on solving linear programs
using adequate cutting planes[Brucker and Knust, 2000;
Baptiste and Demassey, 2004]. State-of-the-art techniques
for upper-bounds rely on meta-heuristics such as Genetic Al-
gorithms, Ant Colony Optimization or Large Neighborhood
Search. Many scheduling problems such as job shop, cumula-
tive job shop and open-shop can be modeled as special cases
of RCPSP.

In this article, we present a pure constraint programming
approach based on the exploration of a complete search tree to
prove that the project cannot be achieved within a given dead-
line or to exhibit a feasible project if one exists. The search
procedure is based on the detection and resolution ofminimal
critical sets(MCS) [Laborie and Ghallab, 1995] at each node
of the search. MCSs are carefully chosen using a heuristic
that tries to minimize the size of the search space. During
the search, strong constraint propagation is enforced using
classical scheduling constraint propagation techniques such
astime-tabling, edge-finding, precedence energyandbalance
constraints[Laborie, 2003].

Next section recap the definition of the resource con-
strained project scheduling problem and introduces some no-
tations. Section 3 describes our basic search procedure as
well as the heuristic to select MCSs. Section 4 extends the
basic search procedure to performself-adapting shaving. The
last part of the paper consists of experimental results on clas-
sical benchmarks (general RCPSP, open-shop and cumulative
jobshop problems). For general RCPSP, we show that our ap-
proach closes more than 15% of previously open instances
and improves more than 31% of best known lower bounds of
the famous PSPLIB instances[Kolisch and Sprecher, 1996].
The same approach using exactely the same settings was used
to close all the hard open-shop instances of[Guéret and Prins,
1999] in less than 5s CPU time and to improve the best known
lower bounds and close several instances of cumulative job-
shop[Nuijten, 1996].

2 Model and notations
The resource constrained project scheduling problem
(RCPSP) can be formally stated as follows. A project is
made of a set of activitiesA linked by precedence con-
straints. Precedence constraints can be represented by a di-
rected acyclic graphG = (A, E) where each node inA rep-
resents an activity and each arc(A,B) ∈ E represents a
precedence constraint betweenA andB. Let d(A) denote
the fixed duration of activityA ∈ A ands(A) (resp. e(A))
denote the decision variable representing the start (resp. end)
time of activityA. A set of discrete capacity resourcesR is
considered, each resourceR ∈ R having a maximal avail-
able capacityQ(R) over the entire scheduling horizon. Each
activity A ∈ A requires a non-negative quantityq(A,R) of
resourceR. The problem is to find a feasible instantiations

of the activity start times such that precedence and resource
constraints are satisfied and the schedule makespan is mini-
mal. More formally:

minimize max
A∈A

e(A)

subject to :
∀A ∈ A, 0 ≤ s(A)

e(A) = s(A) + d(A)
∀(A,B) ∈ E , e(A) ≤ s(B)

∀R ∈ R,∀t ∈ Z+,
∑

A∈S(t)

q(A,R) ≤ Q(R)

whereS(t) is the set of activities executing at timet:

S(t) = {A ∈ A, s(A) ≤ t < e(A)}

A resource requirement of activityA on resourceR is a
triple u = (A,R, q) where q = q(A,R) > 0. If u =
(A,R, q) is a resource requirement, we will denoteA(u) = A
the activity ofu, R(u) = R the required resource,q(u) = q
the required quantity,s(u) (resp. e(u)) will denote the start
(resp. end) time of the activity ofu. We will also denote
U(R) = {u/R(u) = R} the set of resource requirements
on resourceR. If ϕ ⊆ U(R) is a subset of resource require-
ments on a resourceR, we will denoteq(ϕ) =

∑
u∈ϕ q(u)

the global resource consumption ofR by activities inϕ.

3 Search
3.1 Branching scheme
Our branching scheme assumes that a temporal network rep-
resenting the relations between the time-points of all activ-
ities (start and end) using the point algebra of[Vilain and
Kautz, 1986] is maintained during the search. In our im-
plementation, this is ensured by the precedence graph con-
straint of ILOG SCHEDULER [ILOG, 2005]. We denote
{∅,≺,�,=,�,�, 6=, ?} the set of qualitative relations be-
tween time points. Ifu andv represent two resource require-
ments, we will denoteu � v if and only if e(u) � s(v).

