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Abstract ule (IRM). The IRM is responsible for recognizing the in-
) ) tended message of the information graphic and sending it
This paper extends language understanding and o the content planning module (CPM), which will augment

plan inference to information graphics. We iden- the intended message with related interesting features of the
tify the kinds of communicative signals that appear  graphic. The message organization module (MOM) will then
in information graphics, describe how we utilize organize the most salient propositions into a coherent sum-

them in a Bayesian network that hypothesizes the  mary which will be rendered in natural language and con-
graphic's intended message, and discuss the perfor-  yeyed to the user via speech synthesis. The followup ques-
mance of our implemented system. This work is  tion module (FQM) will allow the user to interactively seek

part of a larger project aimed at making informa- additional information about the graphic.
tion graphics accessible to individuals with sight ol
impairments' i ‘ Vingl Extraction Module ‘
! (VEM)
. : v
1 Introduction 5

Caption Tagging Module
(CTM)

Content Plarming Wodule
For individuals who have serious sight impairments, doc: 1 Y
uments that contain information graphics (bar charts, lin¢; [ mon recogion Mot / \

graphs, etc.) pose challenging problems. Although device: (LRM) ! MESEEE‘JES@WMU% ‘ Fﬁﬂgﬁﬂﬁ%ﬂdgﬂ
have been developed for conveying information graphics i | l ¥
alternative mediums such as musical tones or tactile image! !

these approaches have serious limitations. For example, th“-------------------- 2 [ unl Lengiage Genemtion | resmest from uoer
often require expensive equipment, as well as requiring th l

user to construct a “mental map” of the graphic, which is diffi- to user via speech synthesis

cult for congenitally blind users who do not have the personal Figure 1: System Architecture

knowledge to assist them in the interpretation of the image

[Kennel, 1996. The underlying hypothesis of our work is ) ) . o

that alternative access to what the graphic looks like is not ThiS paper identifies the communicative signals that appear

enough — the user should be provided with the message arf} information graphics and discusses how we exploit them

knowledge that one would gain from viewing the graphic in!n & Bayesian network that hypothes!zes a graphlcs intended

order to enable effective and efficient use of this information€Ssage. It concludes with several illustrative examples and

resource. an evalua}tion of our system’s performance, which provides
We are developing an interactive natural language systerfii’oNg évidence of the effectiveness of our methodology. To

which infers the intended message of an information graphic?Ur knowledge, our work is the first to extend plan recognition

provides a summary that includes the intended message aloffg the domain of information graphics.

with notable features of the graphic, and then responds to

follow-up questions from the user. Figure 1 shows the archi2 Approach

tecture of our system. The visual extraction module (VEM)

analyzes the graphic and provides an XML representatior"r"’mguage research has po;ited that a spegker or writer exe-
cutes a speech act whose intended meaning he expects the

gittgitgr?rﬁgmtgﬁgh: fclfgr%t I(t)r:' eti%%{?cgmm;ndduIga(scszgﬂ)tﬁ’éhﬁ istener to be able to deduce, and that the listener identifies
: ; : = “the intended meaning by reasoning about the observed signals
mented XML representation to the intention recognition mod and the mutual beliefs of author and interpré@rice, 1969,

“Authors can be reached via email as follows: However, agClark, 1998 noted, language is more than just
elzer@cs.millersville.edycarberry, chester, demji@cis.udel.edu, words. It is any “signal” (or lack of signal when one is ex-
Ingrid.Zukerman@infotech.monash.edu.au, nigreen@uncg.edu. pected), where a signal is a deliberate action that is intended



L ocal bankr uptcy ator consisting of:

personal filings
e Goal: the goal that the operator achieves

2500 e Data Requirements:requirements which the data must
satisfy in order for the operator to be applicable in a

2000 4 . .
graphic planning paradigm
1500 e Display Constraints: features that constrain how the
1000 5565000 2000 information graphic is eventually constructed if this op-
) i erator is part of the final plan
Figure 2: Graphic from a 2001 Local Newspaper e Body: lower-level subgoals that must be accomplished

, - , in order to achieve the overall goal of the operator
to convey a message. Although some information graphics

are only intended to display data valdethe overwhelming For plan recognition, the plan operators facilitate chaining
majority of information graphics from popular media sourcesPackwards from perceptual tasks that can be performed on a
appear to have some underlying goal or intended messag@Ven graphic, to hypothesize _cand|date goalsland pla_ns'. The
such as the graphic in Figure 2 whose communicative goaqllsplay constraints are used in reverse, that is, to eliminate
is ostensibly to convey the sharp increase in local bankruptpperators from _con5|derat|qn (i.e., if the graphic does not sat-
cies in 2001 compared with the previously decreasing trendSfy the constraints on the display, then the operator could not
Applying Clark’s view of language to information graphics, have been part of a plan that produced the graphic). The data
it is reasonable to presume that the author of an informatiofi¢duirements are used to instantiate parameters in the oper-
graphic expects the viewer to deduce the message that he itof (i.e., the data must have had certain characteristics for

tended to convey by reasoning about the graphic itself, thé1€ operator to have been included in the designer's plan, and
salience of entities in the graphic, and mutual beliefs. these limit how the operator’s arguments can be instantiated).