The branching scheme relies on the notion of minimal crit-
ical sets (MCS) and their resolvers as introduced in[Laborie
and Ghallab, 1995]. A MCS is a minimal set of resource re-
quirements on the same resourceR that could be executed si-
multaneously and would, in this case, over-consume resource
R. MCSs are a natural generalization to cumulative schedul-
ing of the pairs of activities conflicting for the same unary
resource in disjunctive scheduling.

Definition 1 (Minimal critical set) A minimal critical set on
a resourceR is a subsetφ ⊆ U(R), such that:

1. Q(R) < q(φ)
2. ∀ϕ (φ, q(ϕ) ≤ Q(R)
3.

∧
(u,v)∈φ×φ s(u) ≺ e(v) is consistent with the current

temporal network

Informally, the different ways to resolve a minimal critical
set consist in posting a precedence constraint between any
two of its activities.

Definition 2 (Resolvers of a minimal critical set) If φ ⊆
U(R) is a MCS, we call resolvers ofφ the set of temporal
constraintsRes(φ) = {u � v : (u, v) ∈ φ2, u 6= v}.

As described in[Laborie and Ghallab, 1995], the set of re-
solversRes(φ) of a MCSφ can be simplified so as to remove
those resolversρ ∈ Res(φ) for which there exists another
resolverρ′ ∈ Res(φ) such thatρ ⇒ ρ′ given the current
temporal network. Indeed, in such case, the resolverρ is re-
dundant. Such a simplification procedure can be achieved in
O(k3) if k is the size of the MCS using the naive Algorithm
1. Line 7 allows removing resolveru � v if there existsw
such thatu � v ⇒ u � w or u � v ⇒ w � v. In what fol-
lows, we assume that the set of resolvers of a MCS has been
simplified.

Algorithm 1 Resolver simplification algorithm
1: procedure SIMPLIFY RESOLVERS(φ)
2: Res(φ)← ∅
3: for all u in φ do
4: for all v in φ \ {u} do
5: keep uv ← TRUE
6: for all w in φ \ {u, v} do
7: if s(v) � s(w) or e(w) � e(u) then
8: keep uv ← FALSE
9: break

10: if keep uv then
11: Res(φ)← Res(φ) ∪ (u � v)
12: return Res(φ)

At each search node, our branching scheme consists in se-
lecting a MCSφ and branching on its possible resolvers in
the children nodes until there is no more MCS. This approach
is clearly complete.

3.2 Heuristics
As all the resolvers consist of temporal constraints of the form
x � y wherex andy are two time-points (start or end of an
activity), we are interested in an estimation of the size of the
search space after posting such a precedence constraint. The
fraction of the search space that is preserved when adding a
precedence constraint is estimated using the complementary
of the commitment measure introduced in[Laborie, 2003].

Let x andy be two time-points with respective lower and
upper bound for time value:[xmin, xmax] and[ymin, ymax].
The size of the search space is estimated by the Cartesian
product of the domain of the two variables, that is, the area
of the rectangle[xmin, xmax], [ymin, ymax]. The size of the
search space that is preserved when adding the constraint
x � y is the part of that rectangle above the linex = y as
illustrated in Figure 1. The fraction of the search space that is
preserved can thus be estimated as follows. Let:

A = (ymax − ymin + 1)(xmax − xmin + 1)

B = (ymax − xmin + 1)(ymax − xmin + 2)
Cmin = max(0, (ymin − xmin)(ymin − xmin + 1))
Cmax = max(0, (ymax − xmax)(ymax − xmax + 1))

The fraction is then equal to:

min xmax

miny

maxy

x
x

x=yy

Preserved
search
space

Figure 1: Preserved search space when addingx � y

preserved(x � y) =
B − Cmin − Cmax

2 ·A
In the example of Figure 1, this givesA = 30, B = 56,

Cmin = 6, Cmax = 2, andpreserved(x � y) = 24/30.
If ω is the size of the search space below the current search

node, the size of the search space after posting a temporal
constraintx � y can be estimated byω · preserved(x � y).
If φ is the MCS that is selected to be resolved at the cur-
rent search node, the size of the search space to explore be-
low the current node can thus be estimated as the sum of
the sizes of the search space below each child node, that is:
ω ·

∑
ρ∈Res(φ) preserved(ρ). Therefore,preserved(φ) =∑

ρ∈Res(φ) preserved(ρ) estimates the fraction of the search
space that is preserved when choosingφ as the next MCS to
solve1. Our heuristic simply chooses to resolve next the MCS
φ that minimizespreserved(φ) that is, the one that mini-
mizes our estimation of the size of the explored search space.
Next section provides more details about the MCS selection
algorithm.

3.3 MCS selection algorithm
At each search node, the MCS selection procedure develops
a tree of partial MCSs where the current partial MCSφ is
extended adding one resource requirement in each child node.
By definition of preserved(φ), it is clear thatφ′ ⊂ φ ⇒
preserved(φ′) ≤ preserved(φ). Thus, ifφ∗ is the best MCS
found so far, once a partial MCSφ has been reached such that
preserved(φ∗) ≤ preserved(φ), the sub-tree of the MCS
selection tree rooted atφ can be abandoned.

The algorithm for selecting and branching on a MCS is
more precisely described in Algorithm 2 using the following
notations: id(u) is a unique index associated with resource
requirementu used to break ties.Unranked(u) represents
all the resource requirementsv that can possibly overlapu
given the current temporal constraints, and that are such that
q(v) < q(u) or q(v) = q(u) and id(v) < id(u). φ is
the (partial) MCS that is currently being extended. A (par-
tial) MCS is represented by a list of resource requirements:
φ = (u1, ..., uk). We denoteuk = Last(φ) and define the
operator⊕ as follows:φ⊕u = (u1, ..., uk, u); q = q(φ) is the
consumption of the current (partial) MCS;p = preserved(φ)

1Note that this is of course only a rough estimate and in particu-
lar, the estimated fractionpreserved(φ) can be greater than 1.

is the preserved search space so far in the current (partial)
MCS; φ∗ is the best MCS so far andp∗ = preserved(φ∗) is
the preserved search space of the best MCS so far. The pro-
cedure at line 1 calls the MCS rating and selection process
on each resource. At line 6, to rate and select MCSs for a
given resource, the procedure first sorts the relevant sets of
requirementsv at lines 7 and 9 by decreasing order ofq(v),
usingid(v) to break ties in order to ensure that each MCS is
scanned only once, starting with the smallest MCSs, that is,
the ones containing the most greedy requirements. The pro-
cedure at line 23 returns TRUE if and only if a given require-
mentu can possibly overlap all the requirements of a partial
MCS given the current temporal network. The procedure at
line 28 computes the incremental increase of preserved space
due to the insertion of a new requirementu in the current
MCS φ. The value ofpreserved has been described in sec-
tion 3.2. The main recursive function for selecting MCSs is
described at line 12.

Algorithm 2 MCS selection algorithm
1: procedure SELECT MCS
2: p∗ ← +∞
3: for R in R do
4: SELECTMCS(R)
5: return φ∗

6: procedure SELECT MCS(R)
7: SortU(R) by decreasingq
8: for all u in U(R) do
9: SortUnranked(u) by decreasingq

10: for u in U(R) do
11: RSELECTMCS(R,(u),q(u),0)

12: procedure RSELECTMCS(R,φ,q,p)
13: if q > Q(R) then . φ is a MCS
14: if p < p∗ then . φ is the best MCS so far
15: p∗ ← p
16: φ∗ ← φ
17: else . φ needs to be extended
18: u← Last(φ)
19: for all v in Unranked(u) do
20: if IS UNRANKED(v,φ) then
21: dp← DELTA PRESERVED(v,φ)
22: RSELECTMCS(R,φ⊕v,q+q(v),p+dp)

23: procedure IS UNRANKED(u,φ)
24: for all v in φ do
25: if u � v or v � u then
26: return FALSE
27: return TRUE

28: procedure DELTA PRESERVED(u,φ)
29: dp← 0
30: for all v in φ do
31: dp← dp + preserved(u,v) + preserved(v,u)
32: return dp

The best MCSφ∗ that has been scanned by the above pro-

cedure is selected as the one to be solved at the current search
node. This MCS is simplified using Algorithm 1 and the
search explores all of its resolversρ ∈ Res(φ∗) in the child
nodes by decreasing order ofpreserved(ρ). This order has
no effect when the schedule is not feasible as in this case the
complete search tree needs to be explored but it helps finding
a solution quicker when a solution exists.