Beginning with the seminal work diPerrault and Allen, Following the work oflCharniak and Goldman, 19pand

1984, researchers have applied plan inference techniques to%hers, we capture plan inference in a probabilistic frame-
variety of problems associated with understanding utterance¥/0rk. \We use our plan operators, along with the evidence
particularly within dialogue. Given domain knowledge in the that we glean from the mformatlon graphic itself, to construct
form of operators that decompose goals into a sequence @gfBayesian network which allows us to reason about the like-
subgoals, along with evidence in the form of an observedinood of various candidate plans.

action (such as an utterance), a plan inference system can

chain backwards on the plan operators to deduce one or mo@ Network Structure

high-level goals that might have led the agent to perform theyjthough we believe that our findings are extendible to other

observed action as part of an overall plan for achieving higinds of information graphics, our current work focuses on

goal(s). The high-level communicative goals in the plan capyar charts. Our analysis of simple bar chtas shown that

ture the utterance’s intended meaning. _ the intended message can be classified into one of 12 high-
In their work on intelligent multimedia generation, the Au- |eye| categories; examples of such categories are:

toBrief group proposed that speech act theory can be ex- . . .

tended to the generation of graphical presentatie®@sped- o GetRank: Viewer to believe thatentity-1> is ranked

jiev and Roth, 200D When designing an information <rank> among the entities in the graphic

graphic, the designer has one or more high-level communica- e Change-trend: Viewer to believe that there is a

tive goals. He constructs a graphic that he believes will enable  <slope-1> trend from<paraml> to <param2- and a

the viewer to perform certain perceptual and cognitive tasks  significantly differenk slope-2- trend from<param3>

which, along with other knowledge, will enable the viewer to <param4>

to recognize the graphic’s intended messi¢grpedjiev and ¢ Relative-difference: Viewer to believe that the value
Roth, 2000. By perceptual tasksve mean tasks that can be of element<param®> is <comparison- the value of

t)erfofrm%d by S|mbply vfl]ewtl.ng the gt_raprglc,ksuch as flnijmg the  glement<param2>, where <comparison- is greater-
op of a bar in a bar chart; byognitive tasksve mean tasks than, less-than, or equal-to,

that are done via mental computations, such as computing the ) o
difference between two numbers. The top-level node in our network captures the likelihood
In our research, we extend plan inference techniques t8f all of the possible categories of high-level intentions un-
inferring intention from information graphics. Our plan op- derlying a graphic. The entry with the highest probability in
erators capture knowledge about how the graphic designertis node represents the category most likely to represent the
goal of conveying a message can be achieved via the view&raphic designer’s primary intention or communicative goal
performing certain perceptual and cognitive tasks, as well afr the graph. Each individual category of high-level goal is
know|edge about how perceptua' and Cognitive tasks decon{.epresented as a child of this tOp-level node. We refer to the

pose into sets of simpler tasks. Figure 3 displays a plan opeRrocess of replacing one or more of the parameters of a goal
or perceptual task with specific elements or entities of the

'[Yu et al, 2003 developed a pattern recognition algorithm for graphic asnstantiatingthat goal or task. The network nodes
summarizing interesting features of automatically generated graph-—
ics of time-series data from a gas turbine engine. 2\We are not yet considering composite or grouped bar charts.



Goal: RankFromBarviewer>, <ds>, <g>, <b;>, <v;>, <rank>)
Gloss: Viewer to believe from graphie g> that the element of datasetds> depicted as batb; > with the value<wv;> for primary key
<att;> has a value fok atte> that is<rank> among the values cf att.> associated with elements displayed on graphjc-

Data Requirements:

1. <atty,> is the primary key attribute for datasetis>

2. <atty> is a dependent attribute for dataseis>

3. The values ok att,> have a natural ordering along a quantitative scale

4. The value ok atte> for <v;> has rank<rank> among the elements efds>
Display Constraints:

1. Graph<g> is a bar chart

2. For each value ofattl> in datasekds>, the value of<att1> and associated value efatt2> is displayed via a bar on graphg>
Body:

1. PerceiveRank: Viewer can perform the perceptual task of finding then k> relative to<att>> of bar<b; > in graph<g>

2. GetLabel: Viewer can perform the perceptual task of finding the valye- for <att; > where<w;> corresponds with the bar

<b;> on graph<g>

Figure 3: Operator for finding the rank of a particular bar

CetRank(BARID)
P \GhengeTend) e e -, DetRenk \miaﬁvemffmme RankFromBar(BARD) RankFromLahel (BAR1)

- '
Rl . & Figure 5: Alternative Ways of Achieving the Same Goal

- -

Figure 4: Top levels of Belief Network The nodes in the top levels of the network, representing
the high-level intentions and the alternative ways of achiev-
ing them (Figure 4), exist in every network and are added
at the beginning of the network construction process. Nodes
in the top two levels are not instantiated. Specific instantia/€Presenting perceptual tasks (the lowest-level nodes in the
tions appear in the network as children of the nodes represerff€twork) are then added, and upward chaining via the plan
ing the high-level intentions. For example, the GetRank nogé@perators adds higher level goals until a _I|nk_|s established
is shown with several children in Figure 4, illustrating severalt® one of the top-level goal nodes shown in Figure 4. How-
of its possible instantiations — namely, finding the rank of the€ver, automatically adding to the network all of the possible
first, second, or third bar in the graphic. (For readability, onlylnStantiations of all possible perceptual tasks rapidly becomes
the instantiation of the bar parametem; > in each GetRank infeasible due to the overvyhelmmg size of the resgltant net-
node is shown in Figure 4.) These are alternative instantia/ork and practical constraints on memory. Thus, instead of
tions and so inhibitory link§Huberet al, 1994 are used to  constructing the network a priori to include every possible
capture their mutual exclusivity. The child node of GetRankinstantiation of each task, the network is built dynamically
with the highest probability represents the instantiation of thafusing the API for NeticdNorsys, 200§) when the system
goal most likely to be part of the graphic designer’s intendedS Presented with a new information graphic, and nodes are
plan. Therefore, if the entry for GetRank has the highesfdded to the network only as suggested by communicative
probability in the IntendedMessage root node, our system séignals in the graphic, as discussed in the next two sections.
lects the instantiated child node of GetRank with the highest

probability, and produces the instantiated version of GetRand Communicative Signals

as its hypothesis about the intended message of the graphw1n plan recognition systems involving dialogue, the com-

If there are multiple ways for a goal to be achieved, thesenunicative signals are naturally centered around the utter-
are captured as children of the instantiated goal node. For exances, and the inference process uses signals such as the sur-
ample, a viewer might come to believe that the United Stateface form of the utterance, the focus of attention in the dia-
ranks third in GDP per capita in one of two ways: 1) he mightlogue, etc. Following AutoBriefKerpedijiev and Roth, 2000
seek out the bar for the U.S. and perceive that it is the thirdGreenet al, 2004, we contend that when constructing a
highest bar in the graph, or 2) he might notice the bar repregraphic, the designer made certain design decisions in order
senting the U.S. in the graphic (perhaps it is a different color)to make “important” tasks (the ones that the viewer is in-
and perceive that that bar is the third highest in the graphended to perform in getting the graphic’'s messagedasy
and that it represents the GDP per capita for the U.S. Thesar assalientas possible. The realization of these design de-
possibilities are captured respectively as RankFromLabel ancisions in the information graphic serve as communicative
RankFromBar in Figure 5. signals. The rest of this section identifies the kinds of com-




municative signals that appear in information graphics, andhe graphic, then it signals the salience of the graphic ele-
Section 5 discusses how these signals are used in our plament associated with that label. Certain verbs and adjectives

inference framework. in captions also serve as communicative signals. In this case,
L . the verbs and adjectives signal the salience of certain high-
4.1 Effort as a Communicative Signal level tasks. For example, the adjectivighestin the caption

The design choices made by the graphic designer facilitatéHighest in GDP” suggests that the viewer should find the
some perceptual tasks more than others. For example, if theaximum in the graphic, whereas the véxmatsin the cap-
viewer is intended to compare the height of two bars, placingion “U.S. Beats Japan” indicates that the viewer should note
the two bars beside each other in the graphic will facilitatethe relative difference in value between the U.S. and Japan.
the comparison task. Thus the relative effort required for dElzeret al., 2003 presents our work on exploiting captions
perceptual task serves as a communicative signal about whait understanding information graphics.

tasks the designer expects the viewer to perform.