4 Self-adapting shaving
Shaving techniques[Torres and Lopez, 2000] provide a
good framework for strengthening constraint propagation and
avoiding late failures to be discovered in the search tree. They
are all based on the following principle: if adding a constraint
C in the current node of the search leads to a failure of the
propagation, then, constraint¬C can be inferred. Due to the
cost of propagating a constraintC and the potential number
of constraintsC to try to shave on, shaving techniques are in
general computationally expensive.

To improve the pruning of the search tree, we implemented
the following shaving technique based on MCSs. If a MCS
φ with resolversRes(φ) = {ρ1, ..., ρk, ρk+1} is such that
∀i ∈ [1..k], addingρi in the current schedule leads to a
failure of the propagation, thenρk+1 can be inferred. The
complexity for shaving a given MCSφ of sizen is thus in
O(n2P) whereP is the cost of full constraint propagation
at the current node. Potentially, there is of course an ex-
ponential number of MCSs to shave on at each search node
and we can expect that many of those MCS do not allow in-
ferring any precedence constraint. An idea to speed-up the
shaving process is thus to only try shaving on a subset of
MCSs for which the probability to infer a precedence con-
straint is greater than a given thresholdα. Parameterα is
an input of the shaving algorithm. We can roughly esti-
mate that the probability that adding a precedence constraint
x � y in the current schedule will lead to a failure of the
propagation is proportional2 to 1 − preserved(x � y). If
ρm = argmaxρ∈Res(φ)preserved(ρ) is the resolver of the
MCS φ with maximal preserved search space, we are inter-
ested in the MCSs that get a high probability that all their re-
solvers butρm will fail, that is, if we assume all the probabil-
ities are independent, the ones such thatΠρ∈Res(φ)\{ρm}(1−
preserved(ρ)) is greater than a given threshold. For those
MCSs, if the threshold is close enough to 1, we can as-
sume thatpreserved(ρ) is small enough so that the first or-
der approximationΠρ∈Res(φ)\{ρm}(1 − preserved(ρ)) ≈
1−

∑
ρ∈Res(φ)\{ρm} preserved(ρ) is reasonable.

To summarize, we thus only consider for shaving those
MCS scanned by the procedure described in Algorithm 2 that
are such thatpreserved(φ) − preserved(ρm) ≤ β, β be-
ing a threshold. The computation of this criterion only adds
a negligible overhead related with the maintenance ofρm for
each MCS in the MCS selection procedure. Due to the nu-
merous approximations,β is not taken to be constant (theo-
retically equal to1 − α). The thresholdβ is computed by

2Note that this estimation is exact at the extreme points when
preserved(x � y) = 0 (propagation will fail for sure) and when
preserved(x � y) = 1 (propagation cannot fail becausex � y has
already been discovered given the current domains ofx andy).

self-adaptation in such a way that on average, among the last
h shaving attempts,αh lead to the inference of a new prece-
dence. Whenever the number of successful shavings among
the lasth ones deviates fromαh, the parameterβ is adapted
accordingly: ifs < αh, β is decreased byεβ and if s > αh,
β is increased byεβ. For all our experiments with shaving,
we tookh = 20, α = 0.75, ε = 0.01 and start withβ = 1.

5 Experimental evaluation
The approach has been implemented on top of ILOG
SCHEDULER 6.1 using thetimetable, disjunctive, edge-
finder, precedence energyand balanceconstraints[ILOG,
2005]. All the experiments described in this section were
run on a Dell Latitude D600 laptop, 1.4 GHz. Detailed
results such as individual lower bounds for each prob-
lem instance and new optimal solutions are available at
http://scheduler.ilog.fr/ .

5.1 Results on general RCPSP
We evaluated our approach on the instances of the PSPLIB
[Kolisch and Sprecher, 1996] with 60, 90 and 120 activities
(resp. sets J60, J90, J120). For each instance, we solve the
feasibility problem of finding a schedule with a makespan
lower thanT , starting with a legal lower bound forT 3 and
incrementingT until either the problem is shown to be feasi-
ble (in this case,T is the optimal makespan) or a given time
limit for solving the problem with makespanT is exceeded
(in this case,T is a legal lower-bound but the search stops
without providing any legal upper-bound).

In a first series of experiments, we use the basic search de-
scribed in section 3 without shaving with a time limit of300s.
The previous best lower and upper bounds we compare with
are the ones reported in the PSPLIB together with the recent
improvements on the J60 instances reported in[Baptiste and
Demassey, 2004]. The results are summarized on Table 1
with the following columns:

#O : number of instances previously open
#I : number of improved lower bounds (% of #O)
AGR: average gap (distance from the lower to the upper

bound) reduction when a bound is improved
#C : number of closed instances (% of #O)

Inst. #O #I (%I) AGR #C (%C)

J60 98 39 (39.8%) 62.9% 21 (21.4%)
J90 129 51 (39.5%) 58.4% 26 (20.2%)
J120 390 88 (22.6%) 47.0% 38 (9.7%)
ALL 617 178 (28.8%) 53.0% 85 (13.8%)

Table 1: Results on RCPSP without self-adapting shaving
with a time-limit of 300s

Out of the617 previously open instances, we are able to
improve178 lower-bounds with an average gap reduction of
53% and to close85 instances.

To show the effect of self-adapting shaving, we run a ver-
sion of our approach using self-adapting shaving with the

3For instance the lower-bound of the PERT of temporal con-
straints

Inst. #O #I (%I) AGR #C (%C)

J60 98 40 (40.8%) 62.6% 22 (22.4%)
J90 129 52 (40.3%) 58.3% 26 (20.2%)
J120 390 90 (23.1%) 47.3% 38 (9.7%)
ALL 617 182 (29.5%) 53.1% 86 (13.9%)

Table 2: Results on RCPSP with a self-adapting shaving and
a time-limit of 300s

same time-limit of 300s. The results are summarized on Ta-
ble 2. Out of the617 previously open instances, we are able
to improve182 lower-bounds with an average gap reduction
of 53.1% and to close86 instances. The main conclusion is
that, within the same time-limit, the addition of self-adapting
shaving slightly increases the performances. The two curves
below respectively show, on a particular instance (J60 5 2),
the number of search nodes with a given depth in the search
tree and, for each node depth, the ratio between the number
of selected MCSs that effectively lead to the inference of a
new precedence and the total number of MCSs selected for
shaving. One clearly see that in the region of the search space
where most of the nodes are concentrated (between depths
10 and 35), this ratio is effectively close to the target ratio
of 0.75. In this instance, 4667 nodes where explored, 4843
MCSs where selected for shaving and among them, 3291 ef-
fectively lead to the inference of a new precedence.

0
50

100
150
200
250
300
350

0 5 10 15 20 25 30 35 40
Search depth

Number of nodes

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30 35 40
Search depth

Actual shaving ratio
Target shaving ratio

Given that self-adapting shaving slightly improves the per-
formances within the same time limit of 300s, we used this
configuration with an extended time-limit of 1800s. The re-
sults are summarized on Table 3. Out of the617 previously
open instances, we improve193 lower-bounds (that is more
than31% of the previously open instances) with an average
gap reduction of61.1% and close96 instances (that is more
than 15% of the previously open instances).

5.2 Results on open-shop problems
Open-shop problems can be represented as a special cases
of RCPSP where all resources have a unit capacity and ad-
ditional unary resources are used to model the fact that ac-
tivities of the same job cannot not overlap. We tested our

Inst. #O #I (%I) AGR #C (%C)

J60 98 44 (44.9%) 72.4% 26 (26.5%)
J90 129 54 (41.9%) 66.0% 30 (23.3%)
J120 390 95 (24.4%) 48.1% 40 (10.3%)
ALL 617 193 (31.3%) 61.1% 96 (15.6%)

Table 3: Results on RCPSP with a self-adapting shaving and
a time-limit of 1800s

Instance UB Optim. Instance UB Optim.