4.2 Salience as a Communicative Signal 5 Exploiting the Communicative Signals

Our working hypothesis is that if the graphic designer goestThe communicative signals gleaned from an information
to the effort of employing attention-getting devices to makegraphic can be exploited for two purposes: 1) to select per-
certain elements of the graphic particularly salient, then theeptual task nodes for insertion in the network, and 2) as ev-
salient elements serve as communicative signals — i.e., thilence that will influence the hypothesis about the graphic
designer probably intends for them to be part of the intendedesigner’s intentions.
message of the graphic. As discussed in Section 3, the Bayesian network must be
restricted to those perceptual tasks suggested by the graphic.
We use two kinds of communicative signals for this purpose:
] perceptual effort and salient elements. We developed a set
of rules, based on research by cognitive scientists such as
[Lohse, 1993 for estimating the required perceptual effort
for a given perceptual task in a given graphic (eyetracking ex-
periments validating these rules are detailedBizeret al,
2004)). This set of rules is used to identify the set of instan-
tiated perceptual tasks in a graphic that are easiest relative to
Luxembourg Norway ~ US.  Switzerland Japan Denmark  Britain others, and nodes representing these tasks are added to the
Figure 6: Information Graphic Examgle network. In some graphics, these are the only communica-
tive signals available. However, if there are salient elements
L . . . . . in the graphic (such as a highlighted bar or a bar whose label
wal;l?)rf] lé?g:]glslgin%llzazﬁedr:ggregggplgs?tlﬁ;totrhseht?éjrl ?gz t'ﬁeoﬂesappears asanounin the_ caption), this salienc_:e signa_lls that the
was the only red bar in tHe graph shown in Figure 6 Th'iselement may playarole in the plan for achlevmg_the intended
would suggest that this bar is particularly relevant to fhe in-hessage of the graph|c_. Therefqre, we instantiate each pos-
tended message of the graphic. Annotating individual ele_S|ble perceptual task_W|th the salient elemen_ts, add_ them to
ments with their exact values aIsc.) signals salience. Thisisn tﬁe network, and chain upward as described in Section 3 un-
the case when all of the elements are displayed With their eq- a link is e_stabhshed to t_hg top—le_vel goal node. As nodes:
XSre added via upward chaining, their subgoals (as captured in
e plan operators) are also added, so that perceptual tasks re-

act values, since this is a general design feature of the graph{ﬁ
and does not draw attention to a specific subset of elementauired to achieve these subgoals are included in the network
ven if they were not among the easiest or salient tasks.

Other salient entities include any element that is significantly
taller than all of the other elements in the graphic and the most : o .

A Bayesian network also needs to explicitly record evi-
dence that should influence the credibility of different hy-

recent date on a time-line, since the viewer will certainly no-

tice the height of a bar that is taller than all of the others, h | task off i | .
and will naturally be interested in what has occurred most reg\cl)it d:r?s:.ai?)ﬁefhtgeilntzi dee d orrr;[e?sr:zjigss 'egéfee;?;ﬁn;fcrg;{ﬂg
cently. Although no specific action is required on the part of£ sk node in the network, evidence nodes are added as chil-
ren of the perceptual task node, as shown in Figure 7 —in

the graphic designer to make these elements salient, we po

that it is mutually believed by both designer and viewer that . . >

such elements will be salient to the viewer. our dlggrams, nodes representing ew_dence extracted from the
Captions by themselves are often too gené@ario and graphic are shown W'.th dashed outlines. - For examp'e' the

Lapalme, 199Por ill-formed to rely solely on them to iden- Effort evidence node in Figure 7 captures the relative effort

tify what the graphic is intended to convey. However, we €duired for the perceptual task that is its parent, Hirgh-

have found that captions often contain useful communicativ%'ght'.ng. node captures Whther. a parameter in the percept_ual

signals[Elzeret al, 2005. First, nouns in captions can func- ask is instantiated vylth a highlighted element in the graphic,

tion the same as highlighting; if the noun matches a label irf"d theNouninCaptionnode captures whether a parameter

In the perceptual task is instantiated with a bar whose label

3This is based on a U.S. News & World Report graphic in our matches a noun in the caption.

corpus. Certain verbs and adjectives in the caption are also com-
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il Only <bar> annotated 24.99 2.3

¢ 7" GaientHeight <bar> and others annotate  0.01 0.9
: - - e et -7 only others annotated 0.01 195

(. Amotaion 37 MosRecenDate 2 no bars annotated 74.99 77.3

) ) ) Figure 9: A Sample Conditional Probability Table
Figure 7: Perceptual Task Node with Evidence Nodes

for achieving the posited intention of each graphic; the goal-
N . . . , subgoal relationships, including the low-level perceptual and
municative signals that provide evidence about the '”te”degognitive tasks, were entered into the spreadsheet.