gp06-03 1255 1255* gp09-02 1112 1110*
gp06-07 1290 1290* gp09-03 1117 1115*
gp06-09 1243 1243* gp09-06 1093 1093*
gp06-10 1254 1254* gp09-07 1097 1090*
gp07-01 1159 1159* gp09-08 1106 1105*
gp07-02 1185 1185* gp09-09 1126 1123*
gp07-04 1167 1167* gp09-10 1120 1110*
gp07-06 1193 1193* gp10-01 1099 1093*
gp07-08 1180 1180* gp10-02 1099 1097*
gp07-09 1220 1220* gp10-03 1081 1081*
gp08-02 1135 1135* gp10-04 1089 1077*
gp08-04 1154 1153* gp10-05 1080 1071*
gp08-06 1116 1115* gp10-06 1072 1071*
gp08-07 1126 1126* gp10-07 1081 1079*
gp08-08 1148 1148* gp10-08 1098 1093*
gp08-10 1161 1161* gp10-09 1120 1112*
gp09-01 1135 1129* gp10-10 1092 1092*

Table 4: Results on open-shop with a self-adapting shaving
and a time-limit of 5s

approach, with the same settings as in previous section on
the open-shop problems instances proposed in[Guéret and
Prins, 1999]. Those instances are considered to be very
hard instances of open-shop problems and serve as classi-
cal benchmark in open-shop scheduling (see for instance re-
cent work in[Blum, 2005]). The benchmark consists of 80
instances ranging from 3 jobs× 3 machines problems until
10 jobs× 10 machines problems. Out of these 80 problems,
34 instances are still open. Using our approach, we were able
to close all those instances in less than 5s CPU time. The op-
timal makespan for the 34 previously open instances is sum-
marized on Table 4 where the columnUB corresponds to the
currently best known upper-bound for which no optimality
proof did exist.

We also experimented with the open instances of the
benchmark of[Brucker et al., 1997]. We closed 3 of
these 6 open instances: namelyj8-per0-2 (optimal
makespan: 1052),j8-per10-0 (optimal makespan 1017)
andj8-per10-1 (optimal makespan 1000).

5.3 Results on cumulative jobshop problems

We tested our approach, with the same settings, on the cu-
mulative job-shop problem benchmark described in[Nuijten,
1996]. These instances are derived from classical jobshop
scheduling problems by multiplying the number of jobs (and
thus the number of activities) and the capacity of the re-
sources by a given factor (×2 or×3). Our results are summa-
rized on Table 5 whereLB is the lower bound using the con-
sistency checking described in[Nuijten, 1996] andNewLB
the new lower bound of our approach. We were able to close
the ft06 ×2 and ft06 ×3 instances as well as to improve
12 lower bounds out of these 38 open instances.

Instance LB New LB Instance LB New LB

ft06×2 53 55* ft06×3 53 55*
ft10×2 835 837 ft10×3 828 828
la03×2 593 593 la03×3 590 590
la04×2 572 572 la04×3 570 570
la16×2 888 892 la16×3 884 887
la17×2 754 754 la17×3 753 753
la18×2 783 803 la18×3 776 783
la19×2 731 756 la19×3 724 740
la20×2 830 849 la20×3 829 842
la21×2 1017 1017 la21×3 1010 1012
la22×2 913 913 la22×3 913 913
la24×2 885 885 la24×3 884 884
la25×2 907 907 la25×3 903 903
la29×2 1117 1117 la29×3 1116 1116
la36×2 1229 1229 la36×3 1227 1227
la37×2 1378 1378 la37×3 1370 1370
la38×2 1092 1092 la38×3 1087 1087
la39×2 1221 1221 la39×3 1221 1221
la40×2 1180 1180 la40×3 1176 1176

Table 5: Results on cumulative job-shop with a self-adapting
shaving and a time-limit of 1800s

6 Conclusions

We presented a simple complete search procedure imple-
mented on top of classical constraint propagation algorithms
and applied it to resource constrained project scheduling
problems. In average, this approach outperforms the best al-
gorithms for finding lower bounds on those scheduling prob-
lems, even with a time limit of 300s per optimization step4.
Using this approach in conjunction with a self-adapting shav-
ing procedure, we were able to close more than 15% of the
previously open problems of the PSPLIB and improve more
than 31% of the best known lower bounds. What is even more
remarkable is that this very same approach allows closing all
the hard open-shop instances of[Guéret and Prins, 1999] in
less than 5s CPU time although the approach was not partic-
ularly designed to tackle disjunctive scheduling and does not
exploit the open-shop nature of the problems.

The understanding of why our method works so well on the
instances of the PSPLIB and on many open-shop problems
would deserve a deeper study. From one hand, if the prob-
lems are highly cumulative, our approach is clearly limited by
the explosion of the number of MCSs to consider. From the
other hand, when problems are highly disjunctive, we could
expect other approaches dedicated to disjunctive scheduling
to work better. A first possible explanation could be a good
fit between our approach and the ”disjunctivity” degree of the
hard instances of the PSPLIB as suggested by some recent
work [Garaixet al., 2005]. A result of this study could be
some kind of hybridizing of MCS-based search with tech-
niques more adapted to highly cumulative problems, MCS-
based search being restricted to the resolution of MCSs with
small preserved search space (thus small MCSs) at the top of
the search tree. A second direction for future work is the gen-
eralization of the notion ofself-adaptingshaving introduced
in this paper to other shaving techniques in scheduling.

4When this time limit is exceeded at an optimization step, usu-
ally, the previous steps where fairly quick so that the overall time for
computing the lower bound is close to 300s.

References
[Baptiste and Demassey, 2004] P. Baptiste and S. Demassey.

Tight LP bounds for resource constrained project schedul-
ing. OR Spectrum, 26:251–262, 2004.

[Blum, 2005] C. Blum. Beam-ACO - hybridizing ant colony
optimization with beam search: an application to open-
shop scheduling. Computers & Operations Research,
32(6):1565–1591, 2005.

[Brucker and Knust, 2000] P. Brucker and S. Knust. A lin-
ear programming and constraint propagation-based lower
bound for the RCPSP.European Journal of Operational
Research, 127:355–362, 2000.

[Bruckeret al., 1997] P. Brucker, J. Hurink, B. Jurisch, and
B. Wöstmann. A branch & bound algorithm for the open-
shop problem.Discrete Applied Mathematics, 76:43–59,
1997.

[Demeulemeester and Herroelen, 2002] E. Demeulemeester
and W. Herroelen.Project scheduling - A research hand-
book. Kluwer Academic Publishers, 2002.

[Garaixet al., 2005] T. Garaix, C. Artigues, and S. De-
massey. Bornes basées sur les ensembles interdits pour le
probl̀eme d’ordonnancement de projetà moyens limit́es.
In ROADEF’2005, 2005.

[Guéret and Prins, 1999] C. Gúeret and C. Prins. A new
lower bound for the open-shop problem.Annals of Op-
erations Research, 92:165–183, 1999.

[Hartmann and Kolisch, 2005] S. Hartmann and R. Kolisch.
Experimental evaluation of state-of-the-art heuristics for
the resource-constrained project scheduling problem: An
update.European Journal of Operational Research, 2005.

[ILOG, 2005] ILOG. ILOG SCHEDULER 6.1 Reference
Manual, 2005.http://www.ilog.com/.

[Kolisch and Sprecher, 1996] R. Kolisch and A. Sprecher.
PSPLIB - A project scheduling problem library.European
Journal of Operational Research, 96:205–216, 1996.

[Laborie and Ghallab, 1995] P. Laborie and M. Ghallab.
Planning with Sharable Resource Constraints. InIJCAI-
95, pages 1643–1649, 1995.

[Laborie, 2003] P. Laborie. Algorithms for propagation re-
source constraints in AI planning and scheduling: Exist-
ing approaches and new results.Artificial Intelligence,
143:151–188, 2003.

[Nuijten, 1996] W. Nuijten. A computational study of
constraint satisfaction for multiple capacitated job shop
scheduling. European Journal of Operational Research,
90(2):269–284, 1996.

[Torres and Lopez, 2000] P. Torres and P. Lopez. Overview
and possible extensions of shaving techniques for Job-
Shop problems. InCP-AI-OR’2000, pages 181–186, 2000.

[Vilain and Kautz, 1986] M. Vilain and H. Kautz. Constraint
propagation algorithms for temporal reasoning. InFifth
National Conference on Artificial Intelligence, pages 377–
382, 1986.