message of an information graphic. Using Wordnet, we de- gpreadsheet formulas were then constructed to compute all
veloped classes of .verbs_ a_nd adjectlye§ where me_mbers 8f the required conditional probability tables. Examples of
each class perform in a similar way within the domain of in-y,¢ needed probability tables include: 1) the conditional prob-
formation graphic captions. (In the case of adjectives derive bility of a particular perceptual task being easy, medium,

from yerbs, such as the adjeptig@owjng in the captionA  p5r4or impossible given that the perceptual task is (or is not)
Growing Biotech Marketthe adjective is treated as a verb us- 5ot of the plan, 2) the conditional probability, for each class

ing its root form.) For example, the class for the VEB®IN- o yerp that the verb class appears in the caption given that
cludes verbs such ascreasegrow, expandclimb, andsoar. e communicative goal of the graphic does (or does not) fall

Verb class and adjective class evidence nodes record whiGhy, 5 particular category of intention, and 3) the conditional
verb and/or adjective class (if any) appears in the caption,ohapility of a bar being annotated given that recognizing
they are inserted as children of the top-level node as show},q intended message entails (or does not entail) performing

in Figure 8, since this type of evidence suggests a particulag paticular perceptual task involving that bar. Figure 9 shows
category of high-level intention. this latter conditional probability table.

7 System Performance

.. ‘ 7.1 lllustrative Examples

The following examples illustrate how different kinds of ev-
idence impact our system’s hypothesis. The examples are
based on the bar chart in Figure 6. The XML representa-
Figure 8: Top-Level Node with Verb and Adjective Evidence tion of each example was produced by the Visual Extraction
Module (VEM), augmented by the Caption Tagging Mod-
. . ule (CTM), and then processed by the Intention Recognition
6 Gathering the Probabilities Module (IRM) (see Figure 1). Given the graphic as it appears
In a Bayesian network, conditional probability tables capturdn Figure 6, our system hypothesizes that the graphic is in-
the probability of each of the values of a child node given thetended to convey the relative rank in GDP of different coun-
value of its parent(s). In contrast to many other probabilisticiries and assigns this intention a likelihood of 87%. Other
plan recognition models where it is difficult to empirically de- possibilities also have some probability assigned to them. For
termine the probabilities, the probabilities for our belief net-example, the intention of conveying that Luxembourg has the
work have been obtained through a corpus analysis. highest GDP is assigned a probability of 12.4% because the
We automated the construction of a spreadsheet containir@grs are in sorted order according to height, thus making it
information from each graphic needed to compute the necegelatively easy for the viewer to recognize the maximum, and
sary probabilities. Each graphic's XML representation wasPecause finding the entity in the graphic with the maximum
analyzed to determine for each possible instantiation of eactlue is a fairly common intention (occurring approximately
perceptual task: 22.7% of the time in our corpus). However, there is no other

o the relative effort (categorized as easy, medium, hard, O?v:dence slgggtestm% thatﬂ:htebbarbrgpreigngllngh:hg ma‘>‘<||_mum
impossible) as estimated by our effort estimation rules’@U€ is salient (such as that bar being highlighted, or “Lux-
: : : embourg” being mentioned in the caption), so the system hy-
discussed in Section 5 . . - : :
) __pothesizes that the viewer is intended to notice the relative
e which parameters refe_r to elem_ents tha_t were salient ifgnk of all of the countries listed.
the graphic and the kind of salience (highlighted bars, syppose, however, that the bar representing the U.S. was
annotated bars, bars with labels that appear as nouns fyrker than the other bars. Now, the hypothesis that the in-
the caption, etc.) tended message of the graphic is to convey that the rank of the
In addition, the occurrence in the caption of a verb or ad-U.S. is third is assigned a probability of 99.5%. The fact that
jective class that suggested a particular intention was enterdtle bar is highlighted provides strong evidence that it plays
into the spreadsheet. a role in the intended message of the graphic. Elements of
Two coders had previously identified the intention of eachthe graphic could also be made salient in other ways, such as
graphic in the corpus. We applied our plan operators to conthrough annotations. Suppose that the bar representing the
struct a plan (constrained by what appeared in the graphid).S. was still darker than the other bars, but that the bars

i VerbEvidence




representing the U.S. and Japan (and only those bars) wemethodology, which offers promise as a means of providing
annotated with their exact values. Here the evidence still sugaccess via natural language to information graphics for indi-
gests the salience of the U.S., but also suggests that Japarviduals with sight impairments.

salient. The fact that both bars are now salient will provide

evidence against intentions involving only the U.S. and willReferences
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